Answer:
see explanation
Step-by-step explanation:
The median is the middle value of the data set in ascending order. If there is no exact middle then the median is the average of the values either side of the middle.
Given
3 8 14 19 22 29 33 37 43 49
↑ middle is between 22 and 29
median = [tex]\frac{22+29}{2}[/tex] = [tex]\frac{51}{2}[/tex] = 25.5
The upper quartile [tex]Q_{3}[/tex] is the middle value of the data to the right of the median.
29 33 37 43 49
↑
[tex]Q_{3}[/tex] = 37
The lower quartile [tex]Q_{1}[/tex] is the middle value of the data to the left of the median.
3 8 14 19 22
↑
[tex]Q_{1}[/tex] = 14
The min is the smallest value in the data set, that is 3
The max is the largest value in the data set, that is 49
The 5 number summary is
3, 14, 25.5, 37, 49
What is the value of y iin this equation? 4(y-3) =48
Answer:
y = 15Step-by-step explanation:
Question:
4(y - 3) = 48
1. Distribute
4y - 12 = 48
2. Simplify Like terms
4y - 12 = 48
+ 12 + 12
4y = 60
3. Solve
4y = 60
/4 /4
y = 15
4. Check:
4(y - 3) = 48
4((15) - 3) = 48
4(12) = 48
48 = 48 Correct!
Hope this helped,
Kavitha
Answer:
[tex]y=15\\[/tex]
Step 1:
To find y, we first have to multiply [tex]4(y-3)[/tex]. When we do that (4 * y, 4 * - 3), we get [tex]4y-12[/tex].
Step 2:
Our equation looks like this now:
[tex]4y-12=48[/tex]
To solve this equation, we have to add 12 on both sides so we can cancel out the -12 on the left side of the equation.
[tex]4y-12(+12)=48(+12)[/tex]
[tex]4y=60[/tex]
Now, we can divide 4 on both sides to get y by itself.
[tex]4y/4\\60/4[/tex]
[tex]y=15[/tex]
A pyramid shaped building is 311 feet tall and has a square base with sides of 619 ft. The sides of the building are made from reflective glass. what is the surface area of the reflective glass
Answer:
Surface area of the reflective glass is 543234.4 square feet.
Step-by-step explanation:
Given that: height = 311 feet, sides of square base = 619 feet.
To determine the slant height, we have;
[tex]l^{2}[/tex] = [tex]311^{2}[/tex] + [tex]309.5^{2}[/tex]
= 96721 + 95790.25
= 192511.25
⇒ l = [tex]\sqrt{192511.25}[/tex]
= 438.761
The slant height, l is 438.8 feet.
Considering one reflecting surface of the pyramid, its area = [tex]\frac{1}{2}[/tex] × base × height
area = [tex]\frac{1}{2}[/tex] × 619 × 438.8
= 135808.6
= 135808.6 square feet
Since the pyramid has four reflective surfaces,
surface area of the reflective glass = 4 × 135808.6
= 543234.4 square feet
solve the rational equation 5/x = 4x+1/x^2
Answer:
x = 1
Step-by-step explanation:
Set up the rational expression with the same denominator over the entire equation.
Since the expression on each side of the equation has the same denominator, the numerators must be equal
5x =4x+1
Move all terms containing x to the left side of the equation.
Hope this can help you
The resale value of a certain industrial machine decreases over a 8-year period at a rate that changes with time. When the machine is x years old, the rate at which its value is changing is 200(x - 8) dollars per year. By how much does the machine depreciate during the fifth year
Answer: The machine depreciates during the fifth year by $4000.
Step-by-step explanation:
Given: The resale value of a certain industrial machine decreases over a 8-year period at a rate that changes with time.
When the machine is x years old, the rate at which its value is changing is 200(x - 8) dollars per year.
Then, the machine depreciates A(x) during the fifth year as
[tex]A(x) =\int^{5}_1200(x - 8)\ dx\\\\=200|\frac{x^2}{2}-8x|^{5}_1\\\\=200[\frac{5^2}{2}-\frac{1^2}{2}-8(5)+8(1)]\\\\=200 [12-32]\\\\=200(-20)=-4000[/tex]
Hence, the machine depreciates during the fifth year by $4000.
An HR manager would like to test the hypothesis that the proportion of agenda-less meetings is more than 45%. Based on the information below, choose the correct conclusion for this hypothesis test. To test this, he randomly selected minutes from 100 past meeting, and found that 65 of them had no agenda. The following is the setup for this hypothesis test: H0:p=0.45 Ha:p>0.45 The p-value for this hypothesis test is 0.025. At the 5% significance level, should he reject or fail to reject the null hypothesis? Select the correct answer below: Reject the null hypothesis because 0.45>0.05. Fail to reject the null hypothesis because 0.45>0.05. Reject the null hypothesis because the p-value =0.025 is less than the significance level α=0.05. Fail to reject the null hypothesis because the p-value =0.025 is less than the significance level α=0.05.
Answer: Reject the null hypothesis because the p-value =0.025 is less than the significance level α=0.05.
Step-by-step explanation: Trust me
A car dealership earns a portion of its profit on the accessories sold with a car. The dealer sold a Toyota Camry loaded with accessories for $24,000. The total cost of the car was 8 times as much as the accessories. How much did the accessories cost? Cost of Accessories
Answer:
y = 2666.67
Step-by-step explanation:
Well to solve this we can make a system of equations.
x = cost of car alone
y = cost of accesories,
[tex]\left \{ {{x+y=24000} \atop {x=8y}} \right.[/tex]
So now we plug in 8y for x in x + y = 24000.
(8y) + y = 24000
9y = 24000
Divide both sides by 9
y = 2666.666666
or 2666.67 rounded to the nearest hundredth.
Now that we have y we can plug that in for y in x=8y.
x = 8(2.666.67)
x = 21,333.33 rounded to the nearest hundredth.
Thus,
accessories "y" cost around 2666.67.
Hope this helps :)
144 + h^2 = 225 WHAT THE HECK DOES ^ MEAN!???
Answer:
h^2 means h²
(h squared)
Step-by-step explanation:
Step 1: Write equation
144 + h² = 225
Step 2: Subtract 144 on both sides
h² = 81
Step 3: Take square root
√h² = √81
h = 9
Can you draw the reflection Across the y-axis of the attached image.
Answer:
see graph
Step-by-step explanation:
A reflection across the y-axis means the point is equal but opposite distance from the y-axis. This has no change on the y-value of the point, because no matter the y-value, the point will still be the same distance from the y-axis. Long story short, if you're reflecting across the y-axis, change the sign of the x-coordinate. If you're reflecting across the x- axis, change the sign of the y-coordinate.
Sketch the region that corresponds to the given inequality. HINT [See Example 1.] 2x + y ≤ 10 Say whether the region is bounded or unbounded. The region is bounded. The region is unbounded. Find the coordinates of all corner points (if any). (If an answer does not exist, enter DNE.)
Answer:
See the attachment for sketch
Thr region is unbounded
DNE
Step-by-step explanation:
y≤ -2x + 10
The inequality is a straight line and region marked by the inequality. It has no boundaries. The boundaries extend to infinity. So the region is unbounded. Unbounded region has no corner points.
At noon a passenger train leaves the Dupont Railway station and travels due east for 2 hours. At 12:45 pm the same day a second passenger train leaves the same railway station and travels due west for 1 hour and 15 minutes at a speed 10 kilometers per hour slower than the first passenger train. At 2pm the two trains were 215 kilometers apart. How fast had each train been traveling
Answer:
The speed of the first train is 70 km/hr
The speed of the second train is 60 km/hr
Step-by-step explanation:
For the first train:
Travel time = 2 hours
The speed = ?
we designate the speed as V
For the second train:
The travel time = 1 hr 15 min = 1.25 hrs (15 minutes = 15/60 hrs)
speed = 10 km/hr slower than that of the first train, we can then say
the speed = V - 10
The total distance traveled by both trains in the opposite direction of one another is 215 km
we can put this problem into an equation involving the distance covered by the trains.
we know that distance = speed x time
the distance traveled by the first train will be
==> 2 hrs x V = 2V
the distance traveled by the second train will be
==> 1.25 hrs x (V - 10) = 1.25(V - 10)
Equating the above distances to the total distance between the trains, we'll have
2V + 1.25(V - 10) = 215
2V + 1.25V - 12.5 = 215
3.25V = 215 + 12.5
3.25V = 227.5
V = 227.5/3.25 = 70 km/hr this is the speed of the first train
Recall that the speed of the second train is 10 km/hr slower, therefore
speed of the second train = 70 - 10 = 60 km/hr
The speed of the trains are 70km/hr and 60km/hr respectively.
The distance of the first train will be represented by: = 2 × D = 2D
The distance of the second train will be represented by: = 1.25 × (D - 10) = 1.25(D - 10).
Based on the information given in the question, the equation to solve the question will be:
2D + 1.25(D - 10) = 215
Collect like terms
2D + 1.25D - 12.5 = 215
3.25D = 215 + 12.5
3.25D = 227.5
D = 227.5/3.25
D = 70km/hour
The speed of the second train will be:
= 70 - 10 = 60km per hour.
Read related link on:
https://brainly.com/question/24720712
Determine the measure of the unknown variables.
Answer:
75
Step-by-step explanation:
x = 75°
yes x = 75°(OPPOSITE ANGLES ARE EQUAL)
..
PLLZZZZ help me find x you are AWSOME!! I need this ASAP
Answer:
27°
Step-by-step explanation:
D is 72° because it alternates with B, alternate angles are equal.
2x+72°+2x= 180° because it is a straight line.
4x+72°=180°
4x=108°
x=27°
Given f(x) and g(x) = f(x) + k, use the graph to determine the value of k. A) 2 B) 3 C) 4 D) 5 IF YOU ANSWER IN 5 MINUTES I WILL GIVE BRAINLIEST!!!!!!!!!!!!!!!!!!!!!!
Ans k = 4
Step-by-step explanation:
Here g(x) =[tex]\frac{-1}{3}x + 1[/tex] and
f(x) = [tex]\frac{-1}{3} x -3[/tex]
Now, g(x) = f(x) + k
or, [tex]\frac{-1}{3}x + 1[/tex] = [tex]\frac{-1}{3} x -3 + k[/tex]
or, 1 + 3 = k
So, k = 4 Answer.
Solve the formula for the perimeter of a rectangle, with width w and length I,
for the length.
P= 2W + 2/
Answer:
( P -2w) /2 = l
Step-by-step explanation:
P= 2W + 2l
Subtract 2W from each side
P= 2W -2W + 2l
P -2W = 2l
Divide by 2
( P -2w) /2 = l
Answer:
A. [tex]\frac{P - 2w}{2} = l[/tex]
Step-by-step explanation:
Well in,
P = 2w + 2l
to solve for l we need to single it out.
P = 2w + 2l
-2w
P - 2w = 2l
divide everything by 2
[tex]\frac{P - 2w}{2} = l[/tex]
Thus,
the answer is A.
Hope this helps :)
A group of 59 randomly selected students have a mean score of 29.5 with a standard deviation of 5.2 on a placement test. What is the 95% confidence interval for the mean score, , of all students taking the test
Answer:
The 95% confidence interval for the mean score, , of all students taking the test is
[tex]28.37< L\ 30.63[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 59[/tex]
The mean score is [tex]\= x = 29.5[/tex]
The standard deviation [tex]\sigma = 5.2[/tex]
Generally the standard deviation of mean is mathematically represented as
[tex]\sigma _{\= x} = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x} = \frac{5.2 }{\sqrt{59} }[/tex]
[tex]\sigma _{\= x} = 0.677[/tex]
The degree of freedom is mathematically represented as
[tex]df = n - 1[/tex]
substituting values
[tex]df = 59 -1[/tex]
[tex]df = 58[/tex]
Given that the confidence interval is 95% then the level of significance is mathematically represented as
[tex]\alpha = 100 -95[/tex]
[tex]\alpha =[/tex]5%
[tex]\alpha = 0.05[/tex]
Now the critical value at this significance level and degree of freedom is
[tex]t_{df , \alpha } = t_{58, 0.05 } = 1.672[/tex]
Obtained from the critical value table
So the the 95% confidence interval for the mean score, , of all students taking the test is mathematically represented as
[tex]\= x - t*(\sigma_{\= x}) < L\ \= x + t*(\sigma_{\= x})[/tex]
substituting value
[tex](29.5 - 1.672* 0.677) < L\ (29.5 + 1.672* 0.677)[/tex]
[tex]28.37< L\ 30.63[/tex]
A distribution has a mean of 90 and a standard deviation of 15. Samples of size 25 are drawn randomly from the population. Find the probability that the sample mean is more than 85 g
Answer:
The probability is 0.04746
Step-by-step explanation:
Firstly, we calculate the z-score here
Mathematically;
z-score = x-mean/SD/√n
Where from the question;
x = 85, mean = 90 , SD = 15 and n = 25
Plugging these values into the equation, we have;
Z = (85-90)/15/√25 = -5/15/5 = -1.67
So the probability we want to calculate is ;
P(z > -1.67)
We use the standard normal distribution table for this;
P(z > -1.67) = 0.04746
i
dont
get
this
help
rn
Answer:
6 first box. 12 second box. 21 third box. 10 fourth box. 4 fifth box.
Step-by-step explanation:
Look for common denominaters, that will show you what to multiply the equation by to get rid of fractions.
Use the line of best fit to determine the x-value when the y- value is 190
Answer:
A. 9
Step-by-step explanation:
Well if you go to 190 on the y-axis and go all the way to the right you can see according to the line of best fit A. 9 should be the correct answer.
Thus,
A.9 is the correct answer.
Hope this helps :)
Answer:
A. 9
Step-by-step explanation:
A line of best fit is a line that goes through a scatter plot that will express the relationship between those points. So, if we look at 190 on the y-axis, we can approximate that on the line of best fit it would be closest to 9 on the x-axis.
the perimeter of a square flower bed is 100 feet. what is the area of the flower bed in sqaure feet
Answer:
A =625 ft^2
Step-by-step explanation:
The perimeter of a square is
P = 4s where s is the side length
100 =4s
Divide each side by 4
100/4 = 4s/4
25 = s
A = s^2 for a square
A = 25^2
A =625
h(x)=-4+16 find x when h(x)=48 Plz don't say it is incomplete
Answer:
x = -8
Step-by-step explanation:
When h(x) = 48, you can simply just plug it back into the first equation. Don't let the h(x) confuse you!
Think of it like saying y = -4x + 16, y = 48.
48 = - 4x + 16
32 = - 4x
8 = -x
Divide by -1 both sides.
-8 = x
Use Bayes' theorem to find the indicated probability 5.8% of a population is infected with a certain disease. There is a test for the disease, however the test is not completely accurate. 93.9% of those who have the disease test positive. However 4.1% of those who do not have the disease also test positive (false positives). A person is randomly selected and tested for the disease. What is the probability that the person has the disease given that the test result is positive?
a. 0.905
b. 0.585
c. 0.038
d. 0.475
Answer:
b. 0.585
Step-by-step explanation:
According to Bayes' theorem:
[tex]P(A|B)=\frac{P(B|A)*P(A)}{P(B)}[/tex]
Let A = Person is infected, and B = Person tested positive. Then:
P(B|A) = 93.9%
P(A) = 5.8%
P(B) = P(infected and positive) + P(not infected and positive)
[tex]P(B) = 0.058*0.939+(1-0.058)*0.041\\P(B)=0.09308[/tex]
Therefore, the probability that a person has the disease given that the test result is positive, P(A|B), is:
[tex]P(A|B)=\frac{0.939*0.058}{0.09308}\\P(A|B)=0.585[/tex]
The probability is 0.585.
if 5x - 17 = -x +7, then x =
Answer:
x=4
Step-by-step explanation:
5x - 17 = -x +7
Add x to each side
5x+x - 17 = -x+x +7
6x -17 = 7
Add 17 to each side
6x-17+17 = 7+17
6x =24
Divide each side by 6
6x/6 = 24/6
x = 4
Answer:
4
Step-by-step explanation:
5x - 17 = -x + 7
Add x on both sides.
5x - 17 + x = -x + 7 + x
6x - 17 = 7
Add 17 on both sides.
6x - 17 + 17 = 7 + 17
6x = 24
Divide both sides by 6.
(6x)/6 = 24/6
x = 4
A submarine is moving parallel to the surface of the ocean at a depth of 626 m. It begins a
constant ascent so that it will reach the surface after travelling a distance of 4420 m.
a) What angle of ascent, to the nearest tenth of a degree, did the submarine make? (3
marks)
b) How far did the submarine travel horizontally, to the nearest metre, during its ascent to
the surface? (3 marks)
Answer:
a) the angle of ascent is 8.2°
b) the horizontal distance traveled is 4375 m
Step-by-step explanation:
depth of ocean = 626 m
distance traveled in the ascent = 4420 m
This is an angle of elevation problem with
opposite side to the angle = 626 m
hypotenuse side = 4420 m
a) angle of ascent ∅ is gotten from
sin ∅ = opp/hyp = 626/4420
sin ∅ = 0.142
∅ = [tex]sin^{-1}[/tex] 0.142
∅ = 8.2° this is the angle of ascent of the submarine.
b) The horizontal distance traveled will be gotten from Pythagoras theorem
[tex]hyp^{2}[/tex] = [tex]opp^{2}[/tex] + [tex]adj^{2}[/tex]
The horizontal distance traveled will be the adjacent side of the right angle triangle formed by these distances
[tex]4420^{2}[/tex] = [tex]626^{2}[/tex] + [tex]adj^{2}[/tex]
adj = [tex]\sqrt{4420^{2}-626^{2} }[/tex]
adj = 4375 m this is the horizontal distance traveled.
√9m^2n^2 + 2√m^2n^2 - 3mn
Answer:
I think it is
Step-by-step explanation:
Answer:
5n√2m^ - 3mn
Step-by-step explanation:
Which table represents the inverse of the function defined above?
Hello!
Answer:
Table B.
Step-by-step explanation:
An inverse of a function means that the x and y values are swapped in comparison to the original function. For example:
We can use points on the table:
[tex]f(x)[/tex] = (7, 21)
The inverse of this function would 7 as its y value, and 21 as its x value:
[tex]f^{-1} (x)[/tex] = (21, 7)
The only table shown that correctly shows this relationship is table B.
WHY CAN'T ANYONE HELP ME? PLEASE What one is the standard form of the equation y = – 1/4 x – 2? A. x + 4y = 8 B. x + 4y = – 2 C. x + 4y = – 8 or D. –x + 4y = – 8
Answer:
C. x+4y=-8
Step-by-step explanation:
The standard form of an equation is Ax+Bx=C
y= -[tex]\frac{1}{4}[/tex]x-2
Multiply 4 by both sides
4y= -x-8
1+4y= -8
Use an appropriate series to find Taylor series of the given function centered at the indicated value of a. Write your answer in summation notation.
sinx, a= 2π
Answer:
The Taylor series is [tex]$$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
Step-by-step explanation:
From the question we are told that
The function is [tex]f(x) = sin (x)[/tex]
This is centered at
[tex]a = 2 \pi[/tex]
Now the next step is to represent the function sin (x) in it Maclaurin series form which is
[tex]sin (x) = \frac{x^3}{3! } + \frac{x^5}{5!} - \frac{x^7}{7 !} +***[/tex]
=> [tex]sin (x) = $$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
Now since the function is centered at [tex]a = 2 \pi[/tex]
We have that
[tex]sin (x - 2 \pi ) = (x-2 \pi ) - \frac{(x - 2 \pi)^3 }{3 \ !} + \frac{(x - 2 \pi)^5 }{5 \ !} - \frac{(x - 2 \pi)^7 }{7 \ !} + ***[/tex]
This above equation is generated because the function is not centered at the origin but at [tex]a = 2 \pi[/tex]
[tex]sin (x-2 \pi ) = $$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x - 2 \pi)^{2n+1}][/tex]
Now due to the fact that [tex]sin (x- 2 \pi) = sin (x)[/tex]
This because [tex]2 \pi[/tex] is a constant
Then it implies that the Taylor series of the function centered at [tex]a = 2 \pi[/tex] is
[tex]$$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
The average college lecture hall (auditorium) can seat 60 students with a standard deviation of 21. Assume that a total of 60 lecture halls are selected for a sample. What is the standard deviation for the sample mean?
Answer:
The standard deviation of the sample mean is [tex]\sigma _ {\= x } = 2.711[/tex]
Step-by-step explanation:
From the question we are told that
The mean is [tex]\= x = 60[/tex]
The standard deviation is [tex]\sigma = 21[/tex]
The sample size is [tex]n = 60[/tex]
Generally the standard deviation of the sample mean is mathematically represented as
[tex]\sigma _ {\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _ {\= x } = \frac{ 21 }{\sqrt{60} }[/tex]
[tex]\sigma _ {\= x } = 2.711[/tex]
If y>0, which of these values of x is NOT in the domain of this equation? y=x2+7x
Answer:
[tex]\boxed{\sf \ \ \ [-7,0] \ \ \ }[/tex]
Step-by-step explanation:
Hello
[tex]y=x^2+7x=x(x+7) >0\\<=> x>0 \ and \ x+7 >0 \ \ or \ \ x<0 \ and \ x+7<0\\<=> x>0 \ \ or \ \ x<-7\\[/tex]
So values of x which is not in this domain is
[tex]-7\leq x\leq 0[/tex]
which is [-7,0]
hope this helps
A psychologist is studying the effects of lack of sleep on the performance of various perceptual-motor tasks. After a given period of sleep deprivation, a measurement of reaction time to an auditory stimulus was taken for each of 36 adult male subjects.The mean and standard deviation of the reaction times (in seconds) for the fifty adult male subjects were 1.82 seconds and 0.28 seconds respectively. Previous psychological studies have shown that the true mean reaction time for non-sleep-deprived male subjects is 1.70 seconds. Does the sample evidence indicate that the mean reaction time for sleep-deprived adult males is longer than that of non-sleep-deprived adult males.
A. H0:μ=1.82;Ha:μ<1.82
B. H0:μ=1.70;Ha:μ<1.70
C. H0:μ=1.82;Ha:μ>1.82
D. H0:μ=1.70;Ha:μ>1.70
E. None of the above
Answer:
D. [tex]H_{0}[/tex] : μ = 1.70, [tex]H_{a}[/tex] : μ > 1.70
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence to test a hypothesis
The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value.