Answer:
2
Step-by-step explanation:
The degree of this polynomial is 2, since a parabola is drawn. A parabola is a graph of a quadratic equation which has the highest degree of 2.
A compressive uniform stress distributed on a rectangular areas of sides. located on the two opposite vertical/radial faces of step. If Force = 1.87kN and stress = 0.987MPa calculate the h * t in m^2
Answer:
Area = 0.019 m²
Step-by-step explanation:
stess = applied Force over Area
since stress = 0.987 MPa
and the force = 1.87 Kn
then Area = h * t
Q = F / (h * t)
0.987 mPa = 1.87 kN / (h* t)
since h * t = Area then 1.87 / 0.987
Area = 1.89 x 0.01 =
Area = 0.019 m²
A bus company has contracted with a local high school to carry 450 students on a field trip. The company has 18 large buses which can carry up to 30 students and 19 small buses which can carry up to 15 students. There are only 20 drivers available on the day of the field trip.
The total cost of operating one large bus is $225 a day, and the total cost of operating one small bus is $100 per day.
Answer:
The answer is below
Step-by-step explanation:
Let x represent the big buses and y represent small buses. The large buses can carry 30 students and the small buses can carry 15 students. The total number of students are 450, this can be represented by the inequality:
30x + 15y ≤ 450
They are only 20 drivers, therefore only 20 buses can be used. It is represented by:
x + y ≤ 20
They are only 19 small buses and 18 large buses:
x ≤ 18
y ≤ 19
After plotting the graph, the minimum solution to the graph are at:
A (15,0), B(18,0), C(10, 10), D(18, 2).
The cost function is given as:
The total cost of operating one large bus is $225 a day, and the total cost of operating one small bus is $100 per day.
F(x, y) = 225x + 100y
At point A:
F(x, y) = 225(15) + 100(0) = $3375
At point B:
F(x, y) = 225(18) + 100(0) = $4050
At point C:
F(x, y) = 225(10) + 100(10) = $3250
At point D:
F(x, y) = 225(18) + 100(2) = $4250
The minimum cost is at point C(10, 10) which is $3250
Please Help
Show Work
Answer:
[tex]m<7[/tex]
Step-by-step explanation:
We can solve this inequality by isolating the variable [tex]m[/tex].
To do this, we subtract 8 from both sides of the equation.
[tex]15-8 > m+8-8[/tex]
[tex]7>m[/tex]
I always like formatting by inequalities with the variable on the left, so we just reverse the numbers and the sign.
[tex]m<7[/tex]
Hope this helped!
Answer:
Hey there!
15>m+8
15-8>m
7>m
m<7
Hope this helps :)
Fundamental Theorem of Algebra...
(x+7)^5
1. Using the Fundamental Theorem of Algebra explain how many roots your expression can have. How many real roots and how many complex roots are possible?
Answer:
A real root of fifth-grade multiplicity/No complex roots.
Step-by-step explanation:
The Fundamental Theorem of Algebra states that every polynomial with real coefficients and a grade greater than zero has at least a real root. Let be [tex]f(x) = (x+7)^{5}[/tex], if such expression is equalized to zero and handled algebraically:
1) [tex](x+7)^{5} = 0[/tex] Given.
2) [tex](x+7)\cdot (x+7)\cdot (x+7)\cdot (x+7)\cdot (x+7) = 0[/tex] Definition of power.
3) [tex]x+7=0[/tex] Given.
4) [tex]x = -7[/tex] Compatibility with the addition/Existence of the additive inverse/Modulative property/Result.
This expression has a real root of fifth-grade multiplicity. No complex roots.
HELP PLZZZ will give branliesstttttt Triangle congruence with sss asa aas sas
Answer:
1) Not congruent
2) AAS
3) Not congruent
4) SAS
5) SSS
6) ASA
Step-by-step explanation:
In SSS, ASA, AAS, and SAS, S stands for side and A stands for angle. If the sides and angles are congruent in any of those patterns, the triangles are congruent.
Hope it helps <3
Answer:
1. Not congruent
2. AAS, Congruent
3. Not congruent
4. SAS, congruent
5. SSS, congruent
6. ASA, Congruent
Step-by-step explanation:
1. Not congruent
It only shows that there are 3 similar angles. There were no sides described.
2. AAS, Congruent
They are congruent, just rotated in an angle (see proof 2)
3. Not congruent
It only shows 2 sides next to each other and an angle next to one side.
4. SAS, congruent
It shows 2 sides that are congruent and congruent angles between them (see proof 4)
5. SSS, congruent
All 3 sides are congruent (see proof 5,6)
6. ASA, Congruent
2 angles and an adjacent side are congruent(see proof 5,6)
Please help with this
Answer: B
Step-by-step explanation:
Because of Supplementary Angles, we know that the two angles in the right side of the equation add up to 90.
Hope it helps <3
6x²-7x=20 solve the following quadratic equation
Answer:
x = -4/3 and x = 5/2.
Step-by-step explanation:
6x² - 7x = 20
6x² - 7x - 20 = 0
To solve this, we can use the quadratic formula to solve this.
[please ignore the A-hat; that is a bug]
[tex]\frac{-b±\sqrt{b^2 - 4ac} }{2a}[/tex]
In this case, a = 6, b = -7, and c = -20.
[tex]\frac{-(-7)±\sqrt{(-7)^2 - 4 * 6 * (-20)} }{2(6)}[/tex]
= [tex]\frac{7±\sqrt{49 + 80 * 6} }{12}[/tex]
= [tex]\frac{7±\sqrt{49 + 480} }{12}[/tex]
= [tex]\frac{7±\sqrt{529} }{12}[/tex]
= [tex]\frac{7±23 }{12}[/tex]
[tex]\frac{7 - 23 }{12}[/tex] = [tex]\frac{-16 }{12}[/tex] = -8 / 6 = -4 / 3
[tex]\frac{7 + 23 }{12}[/tex] = [tex]\frac{30}{12}[/tex] = 15 / 6 = 5 / 2
So, x = -4/3 and x = 5/2.
Hope this helps!
Answer:
[tex]x1 = - \frac{4}{3} [/tex][tex]x2 = \frac{5}{2} [/tex]Step-by-step explanation:
[tex]6 {x}^{2} - 7x = 20[/tex]
Move constant to the left and change its sign
[tex] {6x}^{2} - 7x - 20 = 0[/tex]
Write -7x as a difference
[tex]6 {x}^{2} + 8x - 15x - 20 = 0[/tex]
Factor out 2x from the expression
[tex]2x(3x + 4) - 15x - 20 = 0[/tex]
Factor out -5 from the expression
[tex]2x(3x + 4) - 5(3x + 4) = 0[/tex]
Factor out 3x + 4 from the expression
[tex](3x + 4)(2x - 5) = 0[/tex]
When the product of factors equals 0 , at least one factor is 0
[tex]3x + 4 = 0[/tex]
[tex]2x - 5 = 0[/tex]
Solve the equation for X1
[tex]3x + 4 = 0[/tex]
Move constant to right side and change its sign
[tex] 3x = 0 - 4[/tex]
Calculate the difference
[tex]3x = - 4[/tex]
Divide both sides of the equation by 3
[tex] \frac{3x}{3} = \frac{ - 4}{3} [/tex]
Calculate
[tex]x = - \frac{4}{3} [/tex]
Again,
Solve for x2
[tex]2x - 5 = 0[/tex]
Move constant to right side and change its sign
[tex]2x = 0 + 5[/tex]
Calculate the sum
[tex]2x = 5[/tex]
Divide both sides of the equation by 2
[tex] \frac{2x}{2} = \frac{5}{2} [/tex]
Calculate
[tex]x = \frac{5}{2} [/tex]
[tex]x1 = - \frac{4}{3} [/tex]
[tex]x2 = \frac{5}{2} [/tex]
Hope this helps...
Best regards!!
On a final exam, each multiple-choice question is worth 4 points and each word problem is worth 8 points. Lorenzo needs at least 50 points on the final to earn a "B" in the class. Which inequality represents x, the number of correct multiple-choice questions, and y, the number of correct word problems, he needs to earn a "B"? 4x + 8y 50 4x + 8y ≥ 50
Answer:
4x + 8y ≥ 50
Step-by-step explanation:
Lorenzo must score at least 50 points to earn a B. He cannot score any less, therefore you use the greater than or equal to sign (≥).
Answer:
4x+8y>=50 is the required inequality.
Step-by-step explanation:
Here,
4 marks (multiple choice) and 8 marks (word problem) are the marks of each questions in the exam.
also x and y represents the number of correct and wrong answer respectively.
according to the question the person must have The points equal to or more than 50 points so, the inequality must be 4x+8y>=50.
so, theanswer is 4x+8y>=50.
hope it helps...
Solve the system using multiplication for the linear combination method. 6x – 3y = 3 –2x + 6y = 14 What is the solution to the system
Answer:
work is shown and pictured
Answer:
2/3
Step-by-step explanation:
got right n edg 2021
When testing the claim that p 1p1equals=p 2p2, a test statistic of zequals=2.04 is obtained. Find the p-value obtained from this test statistic.
Answer:
0.0414 with an upper tailed test
Step-by-step explanation:
Claim: P1P1 = P2P2
The above is a null hypothesis
The alternative hypothesis for a two-tailed test would be:
P1P1 \=/ P2P2
Where "\=/" represents "not equal to".
Using a z-table or z-calculator, we derive the p-value (probability value) for the z-score 2.04
With an upper tailed test, the
2 × [probability that z>2.04] = 2[0.0207] = 0.0414
This is the p-value for the test statistic.
Focus is on the alternative hypothesis.
Find the area of the shaded triangle, if the side of each square is 1 unit long.
Answer:
10 units²
Step-by-step explanation:
The shape is a triangle.
The area can be found by multiplying the base (in units) with height (in units) divided by 2.
base = 4 units
height = 5 units
[tex]\frac{4 \times 5}{2}[/tex]
[tex]\frac{20}{2} =10[/tex]
Copy the problem, mark the givens in the diagram, and write a Statement/Reason proof. Given: MN ≅ MA ME ≅ MR Prove: ∠E ≅ ∠R
Answer:
Step-by-step explanation:
Given: MN ≅ MA
ME ≅ MR
Prove: ∠E ≅ ∠R
From the given diagram,
YN ≅ YA
EY ≅ RY
<EMA = <RMN (right angle property)
EA = EY + YA (addition property of a line)
NR = YN + RY (addition property of a line)
EA ≅ NR (congruent property)
ΔEMA ≅ ΔRMN (Side-Side-Side, SSS, congruence property)
<MNR ≅ MAE (angle property of congruent triangles)
Therefore,
<E ≅ <R (angle property of congruent triangles)
Select the correct answer. Consider matrices A, B, and C:
Answer:
i think it is c. i may be incorrect, i am sorry!
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
I did the math
Which is the solution to this question 4X equals 32
Answer:
8
Step-by-step explanation:
you would just divide 32 by 4
4x = 32
x = 32/4
x=8
Answer:
[tex]\large\boxed{\sf \ \ \ x=8 \ \ \ }[/tex]
Step-by-step explanation:
Hello
4x=32 we can divide both parts by 4 so
[tex]\dfrac{4x}{4}=\dfrac{32}{4}\\\\<=> x = 8[/tex]
Hope this helps
7. A large population of ALOHA users manages to generate 60 requests/s, including originals and retransmissions. Time is slotted in units of 50 ms. (Page 265 in the book may provide some help with this question.) (12 pts) a) What is the chance of success on the first attempt
Answer:
P(success at first attempt) = 0.1353
Step-by-step explanation:
This question follows poisson distribution. Thus, the formula is;
P(k) = (e^(-G) × (G)k)/k!
where;
G is number of frames generated in one frame transmission time(or frame slot time)
Let's find G.
To do this, we need to find number of frames generated in 1 slot time which is given as 50 ms.
Now, in 1000 ms, the number of frames generated = 50
Thus; number of frames generated in 50 ms is;
G = (50/1000) × 50
G = 2.5
To find the chance of success on the first attempt will be given by;
P(success at first attempt) = P(0) = e^(-G) = e^(-2) = 0.1353
Evaluate 2x^+2x+8 when x=4
Rafael is putting money into a savings account. He starts with $350 in the savings account, and each week he adds $60. Let S represent the total amount of money in the savings account (in dollars), and let W represent the number of weeks Rafael has been adding money. Write an equation relating S to W. Then use this equation to find the total amount of money in the savings account after 19 weeks.
Answer:
Equation: S(W) = 60W + 350
After 19 weeks, total accumulated = S(19) = 1490
Step-by-step explanation:
The interest rate is not indicated, so cannot take that into account.
Each week, he adds 60$, with initial value of 350$
So the equation is
S(W) = 60W + 350
for W = 19,
S = 60*19 + 350
S(19) = 1490
Answer:
$1490
Step-by-step explanation:
The volume of wine in liters produced by a parcel of vineyard every year is modeled by a Gaussian distribution with an average of 100 and a variance of 9. Find the probability that this year it will produce 115 liters of wine
Answer:
0.99865
Step-by-step explanation:
The question above is modelled by gaussian distribution. Gaussian distribution is also known as Normal distribution.
To solve the above question, we would be using the z score formula
The formula for calculating a z-score
z = (x-μ)/σ,
where x is the raw score
μ is the population mean
σ is the population standard deviation.
In the above question,
x is 115 liters
μ is 100
σ is the population standard deviation is unknown. But we were given variance in the question.
Standard deviation = √Variance
Variance = 9
Hence, Standard deviation = √9 = 3
We go ahead to calculate our z score
z = (x-μ)/σ
z = (115 - 100) / 3
z = 15/ 3
z score = 5
Using the z score table of normal distribution to find the Probability of having a z score of 5
P(x = 115) = P(z = 5) =
0.99865
Therefore the probability that this year it will produce 115 liters of wine = 0.99865
The image of a parabolic lens is traced onto a graph. The function f(x) = (x + 8)(x – 4) represents the image. At which points does the image cross the x-axis?
Answer:
[tex]\large \boxed{\sf \ \ \ (-8,0) \ \text{ and } \ (4,0) \ \ \ }[/tex]
Step-by-step explanation:
Hello,
from the expression of f(x) we can say that there are two zeroes, -8 with a multiplicity of 1 and 4 with a multiplicity of 1.
So the image of the parabolic lens crosses the x-axis at two points:
(-8,0)
and
(4,0)
For information, I attached the graph of the function.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Graph the equation below by plotting the y-intercept and a second point on the line. When you click Done, your line will appear
Answer:
Step-by-step explanation:
Equation of the line has been given as,
[tex]y=\frac{3}{2}x-5[/tex]
By comparing this equation with the y-intercept form of the equation,
y = mx + b
Slope of the line 'm' = [tex]\frac{3}{2}[/tex]
and y-intercept 'b' = -5
Table for the points to be plotted on a graph will be,
x y
-4 -11
-2 -6
0 -5
2 -4
4 -3
By plotting y-intercept (0, -5) and any one of the points given in the table we can get the required line.
Answer: actually the answer to this question is (0, -5) and ( 2, -2)
Step-by-step explanation: I just took the test on Plato and got it right :)
What is the value of x plz help
Solve for one half on the triangle with height 6 and base would be 4/2 = 2
Use the Pythagorean theorem:
X = sqrt( 6^2 + 2^2)
X = sqrt( 36 + 4)
X = sqrt(40)
The answer is D
The regular octagon below has a perimeter of 80m What is the length of one side of the octagon?
Answer:
10 m
Step-by-step explanation:
Since all of the side lengths of a regular octagon are equal and there are 8 sides on an octagon, the answer would be 80 / 8 = 10 m.
One number is 6 more than another. Their product is -9. Need help fast
Answer: the numbers are 3 and -3
Step-by-step explanation:
let the unknown number be x
The first UNKNOWN NUMBER = X
The second unknown number is = 6 + x
Their product = -9
(X)(6 + X) = -9
6x +[tex]x^{2}[/tex]=-9
[tex]x^{2}[/tex] +6x +9=0
we multiply the coefficient of x which is 1 with 9
now, we look for two numbers that when multiplied will give us 9 and when added will give 6 and that is 3 and 3
[tex]x^{2}[/tex] +3x+3x +9 = 0
x(x+3) +3(x+3) = 0
(x +3 ) = 0
or (x +3)=0
x +3 =0
x=0 -3
x =-3
x +3=0
x =0-3
x =-3
since the numbers are the same ,we pick one
therefore,the first number =x =-3
the second number is 6 + x=6 + (-3)
6-3=3
You bet $50 on 00 in a game of roulette. If the wheel spins 00, you have a net win of $1,750, otherwise you lose the $50. A standard roulette wheel has 38 slots numbered 00, 0, 1, 2, ... , 36. What is the expected profit for one spin of the roulette wheel with this bet?
Answer:
-$2.63
Step-by-step explanation:
Calculation for the expected profit for one spin of the roulette wheel with this bet
Based on the information given you bet $50 on 00 while the standard roulette has 38 possible outcomes which means that the probability or likelihood of getting 00 will be 1/38.
Therefore when we get an 00, we would get the amount of $1,750 with a probability of 1/38 and in a situation where were we get something other than 00 this means we would lose $50 with a probability of 37/38.
Now let find the Expected profit using this formula
Expected profit = sum(probability*value) -sum(probability*value)
Let plug in the formula
Expected profit =($1,750 * 1/38) - ($50 * 37/38)
Expected profit=($1,750*0.026315)-($50×0.973684)
Expected profit= 46.05 - 48.68
Expected profit = - $2.63
Therefore the expected profit for one spin of the roulette wheel with this bet will be -$2.63
Let T:V→W be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W.
Answer:
The range of T is a subspace of W.
Step-by-step explanation:
we have T:V→W
This is a linear transformation from V to W
we are required to prove that the range of T is a subspace of W
0 is a vector in range , u and v are two vectors in range T
T = T(V) = {T(v)║v∈V}
{w∈W≡v∈V such that T(w) = V}
T(0) = T(0ⁿ)
0 is Zero in V
0ⁿ is zero vector in W
T(V) is not an empty subset of W
w₁, w₂ ∈ T(v)
(v₁, v₂ ∈V)
from here we have that
T(v₁) = w₁
T(v₂) = w₂
t(v₁) + t(v₂) = w₁+w₂
v₁,v₂∈V
v₁+v₂∈V
with a scalar ∝
T(∝v) = ∝T(v)
such that
T(∝v) ∈T(v)
so we have that T(v) is a subspace of W. The range of T is a subspace of W.
Graph parallelogram ABCD on the graph
below with vertices A(2,0), B(7,0), C(10,3),
D (5,3). What is the area of parallelogram
ABCD?
Answer: 25 square units
Step-by-step explanation:
We mark the points, A(2,0), B(7,0), C(10,3), D (5,3). on a graph and then joined them to make parallelogram ABCD as provided in the attachment.
Area of parallelogram = Base x corresponding height
From the figure, base AB = 7 - 2 units = 5 units
corresponding height: h= 5 units
Now , Area of parallelogram ABCD = base AB x corresponding height
= 5 x 5 square units
= 25 square units
Hence, the area of parallelogram ABCD is 25 square units .
Consider a sample with a mean of 60 and a standard deviation of 5. Use Chebyshev's theorem to determine the percentage of the data within each of the following ranges (to the nearest whole number).
a. 50 to 70, at least %
b. 35 to 85, at least %
c. 51 to 69, at least %
d. 47 to 73, at least %
e. 43 to 77, at least %
Answer:
a)75%
b)96%
c)69.4%
d)85.2%
e)91.3%
Step by step explanation:
Given:
Mean=60
Standard deviation= 5
We were told to use chebyshev's theorem.to determine the percentage of the above given data within each of the following ranges
CHECK THE ATTACHMENT FOR DETAILED EXPLANATION.
What is the quotient? URGENT!!
Answer:
The answer is A.
Step-by-step explanation:
You have to multiply by converting the second fraction into upside down :
[tex] \frac{4x + 1}{6x} \div \frac{x}{3x - 1} [/tex]
[tex] = \frac{4x + 1}{6x} \times \frac{3x - 1}{x} [/tex]
[tex] = \frac{(4x + 1)(3x - 1)}{x(6x)} [/tex]
[tex] = \frac{12 {x}^{2} - 4x + 3x - 1}{6 {x}^{2} } [/tex]
[tex] = \frac{12 {x}^{2} - x - 1 }{6 {x}^{2} } [/tex]
94. A tin of peas & carrots and two mangoes weighing 300 grams each are placed on one
side of a scale. To balance the scale, 4 tins of condensed milk each weighing 250g are
placed on the other side. Determine the mass of the peas & carrots.
Answer:
400 g
Step-by-step explanation:
Let p represent the mass of the peas & carrots. The scale is balanced when the mass on one side is equal to the mass on the other side.
p + 2(300 g) = 4(250 g)
p = 1000 g -600 g . . . . . subtract 600 g
p = 400 g
The mass of the peas & carrots is 400 grams.
A P E X!!!! URGENT :The annual interest rate of Belinda's savings account is 8.6% and simple interest is calculated quarterly. What is the periodic interest rate of Belinda's account?
Answer:
The answer is 2.15%
Step-by-step explanatio