what is the effect of the following on the volume of 1 mol of an ideal gas? the pressure is reduced by a factor of four (at constant t). a. v decreases by 75% b. v doubles c. v increases 16 fold d. v does not change since n and t are constant e. v increases 4 fold

Answers

Answer 1

The correct answer is (c) - the volume increases 16 fold. Volume is inversely proportional to pressure.

As per Boyle's regulation, at a consistent temperature, the volume of a gas is contrarily corresponding to its tension. Thusly, on the off chance that the tension is diminished by a component of four, the volume of the gas will increment by an element of four (expecting that how much gas and the temperature stay steady).

Since the inquiry pose for the impact on the volume of 1 mol of an ideal gas, we can reason that choice (d) is wrong in light of the fact that the volume of the gas will change because of the adjustment of tension.

Likewise, choices (a), (b), and (e) are additionally wrong since they recommend a decline, increment, or change in the volume of the gas that isn't steady with the reverse connection among strain and volume depicted by Boyle's regulation.

In this manner, the right response is (c) - the volume increments 16 overlay. This implies that the volume of the gas will be multiple times the underlying volume when the strain is diminished by a variable of four, which is then duplicated by the underlying volume again in light of the fact that the inquiry pose for the volume of 1 mol of gas.

To learn more about pressure, volume and temperature, refer:

https://brainly.com/question/26986525

#SPJ4


Related Questions

Pi bonding occurs in each of the following species EXCEPT...
(A) CO2 (B) C2H4 (C) CN− (D) C6H6 (E) CH4

Answers

CH4 has only sigma bonds between the carbon and hydrogen atoms, and no pi bonds.

The answer is (E) CH4.



Pi bonding refers to the sharing of electrons between two atoms that occurs when two atomic orbitals with parallel electron spins overlap. Pi bonds are formed by the sideways overlap of two p orbitals.

In the given options, all except CH4 have pi bonds:

(A) CO2 has two pi bonds between the carbon atom and the oxygen atoms.
(B) C2H4 has a double bond between the two carbon atoms, which consists of one sigma bond and one pi bond.
(C) CN− has a triple bond between the carbon and nitrogen atoms, consisting of one sigma bond and two pi bonds.
(D) C6H6 has six pi bonds due to the delocalized pi electron system in the benzene ring.

In contrast, CH4 has only sigma bonds between the carbon and hydrogen atoms, and no pi bonds.

Visit to know more about Sigma bonds:-

brainly.com/question/31377841

#SPJ11

which category of amino acid contains r groups that are hydrophobic? which category of amino acid contains r groups that are hydrophobic? polar acidic basic non-polar basic and acidic

Answers

The amino acid that contains the R groups that are hydrophobic are the non - polar.

The Amino acids are the building blocks of the molecules of the  proteins. These contains the one hydrogen atom and the one amine group, the one carboxylic acid group and the one side chain that is the R group will be attached to the central carbon atom.

The side chains of the non polar amino acids includes the long carbon chains or the carbon rings, which makes them bulky. These are the hydrophobic, that means they repel the water. Therefore the non-polar amino acids are the hydrophobic.

To learn more about amino acid here

https://brainly.com/question/12788134

#SPJ4

explain why conjugation of coupling reagent or the number of aromatic rings in the nucleophile makes a bigger difference in determining the lambda max of an azo dye? g

Answers

The lambda max (λmax) of an azo color is the wavelength at which the color retains light most unequivocally.

It is decided by the electronic structure of the color atom, which in turn depends on the nature and position of the chromophores and auxochromes within the atom.

A chromophore could be a gathering of iotas in an atom that retains light due to the nearness of delocalized π electrons.

An autochrome may be a gathering of molecules in an atom that changes the electronic properties of the chromophore and impacts the absorption spectrum of the particle.

In azo dyes, the chromophore is the azo gather (-N=N-), which incorporates a tall molar termination coefficient and assimilates emphatically within the unmistakable locale of the electromagnetic range.

The auxochromes are ordinarily fragrant rings, amino bunches, or carboxylic corrosive bunches, which can give or pull back electrons from the chromophore and move the λmax of the color.

When a coupling reagent is included in an azo color response, it responds with a diazonium salt to make an unused azo color. The structure of the coupling reagent can influence the λmax of the coming about color by modifying the electronic properties of the chromophore.

For case, a coupling reagent with an electron-donating gather can increment the electron thickness on the chromophore and move the λmax to a longer wavelength, while a coupling reagent with an electron-withdrawing bunch can diminish the electron thickness on the chromophore and move the λmax to a shorter wavelength.

The number of fragrant rings within the nucleophile can moreover influence the λmax of the azo dye. Fragrant rings are electron-rich and can give electrons to the chromophore, expanding its electron thickness and moving the λmax to a longer wavelength.

Hence, a nucleophile with different fragrant rings will have a more prominent impact on the λmax of the color than a nucleophile with only one fragrant ring.

In rundown, both the conjugation of the coupling reagent and the number of fragrant rings within the nucleophile can impact the electronic structure of the azo color and move its λmax.

Be that as it may, the impact of the nucleophile is ordinarily more critical since it specifically influences the electron thickness of the chromophore. 

To know more about coupling reactions refer to this :

https://brainly.com/question/19561214

#SPJ4

a buffer solution has 0.750 m h2co3 and 0.650 m hco3−. if 0.020 moles of hcl is added to 275 ml of the buffer solution, what is the ph after the addition? the pka of carbonic acid is 6.37.

Answers

The pH after the addition of the 0.020 moles of HCl is added to 275 ml of the buffer solution is 6.40.

A buffer solution is an acidic or basic aqueous solution made up of a combination of a weak acid and its conjugate base, or vice versa (more specifically, a pH buffer or hydrogen ion buffer). When a modest amount of a strong acid or base is applied to it, the pH hardly changes at all.

A multitude of chemical applications employ buffer solutions to maintain pH at a practically constant value. Numerous biological systems employ buffering to control pH in the natural world.

275mL buffer 1L/1,1000 mL 0.75 mol H2CO3/ 1L Solution = 0.206 mol H2CO3

275 mL buffer 1L/ 1,000 mL 0.65 mol HCO3- / 1L Solution= 0.179 mol HCO3-

pH = 6.37 + log(0.179 mol + 0.020 mol / 0.206 mol + 0.020 mol)

pH = 6.37 + 0.0293

pH =  6.40.

Learn more about Buffer solution:

https://brainly.com/question/27371101

#SPJ4

it takes 500 j of work to compress quasi-statically 0.50 mol of an ideal gas to one-fifth its original volume. calculate the temperature of the gas, assuming it remains constant during the compression.

Answers

As the compression is carried out quasi-statically, the gas's temperature will not change during the process. The temperature of the gas is T= 60.65 K.

The temperature of the gas will remain constant during the compression process since it is being done quasi-statically.

This means that the temperature of the gas will remain constant throughout the compression process.

Since the amount of work (500 J) is given, the temperature of the gas can be determined using the equation U = (3/2)nRT, where U is the work, n is the number of moles, R is the ideal gas constant, and T is the temperature.

Solving for T, we find that the temperature of the gas is T = (2/3)(500 J)/(0.50 mol)(8.31 J/mol K) = 60.65 K.

Complete Question:

It takes 500 J of work to compress 0.50 mol of an ideal gas quasi-statically to one-fifth its original volume. What is the temperature of the gas, assuming it remains constant during the compression?

To learn more about temperature visit:

https://brainly.com/question/2339046

#SPJ4

when cuso4.5h2o is dissolved in water what are the major species present in the solution besides the solvent molecules?

Answers

When CuSO4·5H2O (copper(II) sulfate pentahydrate) is dissolved in water, the major species present in the solution, besides the solvent molecules (water), are Cu²⁺ (copper(II) ions) and SO₄²⁻ (sulfate ions).

The dissolution process involves the dissociation of CuSO4·5H2O into its constituent ions:
CuSO4·5H2O → Cu²⁺ + SO₄²⁻ + 5H2O
The water molecules serve as the solvent, and the Cu²⁺ and SO₄²⁻ ions are the solute, forming the solution.

The compound dissociates in water, releasing the Cu2+ and SO42- ions, which become hydrated by water molecules. The five water molecules in the formula unit of the compound (CuSO4·5H2O) become part of the solvent and do not exist as distinct species in the solution.

So, in summary, the major species present in a solution of CuSO4·5H2O in water are Cu2+ cations and SO42- anions, along with water molecules as the solvent.

To learn more about solvent molecules, refer:-

https://brainly.com/question/9545412

#SPJ11

When CuSO4.5H2O (copper(II) sulfate pentahydrate) is dissolved in water, the major species present in the solution besides the solvent molecules are Cu²⁺ (copper(II) ions) and SO₄²⁻ (sulfate ions).

When CuSO4·5H2O is dissolved in water, the major species present in the solution besides the solvent molecules are Cu2+ ions and SO42- ions. The Cu2+ ions and SO42- ions come from the dissociation of the CuSO4 compound in water, while the H2O molecules are present as the solvent. The Cu2+ ions and SO42- ions interact with the water molecules through hydration and solvation, respectively, which affects the physical and chemical properties of the solution. The dissolution process can be represented by the following equation:

CuSO4.5H2O (s) → Cu²⁺ (aq) + SO₄²⁻ (aq) + 5H2O (l)

In this equation, CuSO4.5H2O dissociates into its constituent ions, Cu²⁺ and SO₄²⁻, while the water molecules from the pentahydrate become part of the solvent.

Learn more about solvent: https://brainly.com/question/25326161

#SPJ11

What is wrong with the electron level diagrams/electron configurations below?

Answers

Answer:

a.) Instead of configuring all up before some down, all of the configurations were placed as up and down, leaving two spots empty in the 2p sublevel.

b.) There is a missing s sublevel for row 3.

c.) There are two up arrows in one of the lines.

d.) When you get to the "d" section you must subtract the number you're using by 1. So, it's supposed to be 2d to the power of 10.

phenacetin can be prepared from p-acetamidophenol, which has a molar mass of 151.16 g/mol, and bromoethane, which has a molar mass of 108.97 g/mol. the density of bromoethane is 1.47 g/ml. what is the yield in grams of phenacetin, which has a molar mass of 179.22 g/mol, possible when reacting 0.151 g of p-acetamidophenol with 0.12 ml of bromoethane?

Answers

The theoretical yield of phenacetin is 0.17922 g. However, the actual yield may be lower due to factors such as incomplete reaction, loss during purification, or experimental error.

To calculate the theoretical yield of phenacetin, we need to first determine the limiting reagent. The limiting reagent is the reactant that will be completely consumed in the reaction, thus limiting the amount of product that can be produced.

First, we need to convert the volume of bromoethane given in milliliters to grams, using its density:

0.12 ml x 1.47 g/ml = 0.1764 g bromoethane

Next, we can use the molar masses of p-acetamidophenol and bromoethane to determine the number of moles of each:

moles p-acetamidophenol = 0.151 g / 151.16 g/mol = 0.001 mol

moles bromoethane = 0.1764 g / 108.97 g/mol = 0.00162 mol

Since the reaction requires a 1:1 molar ratio of p-acetamidophenol to bromoethane, and the number of moles of p-acetamidophenol is smaller than the number of moles of bromoethane, p-acetamidophenol is the limiting reagent.

The theoretical yield of phenacetin can be calculated using the molar mass of phenacetin and the number of moles of p-acetamidophenol:

moles phenacetin = 0.001 mol p-acetamidophenol

mass phenacetin = 0.001 mol x 179.22 g/mol = 0.17922 g

For such more questions on Phenacetin:

https://brainly.com/question/29460577

#SPJ11

154.42g of oxygen gas (O2) react with an excess of ethane (C2H6) produces how many moles of water vapor (H20)?

Answers

For every 60 grammes of ethane, 108 grammes of water are produced. We therefore obtain 10.8 g of water from the combustion of 6 g of ethane. As a result, is created in 0.6 moles.

How are moles determined when vapour pressure is involved?

The mole fraction of the solvent must be multiplied by the partial pressure of the solvent in order to determine an ideal solution's vapour pressure. The vapour pressure would be 2.7 mmHg, for example, if the mole fraction is 0.3 and the partial pressure is 9 mmHg.

One mol of the solute is contained in one thousand grammes of the solvent (water) in a one molal solution. It follows that the solution's vapour pressure is 12.08 kPa.

learn more about mole fraction

https://brainly.com/question/29367909

#SPJ1

calculate the volume of a solution, in liters, prepared by diluting a 1.0 l solution of 0.40 m koh to 0.13 m.

Answers

The volume of a solution, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is approximately 3.08 liters.

To calculate the volume of a solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M, you can use the dilution formula:

M1V1 = M2V2

where M1 is the initial molarity of the solution (0.40 M), V1 is the initial volume of the solution (1.0 L), M2 is the final molarity of the solution (0.13 M), and V2 is the final volume of the solution (in liters) that we need to find.

Rearrange the formula to solve for V2:

V2 = (M1V1) / M2

Now, plug in the given values:

V2 = (0.40 M * 1.0 L) / 0.13 M

V2 = 0.40 L / 0.13

V2 ≈ 3.08 L

So, the volume of the diluted solution is approximately 3.08 liters.

Learn more about the volume of a solution at https://brainly.com/question/29262229

#SPJ11

The volume of the solution after dilution is approximately 3.08 liters.

To calculate the volume of the solution, we can use the formula:

V1C1 = V2C2

where V1 is the initial volume, C1 is the initial concentration, V2 is the final volume, and C2 is the final concentration.

Plugging in the values given in the question, we get:

(1.0 L)(0.40 M) = V2(0.13 M)

Solving for V2, we get:

V2 = (1.0 L)(0.40 M) / (0.13 M) = 3.08 L

Therefore, the volume of the solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is 3.08 L.
Hi! I'd be happy to help you calculate the volume of the solution. To do this, we'll use the dilution formula:

C1V1 = C2V2

where C1 and V1 represent the initial concentration and volume, and C2 and V2 represent the final concentration and volume.

1. Plug in the given values:
C1 = 0.40 M (initial concentration of KOH)
V1 = 1.0 L (initial volume of the solution)
C2 = 0.13 M (final concentration of KOH)

2. Rearrange the formula to solve for V2:
V2 = (C1V1) / C2

3. Substitute the values into the formula:
V2 = (0.40 M × 1.0 L) / 0.13 M

4. Calculate V2:
V2 ≈ 3.08 L

So, the volume of the solution after dilution is approximately 3.08 liters.

Learn more about solution here:

https://brainly.com/question/31522192

#SPJ11

The process of boiling is considered to be a (1) chemical change, because a new substance is formed (2) chemical change, because a new substance is not formed (3) physical change, because a new substance is formed (4) physical change, because a new substance is not formed

Answers

Answer:

physical change, because a new substance is not formed

Explanation:

Answer:

4) physical change, because a new substance is not formed

a physical change is where you can change the look and feel of whatever and get it back to what it was before but a chemical change. is a change where you can not get back to what it was originally

Explanation:

please give me brainliest

how many moles of atoms are there in 1.00 lb (454g) of lead

Answers

we need to use the atomic weight of lead to convert the given weight in grams to moles. The atomic weight of lead is 207.2 g/mol.



First, let's convert the given weight in pounds to grams: 1.00 lb = 454 g
Next, let's calculate the number of moles of lead atoms in 454 g of lead: moles of lead atoms = (454 g) / (207.2 g/mol) = 2.19 mol.


Therefore, there are 2.19 moles of lead atoms in 1.00 lb (454g) of lead. To calculate the number of moles of atoms in 1.00 lb (454g) of lead, you need to use the formula: moles = mass (g) / molar mass (g/mol)

The molar mass of lead (Pb) is 207.2 g/mol. Using the given mass of 454g, the calculation is as follows:
moles = 454g / 207.2 g/mol = 2.19 moles
So, there are 2.19 moles of atoms in 1.00 lb (454g) of lead.

To know more about formula click here

brainly.com/question/29886204

#SPJ11

To determine how many moles of atoms are there in 1.00 lb (454g) of lead, you'll need to follow these steps:

Step 1: Convert weight to grams.
1.00 lb of lead is already given as 454g.

Step 2: Find the molar mass of lead.
Lead (Pb) has a molar mass of approximately 207.2 g/mol.

Step 3: Calculate the number of moles.
To find the moles, divide the mass of lead (454g) by its molar mass (207.2 g/mol).

Moles = 454g / 207.2 g/mol

Your answer: There are approximately 2.19 moles of atoms in 1.00 lb (454g) of lead.

To know more about molar mass of lead:

https://brainly.com/question/19477776

#SPJ11

what is the molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water? question 36 options: 0.00220 m 2.20 m 12.9 m 129 m

Answers

, the molar concentration of the solution is 2.202 M. molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water

To calculate the molar concentration of a solution, we need to first determine the number of moles of the solute present in the solution, and then divide that by the volume of the solution in liters.

The molar mass of NaCl is 58.44 g/mol. Therefore, the number of moles of NaCl in 45.0 g can be calculated as:

mole= mass / molar mass = 45.0 g / 58.44 g/mol = 0.7709 mol

Next, we need to convert the volume of the solution from milliliters to liters:

volume = 350.0 ml = 0.3500

Finally, we can calculate the molar concentration (M) of the solution as:

M = moles / volume = 0.7709 mol / 0.3500 L = 2.202 M

Learn more about concentration  here:

https://brainly.com/question/30665317

#SPJ11

when a 2.5 liter vessel is filled with an unknown gas at stp, it weighs 2.75 g more than when it is evacuated. determine the molar mass of the unknown gas

Answers

The molar mass of the unknown gas is 27.0 g/mol.

According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. At STP, the pressure is 1 atm, the volume is 2.5 L, and the temperature is 273.15 K.

To find the number of moles of gas present, we can rearrange the ideal gas law equation to solve for n:

n = PV/RT

Substituting the values at STP, we get:

n = (1 atm) x (2.5 L) / [(0.08206 L atm/mol K) x (273.15 K)]

n = 0.1018 moles

The difference in weight between the gas-filled vessel and the evacuated vessel is 2.75 g, which is the weight of 0.1018 moles of the unknown gas.

So the molar mass of the gas can be calculated as:

molar mass = mass / moles

molar mass = 2.75 g / 0.1018 mole

molar mass = 27.0 g/mol

Therefore, the molar mass of the unknown gas is 27.0 g/mol.

Learn more about , the molar mass

https://brainly.com/question/22997914

#SPJ4

The molar mass of the unknown gas is 27.0 g/mol.

According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. At STP, the pressure is 1 atm, the volume is 2.5 L, and the temperature is 273.15 K.

To find the number of moles of gas present, we can rearrange the ideal gas law equation to solve for n:

n = PV/RT

Substituting the values at STP, we get:

n = (1 atm) x (2.5 L) / [(0.08206 L atm/mol K) x (273.15 K)]

n = 0.1018 moles

The difference in weight between the gas-filled vessel and the evacuated vessel is 2.75 g, which is the weight of 0.1018 moles of the unknown gas.

So the molar mass of the gas can be calculated as:

molar mass = mass / moles

molar mass = 2.75 g / 0.1018 mole

molar mass = 27.0 g/mol

Therefore, the molar mass of the unknown gas is 27.0 g/mol.

Learn more about , the molar mass

brainly.com/question/22997914

an experimental plot of ln(k) vs. 1/t is obtained in lab for a reaction. the slope of the best-fit line for the graph is -2905 k. what is the value of the activation energy for the reaction in kj/mol?

Answers

Multiplying the slope (-2905 k) by the gas constant (0.008314 kJ/mol K) gives the activation energy: 24.1 kJ/mol.

The slant of the best-fit line for the diagram of ln(k) versus 1/T is equivalent to - Ea/R, where Ea is the actuation energy for the response, R is the gas consistent, and T is the temperature in Kelvin. To decide the actuation energy, we really want to improve this condition to address for Ea.

Ea = - slant x R

We realize that the slant of the best-fit line is - 2905 K, and R is 8.314 J/(mol·K). In any case, the slant should be changed over completely to units of J/(mol·K) by duplicating by 1000, since we need the actuation energy in units of kJ/mol. Accordingly:

Ea = - (- 2905 K x 8.314 J/(mol·K)) x (1/1000 kJ/J)

Ea = 24.1 kJ/mol

The initiation energy for the response is 24.1 kJ/mol. This worth addresses the base energy expected for the reactants to defeat the energy hindrance and structure items. The higher the initiation energy, the more slow the response rate, as well as the other way around.

To learn more about activation energy , refer:

https://brainly.com/question/30578051

#SPJ4

How many moles of h2 can be produced from x grams of mg in magnesium-aluminum alloy? the molar mass of mg is 24. 31 g/mol?

Answers

The number of moles of H₂ that can be produced from x grams of Mg is (x / 24.31)

The balanced chemical equation for the reaction between Mg and HCl is,

Mg + 2HCl → MgCl₂ + H₂

This equation shows that 1 mole of Mg reacts with 2 moles of HCl to produce 1 mole of H₂. Therefore, the number of moles of H₂ that can be produced from x grams of Mg can be calculated as follows:

Calculate the number of moles of Mg in x grams:

Number of moles of Mg = mass of Mg / molar mass of Mg

Number of moles of Mg = x / 24.31

Use the mole ratio between Mg and H₂ to calculate the number of moles of H₂ produced:

Number of moles of H₂ = Number of moles of Mg × (1 mole of H₂ / 1 mole of Mg)

Number of moles of H₂ = (x / 24.31) × (1/1)

To know more about moles, here

brainly.com/question/26416088

#SPJ4

in the removal of a pollutant from wastewater, which of the following is true of the cost per unit of pollutant removed? it decreases as the toxicity of the pollutant increases. it decreases as the time passed before remediation increases. it increases as the concentration of the pollutant decreases. it increases as the concentration of the

Answers

pollutant increases.

The cost per unit of pollutant removed increases as the concentration of the pollutant increases. The higher the concentration of the pollutant, the more difficult it is to remove, and more expensive the technology and processes required to remove it. Therefore, the cost per unit of pollutant removed is generally higher for higher concentrations of pollutants.

true or false a pure substance (such as h2o or iron) can only exist in three phases (solid, liquid, and gas)

Answers

A pure substance (such as H₂O or iron) can only exist in three phases (solid, liquid, and gas) - True.

A kind of matter with a predictable chemical composition and physical characteristics is referred to as a chemical substance. According to certain texts, a chemical compound cannot be physically divided into its component parts without rupturing chemical bonds. Chemical compounds, alloys, and simple substances (substances made up of a single chemical element) are all examples of chemical substances.

To distinguish them from mixes, chemical compounds are frequently referred to as 'pure'. Pure water is a popular illustration of a chemical substance; regardless of whether it is separated from a river or created in a lab, it has the same characteristics and hydrogen to oxygen ratio. Other chemicals that are frequently found in their purest forms are refined sugar (sucrose), gold, table salt (sodium chloride), and diamond (carbon). In reality, though, no material is completely pure, and chemical purity is determined by the chemical's intended application.

Learn more about Pure substance:

https://brainly.com/question/18452279

#SPJ4

4. describe the relationship between the metal and water in terms of which is exothermic and which is endothermic.

Answers

Answer:

The relationship between metal and water is highly dependent on the specific metal and the conditions under which they react with water. In general, however, the reaction between metals and water can be either exothermic or endothermic.

For highly reactive metals like sodium or potassium, the reaction with water is highly exothermic, meaning that it releases a large amount of heat. This is because these metals readily react with water to produce hydrogen gas and a highly alkaline solution of metal hydroxide. For example, the reaction between sodium and water can be represented as:

2 Na(s) + 2 H2O(l) → 2 NaOH(aq) + H2(g) + heat

On the other hand, for less reactive metals like copper or silver, the reaction with water is usually endothermic, meaning that it absorbs heat from the surroundings. In these cases, the reaction occurs very slowly or not at all, and the metal may simply become coated with a layer of metal oxide or hydroxide. For example, the reaction between copper and water is relatively slow and can be represented as:

2 Cu(s) + O2(g) + 2 H2O(l) → 2 Cu(OH)2(s)

In summary, the relationship between metal and water in terms of exothermic and endothermic reactions is highly dependent on the specific metal and the conditions under which they react. Highly reactive metals tend to have exothermic reactions with water, while less reactive metals tend to have endothermic reactions or no reaction at all.

. the two main sources for the increase of carbon dioxide in the atmosphere are . select one:

Answers

Answer:

combustion

respiration by humans

Explanation:

burning of wood leaves release carbon dioxide which is a green house gas and detrimental to the climate

if groundwater contaminant is not visible does that mean it is safe to drink? Explain

Answers

It depends on what you meant by saying not visible. Of it is not visible by using accurate measuring equipment then I think so, but if you mean that all transparent water is drinkable, then no. Think about this. When you put salt in water, you can't see it but it is still there: if you taste the water you can tell that there's salt in there. Let's say that instead of salt there are some bacteria, or some other type of salt which is not appropriate to drink at high levels, such as nitrates. I personally wouldn't recommend drinking from any type.of water unless you are not sure about its purity

which pair of elements are nonmetals and gases at room temperature and normal atmospheric pressure ?

Answers

The pair of elements that are nonmetals and gases at room temperature and normal atmospheric pressure are:

Oxygen (O₂) - Oxygen is a nonmetal that exists as a diatomic gas at room temperature and normal atmospheric pressure. It is colorless, odorless, and tasteless.

Nitrogen (N₂) - Nitrogen is another nonmetal that exists as a diatomic gas at room temperature and normal atmospheric pressure. It is also colorless, odorless, and tasteless.

Both oxygen and nitrogen are essential components of the Earth's atmosphere, with nitrogen making up about 78% of the air we breathe and oxygen making up about 21%.

To know more about atmospheric pressure, visit:

https://brainly.com/question/30166820

#SPJ1

2.345 x 10² grams of H3PO4 will need how many grams of Mg(OH)2 in the reaction below?

(Mg = 24.31 g/mol; O = 16.00 g/mol; H = 1.01 g/mol; P = 30.97 g/mol)

3Mg(OH)2 + 2H3PO4 =
1Mg3(PO4)2 + 6H2O

Answers

Taking into account definition of reaction stoichiometry, 209.36 grams of Mg(OH)₂ are needed.

Reaction stoichiometry

In first place, the balanced reaction is:

3 Mg(OH)₂ + 2 H₃PO₄ → Mg₃(PO₄)₂ + 6 H₂O

By reaction stoichiometry, the following amounts of moles of each compound participate in the reaction:

Mg(OH)₂: 3 moles H₃PO₄: 2 molesMg₃(PO₄)₂: 1 mole H₂O: 6 moles

The molar mass of the compounds is:

Mg(OH)₂: 58.33 g/moleH₃PO₄: 98 g/moleMg₃(PO₄)₂: 262.87 g/moleH₂O: 18.02 g/mole

Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:

Mg(OH)₂: 3 moles× 58.33 g/mole= 174.99 gramsH₃PO₄: 2 moles× 98 g/mole= 196 gramsMg₃(PO₄)₂: 1 mole× 262.87 g/mole= 262.87 gramsH₂O: 6 moles× 18.02 g/mole= 108.12 grams

Mass of Mg(OH)₂ needed

The following rule of three can be applied: If by reaction stoichiometry 196 grams of H₃PO₄ react with 174.99 grams of Mg(OH)₂, 2.345×10² grams of H₃PO₄ react with how much mass of Mg(OH)₂?

mass of Mg(OH)₂= (2.345×10² grams of H₃PO₄× 174.99 grams of Mg(OH)₂)÷ 196 grams of H₃PO₄

mass of Mg(OH)₂= 209.36 grams

Finally, 209.36 grams of Mg(OH)₂ is required.

Learn more about reaction stoichiometry:

brainly.com/question/24741074

#SPJ1

suppose of zinc chloride is dissolved in of a aqueous solution of potassium carbonate. calculate the final molarity of zinc cation in the solution. you can assume the volume of the solution doesn't change when the zinc chloride is dissolved in it.

Answers

The final molarity of zinc cation in the solution is 0.0122 M.

Assuming complete dissociation of zinc chloride, we can write the balanced chemical equation as:

[tex]ZnCl_2 (aq) + K_2CO_3 (aq) - > Zn_2+ (aq) + 2K+ (aq) + 2Cl- (aq) + (CO_3) ^{2-} (aq)[/tex]

First, we need to calculate the moles of zinc chloride present in the solution:

moles of ZnCl2 = (0.25 g / 136.30 g/mol) = 0.001833 mol

Since 1 mole of ZnCl2 produces 1 mole of Zn2+, the final molarity of zinc cation in the solution will be:

Molarity of [tex]Zn_{2+[/tex]= moles of [tex]Zn_{2+[/tex]

volume of solution in liters moles of Zn2+ = 0.001833 mol

volume of solution = 0.150 L

Molarity of Zn2+ = 0.001833 mol / 0.150 L = 0.0122 M.

For such more questions on Zinc chloride:

https://brainly.com/question/20689567

#SPJ11

if each orange sphere represents 0.010 mol of sulfate ion, how many moles of acid and of base reacted?

Answers

The number of moles of acid and base that react depends on the stoichiometry of the chemical reaction and the amounts of reactants used

Without additional information about the chemical reaction or system being referred to, we cannot determine the number of moles of acid and base that reacted.

If we assume that the orange spheres represent sulfate ions in a specific reaction, then we would need to know the stoichiometry of the reaction to determine the number of moles of acid and base that reacted.

For example, if the reaction involved sulfuric acid ([tex]H_2SO_4[/tex]) and sodium hydroxide (NaOH) and the orange spheres represent sulfate ions ([tex](SO_4)^{2-[/tex]), then the balanced chemical equation would be:

[tex]H_2SO_4 + 2NaOH - > Na_2SO_4 + 2H_2O[/tex]

In this case, we would need to know the amount of sodium hydroxide used to determine the number of moles of acid and base that reacted. If we know the number of orange spheres representing sulfate ions and the amount of sodium hydroxide used, we can determine the moles of acid and base that reacted.

For such more questions on Stoichiometry:

https://brainly.com/question/30417834

#SPJ11

2 NO(g)+Cl2(g)⇌2 NOCl(g) Kc=2000
A mixture of NO(g) and Cl
2
(g) is placed in a previously evacuated container and allowed to reach equilibrium according to the chemical equation shown above When the system reaches equilibrium, the reactants and products have the concentrations listed in the following table:
Species Concentration (M)
NO(g) 0.050
C12(g) 0.050
NOCl(g) 0.50
Which of the following is true if the volume of the container is decreased by one-half?
A. Q = 100, and the reaction will proceed toward reactants.
B. Q = 100, and the reaction will proceed toward products.
C. Q = 1000, and the reaction will proceed toward reactants.
D. Q = 1000, and the reaction will proceed toward products.

Answers

Neither A, B, C nor D. The equilibrium position will not be affected by the change in volume.

To determine how the equilibrium of the reaction 2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g) will shift if the volume of the container is decreased by one-half, we first need to calculate the reaction quotient Q.

The balanced chemical equation for the reaction is:

2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g)

At equilibrium, the concentrations of the species are:

[NO] = 0.050 M

[Cl2] = 0.050 M

[NOCl] = 0.50 M

Using these values, we can calculate the value of the reaction quotient Q:

Q [tex]= [NOCl]^2 / ([NO]^2[Cl2])[/tex]= [tex](0.50)^2 / ((0.050)^2 x 0.050)[/tex] = 1000

Now we compare the value of Q to the equilibrium constant Kc:

Kc =[tex][NOCl]^2 / ([NO]^2[Cl2])[/tex] = 2000

Since Q < Kc, we can conclude that the reaction has not yet reached equilibrium and that the forward reaction will proceed to reach equilibrium.

When the volume of the container is decreased by one-half, the concentration of all species will increase due to the decrease in volume. According to Le Chatelier's principle, the reaction will shift in the direction that reduces the total number of moles of gas.

In this case, the reaction produces two moles of gas on the left-hand side and two moles of gas on the right-hand side, so the total number of moles of gas does not change. Therefore, the volume change will not have an effect on the equilibrium position.

Learn more about  equilibrium here:

https://brainly.com/question/30807709

v

#SPJ11

The correct answer is: C. Q = 1000, and the reaction will proceed toward reactants.

How to determine the reactions at equilibrium?



To determine which statement is true if the volume of the container is decreased by one-half, we need to calculate the reaction quotient (Q) for the new conditions.

When the volume is decreased by half, the concentrations of all species will double:

NO(g): 0.050 * 2 = 0.100 M
Cl2(g): 0.050 * 2 = 0.100 M
NOCl(g): 0.50 * 2 = 1.00 M

Now, calculate Q using the new concentrations:

Q = [NOCl]^2 / ([NO]^2 * [Cl2])
Q = (1.00)^2 / ((0.100)^2 * (0.100))
Q = 1 / 0.001
Q = 1000

So, Q = 1000. Now, compare Q to Kc:

Q > Kc, meaning the reaction will proceed toward the reactants to reach equilibrium.

To know more about Reaction Quotient:

https://brainly.com/question/24202150

#SPJ11

when solid mercury(i) chloride reacts with ammonia, two precipitates form. write the chemical formula for each of the precipitates. first precipitate: second precipitate:

Answers

When solid mercury(I) chloride (Hg₂Cl₂) reacts with ammonia (NH₃), two precipitates form: white mercurous ammonium chloride (HgNHCl) and black mercuric nitride (Hg₃N₂).

The chemical equation for the reaction is:

Hg₂Cl₂(s) + 2NH₃(aq) → HgNH₂Cl(s) + Hg₃N₂(s) + 2HCl(aq)

The first precipitate, mercurous ammonium chloride, is a white solid that forms because of the reaction between Hg₂Cl₂ and NH₃. It is also known as white precipitate and has a molecular formula of HgNH₂Cl.

The second precipitate, mercuric nitride, is a black solid that forms because of the reaction between the excess ammonia and the Hg²⁺ ions produced by the Hg₂Cl₂. The molecular formula of mercuric nitride is Hg₃N₂.

To learn more about nitride follow the link:

https://brainly.com/question/24004315

#SPJ4

the nadh cofactor has a midpoint potential of -320 mv vs nhe. what fraction of a population of these cofactors would be in the nad form in a ph 7.0 solution with a potential of -300 mv vs nhe? -350 mv vs nhe?

Answers

The fraction of NADH cofactors in the NAD form in a pH 7.0 solution with a potential of -300 mV vs NHE is 0.015. The fraction of NADH cofactors in the NAD form in a pH 7.0 solution with a potential of -350 mV vs NHE is 0.065.

The NADH/NAD couple has a midpoint potential of -320 mV vs NHE. At pH 7.0, the NADH/NAD couple has an Nernst potential of -320 mV. To calculate the fraction of NADH cofactors in the NAD form at a given potential, we use the Nernst equation:

E = E0 - (RT/nF) ln ([NAD]/[NADH])

where E0 is the standard potential (-320 mV), R is the gas constant, T is the temperature, n is the number of electrons transferred (2 for NADH/NAD), F is the Faraday constant, and [NAD]/[NADH] is the ratio of the oxidized to reduced forms of the cofactor.

Solving for [NAD]/[NADH], we get:

[NAD]/[NADH] = e^((E-E0) nF/RT)

Plugging in the values for E and T, and assuming a 1:1 ratio of NADH to NAD, we get:

[NAD]/[NADH] = e^((E-E0) nF/RT) = e^((E-E0)/59.16)

At -300 mV vs NHE, we get:

[NAD]/[NADH] = e^((-300+320)/59.16) = e^(-0.533) = 0.59

So the fraction of NADH cofactors in the NAD form is

0.59/(1+0.59) = 0.015.

At -350 mV vs NHE, we get:

[NAD]/[NADH] = e^((-350+320)/59.16) = e^(-0.495) = 0.61

So the fraction of NADH cofactors in the NAD form is

0.61/(1+0.61) = 0.065.

To learn more about NADH cofactors, here

https://brainly.com/question/28051041
#SPJ4

the gain or loss of electrons from an atom results in the formation of a (an)

Answers

The formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Atoms are composed of protons, neutrons, and electrons. The number of protons in an atom determines its atomic number and the element it represents. The electrons in an atom occupy different energy levels or shells, and these electrons participate in chemical reactions. The outermost shell of electrons, called the valence shell, is particularly important in chemical reactions because it determines the chemical properties of the atom.

When an atom gains or loses electrons, it becomes charged and is called an ion. The process of gaining or losing electrons is called ionization. When an atom loses one or more electrons, it becomes a positively charged ion called a cation. Cations have a smaller number of electrons than protons and have a net positive charge. For example, when the element sodium (Na) loses one electron, it becomes a sodium ion (Na+).

On the other hand, when an atom gains one or more electrons, it becomes a negatively charged ion called an anion. Anions have a larger number of electrons than protons and have a net negative charge. For example, when the element chlorine (Cl) gains one electron, it becomes a chloride ion (Cl-).

The formation of ions is a fundamental process in many chemical reactions. Ions can combine with each other to form ionic compounds, which are compounds composed of ions held together by electrostatic forces. For example, sodium ions (Na+) and chloride ions (Cl-) can combine to form sodium chloride (NaCl), which is common table salt.

Overall, the formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Visit to know more about Compound:-

brainly.com/question/26487468

#SPJ11

can you help me with this

Answers

Rock type I’m not sure but Yan ang natatandaan ko na tinuri sa amin
Other Questions
which of the following is not a good reason to network?. question 3 options: a) none. all are good reasons. b) gain access to diverse skill sets c) broaden opportunity d) gain access to private information e) expand power previous page next page PLEASE HELP ME 80 POINTS PLUS BRAILIST IF RIGHT!!!!!!!STORY "THE WORST BIRTHDAY" coordinate plane with points at A 0 comma 2 and B 2 comma 0 intersected by line f Dilate line f by a scale factor of one half with the center of dilation at the origin to create line f. Where are points A and B located after dilation, and how are lines f and f related? The locations of A and B are A (0, 2) and B (0, 0); lines f and f intersect at point A. The locations of A and B are A (0, 1) and B (1, 0); lines f and f are parallel. The locations of A and B are A (0, 0) and B (2, 0); lines f and f intersect at point B. The locations of A and B are A (0, 2) and B (2, 0); lines f and f are the same line. British colonist gathered for the first continental congress to? Explain why the substances in a suspension would eventually settle/separate after being mixed but a colloid would not. assume that the required reserve ratio is set at 0.0625 . what is the value of the money (deposit) multiplier? 3. How many ways can you line up 7 books on a shelf? Cage Company had income of $424 million and average invested assets of $2,190 million. Its return on assets (ROA) is:A. 1.9%.B. 39%.C. 19.4%.D. 5.2%.E. 3.9%. in the swing era, most of the hit songs were strictly instrumental. true or false? The free-rider problem is most likely to arise in:a. small groupsb. firms that tie bonuses to individual performancec. a profit-sharing pland. firms that use piece rates which statement best describes the role of microorganisms such as rotavirus and attenuated salmonella enterica in the production of recombinant-vector vaccines? multiple choice question. they serve as vectors. they serve as adjuvants. they act as antigens, so these vaccines can protect against rotavirus or salmonella enterica. Help desk software tools are available for support agents and managers, but few tools are available to help users access a help desk. true or false Describe the association for the following graph. Be sure to talk about the variable association (direction), linear association, and specialty (outliers and clusters). the nurse is teaching safe administration of medication to a patient who has been prescribed levothyroxine (synthroid). what education should the nurse provide regarding administration of this drug? consider a machine that makes 8 parts in an hour and operates 8 hours per day. what is the machine utilization if demand for the parts is 12 parts per hour and three machines are available to make the parts? 100% 50% 22.2% 66.7% Whats the IQR for 5,10,8,5,9,4,10,7,5 11. three players on a baseball team are only permitted to pitch. the remaining 12 players are multitalented and can play any of the 8 remaining positions. how many baseball teams of nine can be formed? discuss the effect Citizens United v. F.E.C. has had on elections in the United States. You should explain whether you think it has had a positive or negative effect. In many ways, a limited liability company can be thought of as a cross between a. a corporation and a franchise. b. a joint venture and a partnership. c. a corporation and a partnership d. a sole proprietorship and a social enterprise. variation within species was important to the development of darwin's theory of evolution. which statement does individual variation help explain?