what is 3141 times X. x=5783978

Answers

Answer 1

Answer:

18167474898

Step-by-step explanation:

I used a calculator.

Hope this helps!!! PLZ MARK BRAINLIEST!!!


Related Questions

A nut-raisin mix costs $5.26 a pound. Rashid buys 15.5 pounds of the mix for a party. Rashid’s estimated cost of the nut-raisin mix is A.$16 B.$22 C.$61 D.$80

Answers

Answer:

D.$80

Step-by-step explanation:

$5.26 x 15.5= $81.53

The closest amount to $81.53 is D.$80

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

8lb of the cheaper Candy

17.5lb of the expensive candy

Step-by-step explanation:

Let the cheaper candy be x

let the costly candy be y

X+y = 25.5....equation one

2.2x +7.3y = 25.5(5.7)

2.2x +7.3y = 145.35.....equation two

X+y = 25.5

2.2x +7.3y = 145.35

Solving simultaneously

X= 25.5-y

Substituting value of X into equation two

2.2(25.5-y) + 7.3y = 145.35

56.1 -2.2y +7.3y = 145.35

5.1y = 145.35-56.1

5.1y = 89.25

Y= 89.25/5.1

Y= 17.5

X= 25.5-y

X= 25.5-17.5

X= 8

Please answer this correctly without making mistakes
Simplify the correct answer

Answers

Answer:

7/44

Step-by-step explanation:

First find the total number of presidents.

2 + 7 + 13 + 12 + 7 + 3 = 44

There were 7 presidents that were 45-49 when elected.  Divide this number by the total number of presidents to find the fraction.

7/44 ≈ 0.159

Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )

Answers

Answer:

[tex]\boxed{x = 9}[/tex]

Step-by-step explanation:

m = -1/3

b = 7

And y = 4 (Given)

Putting all of the givens in [tex]y = mx+b[/tex] to solve for x

=> 4 = (-1/3) x + 7

Subtracting 7 to both sides

=> 4-7 = (-1/3) x

=> -3 = (-1/3) x

Multiplying both sides by -3

=> -3 * -3 = x

=> 9 = x

OR

=> x = 9

Answer:

x = 9

Step-by-step explanation:

m = -1/3

b = 7

Using slope-intercept form:

y = mx + b

m is slope, b is y-intercept.

y = -1/3x + 7

Solve for x:

Plug y as 4

4 = 1/3x + 7

Subtract 7 on both sides.

-3 = -1/3x

Multiply both sides by -3.

9 = x

find the exact value of sin 0

Answers

Answer:

12/13

Step-by-step explanation:

First we must calculate the hypotenus using the pythagoran theorem

5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13

Now let's calculate sin0

sin O = 12/13

So the exact value is 12/13

Answer:

C.) 12/13

Step-by-step explanation:

In a right angle triangle MN = 12, ON = 5 and; angle N = 90°

Now,

For hypotenuse we will use Pythagorean Theorem

(MO)² = (MN)² + (ON)²

(MO)² = (12)² + (5)²

(MO)² = 144 + 25

(MO)² = 169

MO = √169

MO = 13

now,

Sin O = opp÷hyp = 12÷13

The automatic opening device of a military cargo parachute has been designed to open when the parachute is 155 m above the ground. Suppose opening altitude actually has a normal distribution with mean value 155 and standard deviation 30 m. Equipment damage will occur if the parachute opens at an altitude of less than 100 m. What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes

Answers

Answer:

the probability that one parachute of the  five parachute is damaged is 0.156

Step-by-step explanation:

From the given information;

Let consider X to be the altitude above the  ground that a parachute opens

Then; we can posit that the probability that the parachute is damaged is:

P(X ≤ 100 )

Given that the population mean μ = 155

the standard deviation σ = 30

Then;

[tex]P(X \leq 100 ) = ( \dfrac{X- \mu}{\sigma} \leq \dfrac{100- \mu}{\sigma})[/tex]

[tex]P(X \leq 100 ) = ( \dfrac{X- 155}{30} \leq \dfrac{100- 155}{30})[/tex]

[tex]P(X \leq 100 ) = (Z \leq \dfrac{- 55}{30})[/tex]

[tex]P(X \leq 100 ) = (Z \leq -1.8333)[/tex]

[tex]P(X \leq 100 ) = \Phi( -1.8333)[/tex]

From standard normal tables

[tex]P(X \leq 100 ) = 0.0334[/tex]

Hence; the probability of the given parachute damaged is 0.0334

Let consider Q to be the dropped parachute

Given that the number of parachute be n= 5

The probability that the parachute opens in each trail be  p = 0.0334

Now; the random variable Q follows the binomial distribution with parameters n= 5 and p = 0.0334

The probability mass function is:

Q [tex]\sim[/tex] B(5, 0.0334)

Similarly; the event that one parachute is damaged is :

Q ≥ 1

P( Q ≥ 1 ) = 1 - P( Q < 1 )

P( Q ≥ 1 ) = 1 - P( Y = 0 )

P( Q ≥ 1 ) = 1 - b(0;5; 0.0334 )

P( Q ≥ 1 ) = [tex]1 -(^5_0)* (0.0334)^0*(1-0.0334)^5[/tex]

P( Q ≥ 1 ) = [tex]1 -( \dfrac{5!}{(5-0)!}) * (0.0334)^0*(1-0.0334)^5[/tex]

P( Q ≥ 1 ) = 1 -  0.8437891838

P( Q ≥ 1 ) = 0.1562108162

P( Q ≥ 1 ) [tex]\approx[/tex] 0.156

Therefore; the probability that one parachute of the  five parachute is damaged is 0.156

Suppose Miss Roxanne Davenport is 25 years old right now and puts away $1,800 per quarter in an account that returns 6% interest. a.) How much will be in the account when she turns 65? b.)What is her total contribution to the account?

Answers

Answer:

a. Total amount after 65 years = $1179415.39

b. The total contribution to the account  = $288000

Step-by-step explanation:

Given annuity amount = $1800

Total number of years for contribution = 65 – 25 = 40 years

Interest rate  = 6%

a. Total amount after 65 years = Annuity[((1+r)^n -1) / r]

Total amount after 65 years = 1800×((1+.06/4)^(4 × 40) - 1)/(.06/4)

Total amount after 65 years = $1179415.39

b. The total contribution to the account =1800 × 4 Quarter × 40 Years

        The total contribution to the account  = $288000

Write these numbers in standard form 0.000 05

Answers

Answer:

5x 10 ^-5

Step-by-step explanation:

UHM that would be

NaN × [tex]10^{0}[/tex]

I hope this helps!

so my reasoning...  Any number that can be written in the decimal form between 1.0 to 10.0 multiplied by the power of 10.  

Find the length of the following tangent segments to the circles centered at O and O's whose radii are 5 and 3 respectively and the distance between O and O's is 12. Find segment AB

Answers

Answer:

AB = 2 sqrt(35)   (or 11.83 to two decimal places)

Step-by-step explanation:

Refer to diagram.

ABO'P is a rectangle (all angles 90)

=>

PO'  =  AB

AB = PO' = sqrt(12^2-2^2) = sqrt(144-4) = sqrt(140) = 2sqrt(35)

using Pythagoras theorem.

You are selling your product at a three-day event. Each day, there is a 60% chance that you will make money. What is the probability that you will make money on the first two days and lose money on the third day

Answers

Answer:

The required probability = 0.144

Step-by-step explanation:

Since the probability of making money is 60%, then the probability of losing money will be 100-60% = 40%

Now the probability we want to calculate is the probability of making money in the first two days and losing money on the third day.

That would be;

P(making money) * P(making money) * P(losing money)

Kindly recollect;

P(making money) = 60% = 60/100 = 0.6

P(losing money) = 40% = 40/100 = 0.4

The probability we want to calculate is thus;

0.6 * 0.6 * 0.4 = 0.144

A lease provides that the tenant pays $760 minimum rent per month plus 4% of the gross sales in excess of $150,000 per year. If the tenant paid a total rent of $20,520 last year, what was the gross sales volume?

Answers

Answer:

$435,000

Step-by-step explanation:

$760 per month * 12 months = $9,120

The minimum rent requires an annual rental cost of $9,120.

The annual rent was $20,520.

The excess was $20,520 - $9,120 = $11,400.

The amount of $11,400 of the rent was due to the gross sales in excess of $150,000.

$11,400 is 4% of the amount in excess of $150,000.

Let the amount in excess of $150,000 = x.

$11,400 = 4% of x

0.04x = 11,400

x = 285,000

$285,000 is the amount in excess of $150,000.

Total gross sales volume = $285,000 + $150,000 = $435,000

Determine whether 52c2y4 is a monomial, binomial, trinomial, or other polynomial.

Answers

Answer: Monomial.

Step-by-step explanation:

Ok, when we have a polynomial with only one term, this is a monomial.

If the polynomial has two terms, this is a binomial.

If the polynomial has 3 terms, this is a trinomial.

And so on.

In this particular case we have:

52*c^2*y^4

Where c and y may be variables.

We can see that here we have only one term, so this would be a monomial.

(notice that the number of variables does not affect the type of polynomial in this case, only the number of terms)

Answer:

binomial.

Step-by-step explanation:

The polynomial −50c3z3−41y220z4 has 2 terms, so it is a binomial.

plzzzzz helpp j + 9 - 3 < 8

Answers

Answer:

j < 2

Step-by-step explanation:

Simplify both sides of the inequality and isolating the variable would get you the answer

In which table does y vary inversely with x? A. x y 1 3 2 9 3 27 B. x y 1 -5 2 5 3 15 C. x y 1 18 2 9 3 6 D. x y 1 4 2 8 3 12

Answers

Answer:

In Table C, y vary inversely with x.

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Step-by-step explanation:

We are given four tables and asked to find out in which table y vary inversely with x.

We know that an inverse relation has a form given by

y = k/x

xy = k

where k must be a constant

Table A:

x     |      y

1     |      3

2     |     9

3     |    27

1×3 = 3

2×9 = 18

3×27 = 81

3 ≠ 18 ≠ 81

Hence y does not vary inversely with x.

Table B:

x     |      y

1     |     -5

2     |     5

3     |    15

1×-5 = -5

2×5 = 10

3×15 = 45

-5 ≠ 10 ≠ 45

Hence y does not vary inversely with x.

Table C:

x     |      y

1     |      18

2     |     9

3     |     6

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Hence y vary inversely with x.

Table D:

x     |      y

1     |      4

2     |     8

3     |    12

1×4 = 4

2×8 = 16

3×12 = 36

4 ≠ 16 ≠ 36

Hence y does not vary inversely with x.

a 12- inch ruler is duvided into 3 parts. the large part is 3 times longer than the small. the meddium part is times longer than then small, the medium part is 2 times long as the smallest .how long is the smallest part?

Answers

Answer:

2 inches

Step-by-step explanation:

x= smallest

3x=largest

2x=medium

x+3x+2x=12

6x=12

x=2

so smallest is 2

largest is 6 (3x)

medium is 4 (2x)

2+6+4=12

The owner of a shoe store wanted to determine whether the average customer bought more than $100 worth of shoes. She randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below.
Use a TI-83, TI-83 Plus, or TI-84 calculator to test whether the mean is greater than $100 and then draw a conclusion in the context of the problem. Use α=0.05.
125 99 219 65 109 89 79 119 95 135
Select the correct answer below:
A) Reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
B) Reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.
C) Fail to reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.

Answers

Answer:

D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.

Step-by-step explanation:

We are given that the owner of a shoe store randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below;

X: 125, 99, 219, 65, 109, 89, 79, 119, 95, 135.

Let [tex]\mu[/tex] = average customer bought worth of shoes.

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] $100      {means that the mean is smaller than or equal to $100}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > $100      {means that the mean is greater than $100}

The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;

                            T.S.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = [tex]\frac{\sum X}{n}[/tex] = $113.4

             s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = $42.78

             n = sample of receipts = 10

So, the test statistics =  [tex]\frac{113.4-100}{\frac{42.78}{\sqrt{10} } }[/tex]  ~  [tex]t_9[/tex]

                                    =  0.991

The value of t-test statistics is 0.991.

Now, at a 0.05 level of significance, the t table gives a critical value of 1.833 at 9 degrees of freedom for the right-tailed test.

Since the value of our test statistics is less than the critical value of t as 0.991 < 1.833, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.

Therefore, we conclude that the mean is smaller than or equal to $100.


A man bought certain number of litches
at 20 per Rs 100 and an equal no. of 30 per
Rs 100. He mixed them and sold them at
25
per Rs 100. Find his
gain or loss
percent?

Answers

Answer:    The loss is 4%  

Step-by-step explanation:

Lets call litches that are 20 pcs per Rs 100  - litches A

that are 30 pcs per Rs 100- litches B

So a man can buy 2 pcs A per Rs 10

and 3 pcs B per Rs 10

OR

6x  pcs  A per  Rs  30x  

and 6x  pcs  B  per  Rs  20x

Now he gonna sell the 12x  litches  for y Rs

Lets find y from the proportion

12x  cost y

25   cost 100

y/12=100/25

y=48  Rs

So the man bought 6x A + 6x B  for 20x+30x=50 Rs

And then he sold them for 48 Rs

Obviously the man gonna loose the money.

Lets find the losses in %

(50-48)/50*100=200/50=4%

The loss is 4%  

Mia agreed to borrow a 3 year loan with 4 percent interest to buy a motorcycle if Mia will pay a total of $444 in interest how much money did she borrow how much interest would Mia pay if the simple interest rate was 5 percent

Answers

Answer:

a) $3700

b) $555

Step-by-step explanation:

The length of the loan is 3 years.

The interest after 3 years is $444.

The rate of the Simple Interest is 4%.

Simple Interest is given as:

I = (P * R * T) / 100

where P = principal (amount borrowed)

R = rate

T = length of years

Therefore:

[tex]444 = (P * 3 * 4) / 100\\\\444 = 12P / 100\\\\12P = 444 * 100\\\\12P = 44400\\\\P = 44400 / 12\\[/tex]

P = $3700

She borrowed $3700

b) If the simple interest was 5%, then:

I = (3700 * 5 * 3) / 100 = $555

The interest would be $555.

Find the area of the surface given by z = f(x, y) that lies above the region R. f(x, y) = 64 + x2 − y2 R = {(x, y): x2 + y2 ≤ 64}

Answers

The area of the surface above the region R is 4096π square units.

Given that:

The function: [tex]f(x, y) = 64 + x^2 - y^2[/tex]

The region R is the disk with a radius of 8 units [tex]x^2 + y^2 \le 64[/tex].

To find the area of the surface given by z = f(x, y) that lies above the region R, to calculate the double integral over the region R of the function f(x, y) with respect to dA.

The integral for the area is given by:

[tex]Area = \int\int_R f(x, y) dA[/tex]

To evaluate this integral, we need to set up the limits of integration for x and y over the region R, which is the disk cantered at the origin with a radius of 8 units.

Using polar coordinates, we can parameterize the region R as follows:

x = rcos(θ)

y = rsin(θ)

where r goes from 0 to 8, and θ goes from 0 to 2π.

Now, rewrite the integral in polar coordinates:

[tex]Area =\int\int_R f(x, y) dA\\Area = \int_0 ^{2\pi} \int_0^8(64 + r^2cos^2(\theta) - r^2sin^2(\theta)) \times r dr d \theta[/tex]

Now, we can integrate with respect to r first and then with respect to θ:

[tex]Area = \int_0^{2\pi} \int_0^8] (64r + r^3cos^2(\theta) - r^3sin^2(\theta)) dr d \theta[/tex]

Integrate with respect to r:

[tex]Area = \int_0^{2\pi}[(32r^2 + (1/4)r^4cos^2(\theta) - (1/4)r^4sin^2(\theta))]_0^8 d \theta\\Area = \int_0^{2\pi} (2048 + 256cos^2(\theta) - 256sin^2(\theta)) d \theta[/tex]

Now, we can integrate with respect to θ:

[tex]Area = [2048\theta + 128(sin(2\theta) + \theta)]_0 ^{2\pi}[/tex]

Area = 2048(2π) + 128(sin(4π) + 2π) - (2048(0) + 128(sin(0) + 0))

Area = 4096π + 128(0) - 0

Area = 4096π square units

So, the area of the surface above the region R is 4096π square units.

Learn more about Integration here:

https://brainly.com/question/31744185

#SPJ4

Refer to the following wage breakdown for a garment factory:
Hourly Wages Number of employees
$4 up to $7 18
7 up to 10 36
10 up to 13 20
13 up to 16 6
What is the class interval for the preceding table of wages?
A. $4
B. $2
C. $5
D. $3

Answers

Answer:

The class interval is $3

Step-by-step explanation:

The class interval is simply the difference between the lower or upper class boundary or limit  of a class and the lower or upper class boundary or limit of the next class.

In this case for the class

$4 up to $7 18 and

$7 up to $10 36

The lower class boundary of the first class is $4 and the lower class boundary of the second class is $7

Hence the class interval = $7-$4= $3

convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.

Answers

Answer:

Standard form: [tex]12x+3y-2=0[/tex]

A = 12, B = 3 and C = -2

Step-by-step explanation:

Given:

The equation:

[tex]y= -4x + \dfrac{2}3[/tex]

To find:

The standard form of given equation and find A, B and C.

Solution:

First of all, let us write the standard form of an equation.

Standard form of an equation is represented as:

[tex]Ax+By+C=0[/tex]

A is the coefficient of x and can be positive or negative.

B is the coefficient of y and can be positive or negative.

C can also be positive or negative.

Now, let us consider the given equation:

[tex]y= -4x + \dfrac{2}3[/tex]

Multiplying the whole equation with 3 first:

[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]

Now, let us take all the terms on one side:

[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]

Now, let us compare with [tex]Ax+By+C=0[/tex].

So, A = 12, B = 3 and C = -2

An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. (What is the product) How does the elevation of the airplane change in that hour? The elevation of the airplane _________ by ______ km. increases 60 decreases 9 0.15
WILL GIVE BRAINLIEST, THANKS AND FIVE STARS

Answers

Answer:

The elevation of the airplane decreases by 9 km.

Step-by-step explanation:

We use the distance-rate-time formula: d = rt.

Here, the rate is r = 0.15 km/min and the time is t = 60 min. Simply plug these into the formula:

d = rt

d = 0.15 * 60 = 9 km

So, the change in elevation in the last 60 minutes is 9 km. However, note that the rate is negative (-0.15 km/min), which means that the elevation actually is decreasing.

Thus, the answer is: the elevation of the airplane decreases by 9 km.

~ an aesthetics lover

Answer:

The elevation of the airplane _decrease_ by __9____ km

Step-by-step explanation:

Take the rate and multiply by the time to get the distance traveled

-.15 km per minute * 60 minutes

- 9 km

The plane will go down 9 km in that 60 minutes


An experiment involves 17 participants. From these, a group of 3 participants is to be tested under a special condition. How many groups of 3 participants can
be chosen, assuming that the order in which the participants are chosen is irrelevant?

Answers

Answer: 680

Step-by-step explanation:

When order doesn't matter,then the number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Given: Total participants = 17

From these, a group of 3 participants is to be tested under a special condition.

Number of groups of 3 participants chosen = [tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\[/tex]

[tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\\\\=\dfrac{17\times16\times15\times14!}{3\times2\times14!}\\\\=680[/tex]

Hence, there are 680 groups of 3 participants can  be chosen,.

A living room is two times as long and one and one-half times as wide as a bedroom. The amount of
carpet needed for the living room is how many times greater than the amount of carpet needed for the
bedroom?
1 1/2
2
3
3 1/2

Answers

Answer:

3

Step-by-step explanation:

let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room

A living room is two times as long as the bedroom, so:

A = 2X

A living room is one and one-half times as wide as a bedroom, so:

B = 1.5Y

The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y

So, AB in terms of XY is:

A*B = (2X)*(1.5Y) = 3(X*Y)

It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the  bedroom.

A gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else. A random sample of 600 18-29 year-olds is obtained today. What is the probability that no more than 70% would prefer to start their own business?

Answers

Answer:

The probability that no more than 70% would prefer to start their own business is 0.1423.

Step-by-step explanation:

We are given that a Gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else.

Let [tex]\hat p[/tex] = sample proportion of people who prefer to start their own business

The z-score probability distribution for the sample proportion is given by;

                               Z  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, p = population proportion who would prefer to start their own business = 72%

            n = sample of 18-29 year-olds = 600

Now, the probability that no more than 70% would prefer to start their own business is given by = P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%)

       P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%) = P( [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{0.70-0.72}{\sqrt{\frac{0.70(1-0.70)}{600} } }[/tex] ) = P(Z [tex]\leq[/tex] -1.07) = 1 - P(Z < 1.07)

                                                                       = 1 - 0.8577 = 0.1423

The above probability is calculated by looking at the value of x = 1.07 in the z table which has an area of 0.8577.

given sin theta=3/5 and 180°<theta<270°, find the following: a. cos(2theta) b. sin(2theta) c. tan(2theta)​

Answers

I hope this will help uh.....

You are mandated to pick 45 units per hour. You work 8.5 hours a day (minus a 1/2 hour lunch), Monday to Friday. How many units should you be picking each week?

Answers

Answer:

1912.5 units

Step-by-step explanation:

Firstly let us calculate the amount of hours you will have to work in a week.

Since you will have to work Mondays through Fridays, hence you will be working 5 days in a week.

Hence in a week you will work 8.5*5= 42.5 hours in a week

Since in 1 hours you are mandated to pick 45 units

Hence in 42.5 hours you will pick 42.5*45= 1912.5 units

please need help with this math question

Answers

Answer:

third option

Step-by-step explanation:

We just have to calculate 2x² - 4x - (x² + 6x). 2x² - x² = x² and -4x - 6x = -10x so the answer is x² - 10x.

Answer:

x^2-10x

Step-by-step explanation:

f(x)-g(x)

(2x^2-4x)-(x^2+6x)

carry through the negative

2x^2-4x-x^2-6x

x^2-10x

9. A college financial advisor wants to estimate the mean cost of textbooks per quarter for students at the college. For the estimate to be useful, it should have a margin of error of 20 dollars or less. The standard deviation of prices is estimated to be around 100 dollars. How large of a sample size needs to be used to be 95% confident, with the given margin of error?

Answers

Answer: 97

Step-by-step explanation:

Formula to compute the required sample size :

[tex]n= (\dfrac{\sigma\times z_{\alpha/2}}{E})^2[/tex]

, where [tex]\sigma[/tex] = standard deviation

E= Margin of error

[tex]z_{\alpha/2}[/tex] = Two tailed z-value.

Here, E= 20

[tex]\sigma[/tex] = 100

For 95% confidence level: [tex]z_{\alpha/2}[/tex] =1.96

Required sample size:

[tex]n=(\dfrac{100\times1.96}{20})^2\\\\=(5\times1.96)^2\\\\=96.04\approx97[/tex]

Hence, the required sample size : 97

Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value

Answers

Answer:

z(c)  = - 1,64

We reject the null hypothesis

Step-by-step explanation:

We need to solve a proportion test ( one tail-test ) left test

Normal distribution

p₀ = 63 %

proportion size  p = 51 %

sample size  n = 114

At 5% level of significance   α = 0,05, and with this value we find in z- table z score of z(c) = 1,64  ( critical value )

Test of proportion:

H₀     Null Hypothesis                        p = p₀

Hₐ    Alternate Hypothesis                p < p₀

We now compute z(s) as:

z(s) =  ( p - p₀ ) / √ p₀q₀/n

z(s) =( 0,51 - 0,63) / √0,63*0,37/114

z(s) =  - 0,12 / 0,045

z(s) = - 2,66

We compare z(s) and z(c)

z(s) < z(c)      - 2,66 < -1,64

Therefore as z(s) < z(c)  z(s) is in the rejection zone we reject the null hypothesis

Other Questions
Limiting reagent problem. How many grams of H2O is produced from 40.0 g N2O4 and 25.0 g N2H4. N2O4 (l) + 2 N2H4 (l) 3 N2 (g) + 4 H2O(g) You have a $4 million portfolio consisting of a $100,000 investment in each of 20 different stocks. The portfolio has a beta of 1.1. You are considering selling $100,000 worth of one stock with a beta of 0.9 and using the proceeds to purchase another stock with a beta of 1.4. What will the portfolios new beta be after these transactions? Show your work. Martha Anne has been living with her daughter Diana for the last ten years. Recently, there was some discussion about finding an appropriate nursing home to help care for Martha Anne. For the past year or so, Martha Anne has been unable to recognize her daughter, other family members, and friends. In addition, she presents a mosaic of cognitive problems around perceptual-motor abilities; for instance, she is unable to recognize commonly used objects or utensils, such as the telephone, or a knife and fork. What is the most likely type of a major neurocognitive disorder does this criteria describe? Judith George makes an offer to sell a plot of land using a normal letter and states no authorized means by which the offeree, Helga Holmes must respond if she accepts. If Helga accepts the offer using a normal letter, which of the following is true? A. The acceptance is effective upon dispatch. B. The acceptance is effective when it is received. C. The offer is invalid because it fails to stipulate the means of acceptance. D. The acceptance would be effective upon dispatch even if the means of acceptance is unreasonable. A bond's credit ratingt provides a guides to its risk. suppose that long term bonds Aa currently offers yield to mjaturity of 7.5%. A-rated bonds sell at yields of 7.8%. Sud- pose that a 10-year bond with a coupon rate of 7.6% is downgraded by Moody's from an Aa to A rating. Required:a. Is the bond likely to sell above or below par value before the downgrade? b. Is the bond likely to sell above or below par value after the downgrade? A sample of 120 local residents reveals that 8 have a post office box for receiving mail. What is the relative frequency that a local resident does not have a post office box for receiving mail? Amber says that the data set is left-skewed because the box is farther to the left on the number line. (A) Is Amber correct? (B) Explain your reasoning. the solution of the equation 0=4+4(m+1) is Select all that apply. If x^2+b/ax+c/a=0 ; then: The sum of its roots = -b/a? The difference of its roots =-b/a? The product of its roots = c/a?The division of its roots = c/a? I can select multiple. An exponential growth function has a base that is____one?Please help [tex] \sqrt[3]{y} = a(c + \frac{1}{x})[/tex] The graphic shows the citric acid cycle. A diagram of the citric acid cycle is shown. Acetyl C o A enters the citric acid cycle and combines with a 4-carbon compound to form citric acid. During the citric acid cycle, what happens to acetyl-CoA? It enters the citric acid cycle and gains carbon dioxide to form citric acid, and gains more carbon dioxide through redox reactions to form a 4-carbon molecule. It enters the citric acid cycle and associates with a 4-carbon molecule, forming citric acid, and then through redox reactions regenerates the 4-carbon molecule. It enters glycolysis and associates with a 5-carbon molecule through redox reactions, forming another acetyl-CoA molecule. It enters the citric acid cycle and associates with a 4-carbon molecule, forming a 5-carbon compound, and then through oxidation reactions regenerates the 4-carbon molecule. Need answer ASAPFor this assignment, you will create a public service announcement in the form of a newspaper or magazine advertisement for the Gang Alternative Program and services provided. Your advertisement will educate the public about the problem with gangs, present a solution to the problem, and encourage the public to seek help if needed. A researcher who has no concern for issues of control or ability to generalize, instead choosing focus on providing rich descriptions would be following the _________ approach. A. positivistic/empirical B. interpretive C. critical D. scientific Which choice best replaces the underlined word?Read the sentence from Rina's comparative essay, anddecide how she can make her language formal andobjective.The narrative becomes scarier when Enrique can nolonger keep his eyes open.more terrifyingmore frighteningmore concerning Identify a homogeneous catalyst: a. SO2 over vanadium (V) oxide b. H2SO4 with concentrated HCl c. Pd in H2 gas d. N2 and H2 catalyzed by Fe e. Pt with methane A nursing student is in the final term of an Associate Science of Nursing (ASN) program and is preparing for licensure. Prior to licensure the candidate must provide evidence that they have fulfilled what requirements The copper wire to the motor is 6.0 mm in diameter and 1.1 m long. How far doesan individual electron travel along the wire while the starter motor is on for asingle start of the internal combustion engine Consider a triangle ABC like the one below. Suppose that B=36, C= 62, and b= 40. (The figure is not drawn to scale.) Solve the triangle.Round your answers to the nearest tenth.If there is more than one solution, use the button labeled "or". A new operating system for an existing maching is expected to cost $786000 and have a useful life of six years. The system yields an incremental after-tax income of $230000 each year after deducting its straight line depreciation. The predicted salvage value of the system is $90000. Assume the company requires a 10% rate of return on its investments. Compute the net present value of each potential investment.