what is the numbers of protons, neutrons, and electrons in 35cl if the atom is electrically neutral? express your answers as integers separated by commas.

Answers

Answer 1

In an electrically neutral 35Cl atom, there are 17 protons, 18 neutrons, and 17 electrons.

The atomic number of chlorine (Cl) is 17, which means it has 17 protons in its nucleus. Since the atom is electrically neutral, it must also have 17 electrons surrounding the nucleus. To determine the number of neutrons, we need to subtract the atomic number from the mass number. The mass number of 35Cl is 35, which means it has 35 - 17 = 18 neutrons. Therefore, the numbers of protons, neutrons, and electrons in 35Cl if the atom is electrically neutral are 17, 18, and 17, respectively. So the answer is: 17, 18, 17.The atomic number is the number of protons found in the nucleus of an atom. It is also known as the proton number. The atomic number is a fundamental property of an element and determines its place in the periodic table of elements. The atomic number is denoted by the symbol "Z".

Each element has a unique atomic number, which distinguishes it from other elements. For example, carbon has an atomic number of 6, which means it has 6 protons in its nucleus. Oxygen has an atomic number of 8, which means it has 8 protons in its nucleus.The atomic number also determines the number of electrons in a neutral atom of that element. In a neutral atom, the number of electrons is equal to the number of protons. For example, a neutral carbon atom has 6 electrons and 6 protons, while a neutral oxygen atom has 8 electrons and 8 protons.

The atomic number plays an important role in determining the chemical properties of an element. Elements with the same atomic number have similar chemical properties, while elements with different atomic numbers have different chemical properties. This is because the number of protons in the nucleus determines how the electrons in the atom are arranged and how they interact with other atoms.
In an electrically neutral 35Cl atom, there are 17 protons, 18 neutrons, and 17 electrons. Your answer: 17, 18, 17

To know more about atomic number visit:

https://brainly.com/question/8834373

#SPJ11


Related Questions

What happens if you touch the front of a TLC plate with your finger(s)? .Nothing will happen .The chemicals on your finger will alter the acidic alumina and turn it into silica .Oils and grease from your finger will transfer to the TLC and will interfere with functioning of TLC .the TLC powder will all fall off leaving a blank TLC plate

Answers

If you touch the front of a TLC plate with your finger(s), several things can happen depending on the type of contamination present on your fingers. First, if your fingers are clean and free of any contaminants, nothing significant will happen. However, if your fingers are contaminated with chemicals or oils, the TLC plate may be affected.

One potential outcome is that the chemicals on your finger(s) can alter the acidic alumina that is present on the TLC plate and turn it into silica. This can significantly impact the effectiveness of the TLC plate and make it unusable. Another possibility is that oils and grease from your finger(s) will transfer to the TLC plate, interfering with its functioning. This can result in uneven separation and poor resolution, making it difficult to analyze the compounds in your sample.

In some cases, touching the front of a TLC plate with your finger(s) can cause the TLC powder to fall off the plate, leaving a blank TLC plate. This can occur if the pressure exerted by your finger(s) is too high, causing the TLC powder to become dislodged.

In summary, it is best to avoid touching the front of a TLC plate with your finger(s) to prevent contamination and ensure accurate analysis. If it is necessary to handle the TLC plate, it is recommended to use gloves or a clean tool to avoid any potential contamination.

To know more about chemicals

https://brainly.com/question/29886197

#SPJ11

which of following is the limiting reactant when you mixed 1.00ml of 0.50m silver nitrate and 1.00ml of 0.50m sodium carbonate solutions?

Answers

When you mix 1.00 mL of 0.50 M silver nitrate (AgNO₃) solution and 1.00 mL of 0.50 M sodium carbonate (Na₂CO₃) solution, the limiting reactant can be determined using stoichiometry.

The balanced equation for the reaction is:

AgNO₃ + Na₂CO₃ → Ag₂CO₃ + 2NaNO₃

To find the limiting reactant, calculate the moles of both reactants:

Moles of AgNO₃ = (0.50 mol/L) * (0.001 L) = 0.0005 mol

Moles of Na₂CO₃ = (0.50 mol/L) * (0.001 L) = 0.0005 mol

Compare the molar ratios of the reactants:

Mole ratio = (Moles of AgNO₃) / (Moles of Na₂CO₃)

                 = (0.0005 mol) / (0.0005 mol)

                 = 1

Since the mole ratio is 1, and the stoichiometric ratio of the balanced equation is also 1:1, both reactants are consumed completely, and neither is the limiting reactant.

The reaction goes to completion with equal amounts of both reactants.

To know something about the limiting reagent, click below.

https://brainly.com/question/31171741

#SPJ11

What is the emf of a cell consisting of a pb2+/pb half-cell and a pt/h+/h2 half cell if [
Pb2+] = 0.49 M, [H+] = 0.036 M and PH−2= 1.0 atm?

Answers

The emf of the cell consisting of a pb2+/pb half-cell and a pt/h+/h2 half cell is 0.0467 V.

The concentration of Pb²⁺ is 0.49 M

The concentration of H⁺ is 0.036 M

The partial pressure of the hydrogen gas, PH₂ is 1.0 atm

The overall reaction is:

Pb(s) + 2 H⁺ → Pb²⁺ + H₂

The standard reduction potential of this is,

E° cell = 0.126 V

The Nernst equation is,

E cell = E° cell - 0.0592/2 log [Pb²⁺] PH₂/[H⁺]²

E cell = 0.126 V - 0.0592/2 log (0.49 × 1)/(0.036)² = 0.0467 V

Therefore, the emf of the cell is 0.0467 V.

Learn more about Nernst equation from the link given below.

https://brainly.com/question/9998037

#SPJ4

otassium metal reacts with water according to the following balanced equation. 2k(s) 2h2o(l)⟶2koh(aq) h2(g) if one mole of potassium reacts in this manner, how many moles of water are consumed?

Answers

When one mole of potassium reacts with water is 2 moles of water.  The balanced chemical equation for the reaction of potassium with water shows that 2 moles of water are required to react with 1 mole of potassium. This means that if one mole of potassium reacts with water, it will consume 2 moles of water.

In this reaction, potassium (K) reacts with water (H2O) to form potassium hydroxide (KOH) and hydrogen gas (H2). The reaction is balanced, with two atoms of potassium, four atoms of hydrogen, and two atoms of oxygen on both the reactant and product sides of the equation.

The reaction is so exothermic that it can ignite the hydrogen gas produced, resulting in a small explosion. The reaction can also be dangerous because it produces a strong alkaline solution of potassium hydroxide, which is caustic and can cause severe burns if it comes into contact with skin.

To know more about mole visit :-

https://brainly.com/question/23963895

#SPJ11

please help with balancing this chemical equation. ignore my handwriting

Answers

After considering the given data we conclude that the balanced this chemical equation will be
[tex]Pb(NO_{3} )_{2} (aq) + 2 NaCl (aq) - - > PbCl_{2} (s) + 2 NaNO_{3} (aq)[/tex]

Now in order to balance this given chemical equation we have to follow the given steps
1. Start with the unbalanced equation:
[tex]Pb(NO_{3} )_{2} (aq) + NaCl(aq). - - > PbCl_{2} (s) + NaNO_{3} (aq)[/tex]

2. Measure the number of atoms of each element on the reactant and product sides of the equation.
Reactant side: 1 Pb, 2 N, 6 O, 1 Na, 1 Cl
side of product : 1 Pb, 2 Cl, 2 N, 6 O, 2 Na

3. Now  balance the equation by altering the coefficients (numbers in front of the chemical formulas) as needed.
[tex]Pb(NO_{3} )_{2 } (aq) + 2 NaCl(aq) - - > PbCl_{2 } (s) + 2 NaNO_{3} (aq)[/tex]

4. Now, measure the number of atoms of each element again to make sure the equation is balanced:
Reactant side: 1 Pb, 2 N, 6 O, 2 Na, 2 Cl
side of product : 1 Pb, 2 Cl, 2 N, 6 O, 2 Na

The count of atoms of each element is now equivalent on both sides of the equation.
Hence, the chemical equation is balanced and can be written as:
[tex]Pb(NO_{3} )_{2} (aq) + 2 NaCl (aq) - - > PbCl_{2} (s) + 2 NaNO_{3} (aq)[/tex]

To learn  more about  chemical equation
https://brainly.com/question/20780772
#SPJ1

what type of intermediate is formed in the addition of HBr to alkenes? a. a pentavalent carbon species b. a carbocation c. a carbanion d. a radical

Answers

In the addition of HBr to alkenes, an intermediate known as a carbocation (option b) is formed. This occurs through a two-step process involving the protonation of the alkene to form the most stable carbocation, followed by the nucleophilic attack of the bromide ion on the carbocation.A carbocation is a positively charged ion that contains a carbon atom with only three bonds in its valence shell. The carbocation is a reactive intermediate in organic chemistry, and it plays an important role in many chemical reactions.

The carbon atom in a carbocation has a formal positive charge, meaning it has lost an electron and is deficient in one electron. Because of this positive charge, carbocations are highly reactive and are often involved in chemical reactions that form new carbon-carbon or carbon-heteroatom bonds.Carbocations can be formed by several methods, including the loss of a leaving group from a molecule, such as in an elimination reaction, or by the addition of a proton to a molecule, such as in an acid-catalyzed reaction. Once formed, carbocations can react with other molecules, such as nucleophiles, to form new compounds.

The stability of a carbocation depends on the number of alkyl groups attached to the positively charged carbon atom. A carbocation with more alkyl groups is more stable than one with fewer alkyl groups because the alkyl groups can donate electron density to the positively charged carbon, stabilizing the charge. This is known as the "alkyl group effect".

Carbocations are important intermediates in many organic reactions, including electrophilic additions, Friedel-Crafts reactions, and nucleophilic substitutions. Understanding carbocation reactivity is critical for designing and controlling many organic reactions.

To know more about carbocation visit:

https://brainly.com/question/19168427

#SPJ11

An oxygen tank has a volume of 6.5 m³ and pressure of 15,205 kPa at 20°C (1 m³= 1,000 L). If the nozzle on the tank is opened, how many moles of oxygen will be released?

This question is from in too deep : ideal gas law practice worksheet
if you could give the answers to all the questions that would be appreciated ​

Answers

After considering all the given data we come to the conclusion that the total number of moles of oxygen released is 3,700 moles.

To evaluate the number of moles of oxygen that will be released from the oxygen tank, we can use the ideal gas law which states that
PV = nRT
Here,
P = pressure,
V =volume,
n = the number of moles of gas,
R = the gas constant and T is temperature.
We are given that the volume of the tank is 6.5 m³ and pressure is 15,205 kPa at 20°C. We have to convert this pressure to Pa by multiplying it by 1000 (1 kPa = 1000 Pa) and convert temperature to Kelvin by adding 273.15 (20°C = 293.15 K).
So we have P = 15,205 x 1000 Pa = 15,205,000 Pa and T = 293.15 K. The gas constant R is equal to 8.314 J/(mol.K). We can evaluate for n as follows:
n = PV/RT
n = (15,205,000 Pa x 6.5 m³) / (8.314 J/(mol.K) x 293.15 K)
n ≈ 3,700 moles of oxygen will be released.
To learn more about ideal gas law

https://brainly.com/question/27870704
#SPJ1

which is more stable: 16 protons, 20 neutrons, and 16 electrons when they are combined as two 18 o atoms or as one 36 s atom?

Answers

In terms of stability, it is more favorable for 16 protons, 20 neutrons, and 16 electrons to combine as two 18O atoms rather than as one 36S atom.

In terms of stability, it is important to consider the nucleus of an atom as it contains the protons and neutrons. The stability of a nucleus depends on the ratio of protons to neutrons, as well as the total number of particles in the nucleus. When the ratio of protons to neutrons is around 1:1, the nucleus tends to be more stable.
In the case of 16 protons and 20 neutrons, the ratio is not 1:1, which makes the nucleus less stable. However, when these particles combine to form two 18O atoms, the ratio of protons to neutrons is more balanced, making the resulting structure more stable.
On the other hand, when the 16 protons, 20 neutrons, and 16 electrons combine to form one 36S atom, the ratio of protons to neutrons is not balanced, and the resulting nucleus is less stable than the two 18O atoms.
Therefore, in terms of stability, it is more favorable for 16 protons, 20 neutrons, and 16 electrons to combine as two 18O atoms rather than as one 36S atom.

learn more about protons

https://brainly.com/question/30438606

#SPJ11

In the Bohr model of the atom, what must electrons do to move up, or down, between the various orbitals? Pick any/all correct answers, please. emit radiation balance oxidation number increase charge emit a phonon absorb radiation decrease charge

Answers

Electrons in the Bohr model of the atom must absorb or emit radiation in order to move up or down between the various orbitals.

In the Bohr model, electrons are arranged in discrete energy levels or orbitals around the nucleus. The energy of an electron in a particular orbital is quantized, meaning it can only have certain specific values. When an electron absorbs energy from its surroundings, such as through the absorption of radiation, it can move to a higher energy level or orbital. Conversely, when an electron loses energy, it emits radiation and moves to a lower energy level or orbital.

The correct answer is that electrons in the Bohr model must absorb or emit radiation to move up or down between the various orbitals. Other options such as balancing oxidation number, increasing or decreasing charge, or emitting a phonon are not applicable to the Bohr model and the concept of electron transitions within it.

To know more about Bohr model, visit;

https://brainly.com/question/4138548

#SPJ11

**NEED ASAP!!!!**

A. 1
B. 2
C. 3
D. 4

the picture is shown on the question top, asap!

Answers

Methylamine could be said to be a Brownstead Lowry base because of 3.

What is the Bronstead Lowry base?

A Brnsted-Lowry base is a type of organism or molecule with the capacity to bind to or take a proton from an acid. A base transforms into its conjugate acid when it takes a proton. This hypothesis is based on the notion that protons are transferred across species during an acid-base reaction.

In contrast to the Arrhenius theory, which defines bases as chemicals that create hydroxide ions, the Brnsted-Lowry base idea offers a broader and more encompassing definition of bases.

Learn more about Brownstead Lowry base:https://brainly.com/question/32276007

#SPJ1

Which image depicts the initial atoms
when sodium and oxygen form an ionic
compound?
B. Na .Ö. Na
A. Na .. Na
c. Na .Ö. Na
D. 2Nat:
-2
0:²

Answers

The image that depicts the initial atoms when sodium and oxygen form an ionic compound is option C because Sodium is a metal and it tends to give it's electrons while Oxygen is a non metal and electronegative element that tends to take electron towards itself hence that image is perfect depiction.

Ionic compounds are held together by ionic bonds are classed as ionic compounds. Elements can gain or lose electrons in order to attain their nearest noble gas configuration. The formation of ions (either by gaining or losing electrons) for the completion of octet helps them gain stability.

In a reaction between metals and non-metals, metals generally loose electrons to complete their octet while non-metals gain electrons to complete their octet. Metals and non-metals generally react to form ionic compounds.

Ionic compounds include salts, oxides, hydroxides, sulphides, and the majority of inorganic compounds. Ionic solids are held together by the electrostatic attraction between the positive and negative ions.

Learn more about Ionic compounds, here:

https://brainly.com/question/3222171

#SPJ1

how many moles of oxygen are produced from 14 moles of potassium chlorate

Answers

21mole  of oxygen are produced from 14 moles of potassium chlorate n the given reaction 2KClO[tex]_3[/tex]→ 2KCl + 3O[tex]_2[/tex].

The mole notion is an easy way to express the amount of a substance. Any measurement is divided into two parts: the numerical magnitude and the units in which the magnitude is expressed. For example, if the mass of a ball is 2 kilogrammes, the magnitude is '2' and the unit is 'kilogramme'.

2KClO[tex]_3[/tex]→ 2KCl + 3O[tex]_2[/tex]

According to stoichiometry      

moles of oxygen =3/2×14= 21mole

To know more about mole, here:

https://brainly.com/question/30892840

#SPJ1

nahco3(s) ⇌ naoh(s) co2(g)nahco3(s) ⇌ naoh(s) co2(g) what is the free-energy change for this reaction at 298 kk ?

Answers

The free - energy change for the reaction at the 298 k is  -94.7 kJ/mol.

The chemical equation is :

NaHCO₃(s)   ⇄   NaOH(s) + CO₂(g)

The free-energy change is expressed as :

ΔG = ΔH - TΔS

Where,

The ΔH is the enthalpy change,

The T is the temperature in the Kelvin,

The ΔS is the entropy change.

The enthalpy change of reaction = -52.3 kJ/mol,

The entropy change = 142.2 J/mol·K.

ΔG = -52.3 kJ/mol - (298 K)(0.1422 kJ/mol·K)

ΔG = -52.3 kJ/mol - 42.4 kJ/mol

ΔG = -94.7 kJ/mol

The free energy change for the reaction is  -94.7 kJ/mol.

To learn about free energy here

https://brainly.com/question/31170437

#SPJ4

This question is incomplete, the complete question is :

NaHCO₃(s)   ⇄   NaOH(s) + CO₂(g) what is the free-energy change for this reaction at 298 k? The entropy change is 142.2 J/mol·K. The enthalpy change is -52.3 kJ/mol.

chemical equation for redox of copper and silver nitrate. note: copper has a 2 oxidation number in the products.silver has its expected oxidation number on the reactons side.

Answers

The chemical equation for the redox reaction of copper and silver nitrate is as follows:
Cu + 2AgNO3 → Cu(NO3)2 + 2Ag

In this equation, copper (Cu) is oxidized from a zero oxidation state to a +2 oxidation state, while silver (Ag) is reduced from a +1 oxidation state to a zero oxidation state.
The balanced half-reactions for this redox reaction are as follows:
Oxidation: Cu → Cu2+ + 2e-
Reduction: 2Ag+ + 2e- → 2Ag
When these half-reactions are combined, they form the overall balanced redox equation shown above.
It's important to note that in the products, copper has a +2 oxidation state because it has lost two electrons in the oxidation half-reaction. Meanwhile, silver has its expected oxidation state of +1 on the reactant side and is reduced to a zero oxidation state by gaining two electrons in the reduction half-reaction.

learn more about equation

https://brainly.com/question/30087623

#SPJ11

between br and bi , the element with the higher first ionization energy is

Answers

Bromine (Br) has a lower first ionization energy compared to bismuth (Bi). The first ionization energy is the energy required to remove one electron from an atom in its gaseous state.

The ionization energy increases across a period from left to right and decreases down a group from top to bottom of the periodic table.

Bromine is located in group 17, also known as the halogen group. It has 7 valence electrons and requires only one more electron to achieve a stable octet electron configuration. Hence, the valence electrons of bromine are held relatively weakly by the nucleus, making it easier to remove an electron and achieve a stable octet configuration.

On the other hand, bismuth is located in group 15, also known as the pnictogen group. It has 5 valence electrons and requires three more electrons to achieve a stable octet electron configuration. Hence, the valence electrons of bismuth are held more tightly by the nucleus, making it more difficult to remove an electron and achieve a stable octet configuration. This results in bismuth having a higher first ionization energy compared to bromine.

Learn more about ionization energy  here:

https://brainly.com/question/28385102

#SPJ11

The introduction of 14CO2 into a cell actively synthesizing fatty acids results in 14C labeled

malonyl-CoA. Acetyl-CoA. Acyl-CoA. Palmitate

Answers

The introduction of 14CO₂ into a cell actively synthesizing fatty acids results in 14C labeled Acetyl-CoA, which is then converted into 14C labeled malonyl-CoA.

The acetyl-CoA molecule has a structure of -[SEE aatachemt].Malonyl-CoA has the following chemical formula: [SEE aatachemt]The palmitic acid chemical formula is -[SEE aatachemt].

Therefore, it is clear from comparing all three structures that the terminal carbon with connected O= will be the best carbon to radiolabel the malonyl-CoA since it will still be present in the resulting palmitate molecule and be easy to find. Malonyl-CoA is an essential intermediate molecule in the production of fatty acids. In de novo fatty acid synthesis, malonyl-coenzyme A (CoA) is the substrate that acts as the primary carbon source for the synthesis of palmitate (C16), which is catalysed by fatty acid synthase.

This malonyl-CoA is used in the process of fatty acid synthesis to form 14C labeled Acyl-CoA intermediates, which ultimately lead to the production of 14C labeled Palmitate, a saturated fatty acid.

Learn more about palmitic acid here

https://brainly.com/question/29695913

#SPJ11

- How many moles of sucrose are contained in each solution?
(a) 3.4 L of a 0.100 M sucrose solution
(b) 0.952 L of a 1.88 M sucrose solution
(c) 21.5 mL of a 0.528 M sucrose solution

Answers

0.34 moles are present in 3.4 L of a 0.100 M sucrose solution. 1.78976 moles are present in 0.952 L of a 1.88 M sucrose solution.  0.011352 moles of present in 21.5 mL of a 0.528 M sucrose solution.

(a)

Volume of  solution = 3.4 L

Molarity = 0.100 M

moles of sucrose = 0.100 M x 3.4 L

moles of sucrose = 0.34 moles

Therefore, 0.34 moles are present in 3.4 L of a 0.100 M sucrose solution.

(b)

Volume of  solution = 0.952 L

Molarity = 1.88 M  

Total number moles of sucrose = 1.88 M x 0.952 L

moles of sucrose = 1.78976 moles

1.78976 moles are present in 0.952 L of a 1.88 M sucrose solution.

(c)

Volume of  solution = 21.5 mL

Molarity = 0.528 M

The milliliters should be converted into liters.

21.5 mL = 0.0215 L

moles of sucrose = 0.528 M x 0.0215 L

moles of sucrose = 0.011352 moles

There are 0.011352 moles of present in 21.5 mL of a 0.528 M sucrose solution.

To learn more about moles of sucrose

https://brainly.com/question/20639278

#SPJ1

the half life of a radioactive substance is 1497 1497 years. what is the annual decay rate? express the percent to 4 significant digits.

Answers

The annual decay rate of the radioactive substance is approximately 0.0463% per year.

The half-life of a radioactive substance is the time it takes for half of the radioactive atoms in a sample to decay. In this case, the half-life is given as 1497 years. To determine the annual decay rate, we need to calculate the fraction of the substance that decays in one year.

The decay rate can be calculated using the formula:

Decay rate = 0.693 / Half-life

Substituting the given value:

Decay rate = 0.693 / 1497 years

Calculating the value:

Decay rate ≈ 4.633 x 10^-4 per year

To express the decay rate as a percentage, we can multiply it by 100:

Decay rate ≈ 0.0463% per year

Rounding to four significant digits, the annual decay rate is approximately 0.0463%.

Therefore, the annual decay rate of the radioactive substance is approximately 0.0463% per year, indicating the fraction of the substance that undergoes radioactive decay annually.

Know more about Half-life here:

https://brainly.com/question/24710827

#SPJ11

which has the greatest mass of carbon: 0.1 mol of propane (c3h8), 0.3 mol of acetic acid (c2h4o2) or 0.4 ml of methanol (ch3oh)?

Answers

Propane has the greatest mass of carbon with 3.603 g, followed by acetic acid with 7.206 g, and methanol with 0.004804 g.

To determine which compound has the greatest mass of carbon, we need to calculate the mass of carbon in each compound using the given number of moles.

0.1 mol of propane (C3H8):

Molar mass of C3H8 = 3(12.01 g/mol) + 8(1.01 g/mol) = 44.11 g/mol

Mass of carbon = 3(12.01 g/mol) = 36.03 g

Therefore, 0.1 mol of propane contains 3.603 g of carbon.

0.3 mol of acetic acid (C2H4O2):

Molar mass of C2H4O2 = 2(12.01 g/mol) + 4(1.01 g/mol) + 2(16.00 g/mol) = 60.05 g/mol

Mass of carbon = 2(12.01 g/mol) = 24.02 g

Therefore, 0.3 mol of acetic acid contains 7.206 g of carbon.

0.4 ml of methanol (CH3OH):

Molar mass of CH3OH = 12.01 g/mol + 4(1.01 g/mol) + 16.00 g/mol = 32.04 g/mol

Mass of carbon = 12.01 g/mol

Therefore, 0.4 mol of methanol contains 0.004804 g of carbon.

Therefore, propane has the greatest mass of carbon with 3.603 g, followed by acetic acid with 7.206 g, and methanol with 0.004804 g.

Learn more about Propane  here:

https://brainly.com/question/10364314

#SPJ11

How much area does the rio grande take up

Answers

Answer:

The Rio Grande drainage basin (watershed) has an area of 182,200 square miles (472,000 km2)

The entire rio grande/rio bravo watershed covers approximately 924,300 square kilometers (335,000)square miles

Calculate ∆H°f in kJ/mol for benzene, C6H6, from the following data: 2 C6H6(l) + 15 O2(g) → 12 CO2(g) + 6 H2O(l) ∆H°=-6534 kJ ∆H°f (CO2)

Answers

The standard enthalpy change of formation (∆H°f) of benzene (C6H6) is -171.84 kJ/mol

The given equation is:

2 C6H6(l) + 15 O2(g) → 12 CO2(g) + 6 H2O(l) ∆H°=-6534 kJ

The standard enthalpy change of formation (∆H°f) of benzene (C6H6) can be calculated using the standard enthalpies of formation of the products and reactants involved in the above equation.

Reactants:

2 moles of C6H6(l)

Products:

12 moles of CO2(g)

6 moles of H2O(l)

The balanced chemical equation shows that the coefficients of C6H6 and CO2 are the same, which means that the ∆H°f of C6H6 can be calculated by dividing the enthalpy change of the reaction by the stoichiometric coefficient of C6H6.

∆H°f (C6H6) = (∆H° / 2) - (∆H°f (CO2) × 12 / 2)

∆H°f (C6H6) = (-6534 kJ / 2) - (-393.51 kJ/mol × 12 / 2)

∆H°f (C6H6) = -171.84 kJ/mol

Therefore, the standard enthalpy change of formation (∆H°f) of benzene (C6H6) is -171.84 kJ/mol.

Learn more about benzene here:

https://brainly.com/question/31837011

#SPJ11

A 250ml sample of orange juice contains 75mg of vitamin c. What is the %concentration?

Answers

The % concentration of vitamin C in the 250 ml sample of orange juice is 0.03%.

To calculate the % concentration of vitamin C, we need to divide the mass of vitamin C by the volume of the sample and multiply by 100. In this case, the mass of vitamin C is given as 75 mg. Since 1 ml is equal to 1 gram, we can convert the volume of the sample from ml to grams by dividing it by 1000. So, 250 ml is equal to 250/1000 = 0.25 g. Now we can calculate the % concentration using the formula:

% concentration = (mass of vitamin C / volume of sample) * 100

= (75 mg / 0.25 g) * 100

= 30%

The % concentration of vitamin C in the 250 ml sample of orange juice is 0.03%.

You can learn more about vitamin C at

https://brainly.com/question/24268138

#SPJ11

how many moles of oxygen gas react when 1 mole of 2,2-dimethylhexane undergoes complete combustion?

Answers

25 moles of oxygen gas react when 1 mole of 2,2-dimethylhexane undergoes complete combustion.

The balanced chemical equation for the complete combustion of 2,2-dimethylhexane is:
2 C₈H₁₈ + 25 O₂ → 16 CO₂ + 18 H₂O
This means that for every 1 mole of 2,2-dimethylhexane, we need 25 moles of oxygen gas to undergo complete combustion.

According to the law of conservation of mass, mass can only be converted from one form to another and cannot be generated or destroyed.

This implies that the total mass on the reactant side and the total mass on the product side must be identical.

Prior to balancing the atoms of oxygen, one must first balance the atoms of other elements in a chemical process.

This is referred to as a textual statement of a chemical process that includes the related reactants and products.

Additionally, it must be balanced, which calls for an equal amount of atoms from each element on the reactant and product sides. Therefore, to ensure that the equation is balanced, only the coefficients are changed. Superscripts and subscripts shouldn't be changed in this situation, either.

Learn more about chemical process here

https://brainly.com/question/28294176

#SPJ11

what is the structural formula of glutamic acid (pl=3.2) at ph=1

Answers

The structural formula of the glutamic acid at the pH value of 1 is the NH₃⁺ - (CO₂H)CH -(CH₂)₂ - COOH.

The value of the pH is 1, the amino group and the carboxyl groups in the glutamic acid compound are the protonated, which means they will be gain the hydrogen ion that is H⁺. The result of the zwitterion ion formation  form of the glutamic acid, with the charge that is the net charge of +1.

The pI (that is the isoelectric point for the glutamic acid is the 3.2, and it is  the pH where the molecule will have no net charge. The formula for the glutamic acid is NH₃⁺ - (CO₂H)CH -(CH₂)₂ - COOH.

To learn more about glutamic acid here

https://brainly.com/question/29807201

#SPJ4

what is the molality of a 4.99 m cacl2 solution with a density of 1.55 g/ml? enter answer to 3 decimal places.

Answers

The molality of a 4.99 m cacl2 solution with a density of 1.55 g/ml is 3.230 mol/kg.

Molality is defined as the number of moles of solute per kilogram of solvent. To calculate molality, we first need to calculate the number of moles of [tex]CaCl_{2}[/tex]  present in the solution.
Given:
Molarity of [tex]CaCl_{2}[/tex] solution (M) = 4.99 m
Density of [tex]CaCl_{2}[/tex]  solution (ρ) = 1.55 g/ml
To calculate the number of moles of [tex]CaCl_{2}[/tex] , we need to use the formula:
moles = M × volume
The volume of solution can be calculated using the density and mass of the solution. Let's assume we have 1 kg of solution. Then, the mass of the solution will be 1.55 kg (since density = mass/volume).
Mass of [tex]CaCl_{2}[/tex]  = molar mass × moles
where molar mass of [tex]CaCl_{2}[/tex]  = 111 g/mol
Rearranging the above formula, we get:
moles = (mass of solution × molarity of [tex]CaCl_{2}[/tex] ) ÷ molar mass of [tex]CaCl_{2}[/tex]  
moles = (1.55 kg × 4.99 mol/kg) ÷ 111 g/mol = 0.0695 mol
Now, we can calculate the molality of the solution:
molality = moles of [tex]CaCl_{2}[/tex]  ÷ mass of solvent (in kg)

In this case, the mass of solvent is also 1 kg, since we assumed that the mass of solution is 1 kg.
molality = 0.0695 mol ÷ 1 kg = 0.0695 mol/kg
Finally, we need to convert this value to 3 decimal places:
molality = 3.230 mol/kg
The molality of a 4.99 m [tex]CaCl_{2}[/tex]  solution with a density of 1.55 g/ml is 3.230 mol/kg.

For more information on molality kindly visit to

https://brainly.com/question/14650749

#SPJ11

in a titration, 354 ml of 0.21 m formic acid hcooh was added to 126 ml of 0.9 m naoh. what will be the ph at that point in the titration?

Answers

At the point in the titration where 354 ml of 0.21 M HCOOH was added to 126 ml of 0.9 M NaOH, the pH is approximately 1.67.  

To find the pH at the point in the titration where 354 ml of 0.21 M HCOOH was added to 126 ml of 0.9 M NaOH, we can use the following steps:

Write the balanced chemical equation for the reaction between formic acid and sodium hydroxide:

HCOOH(aq) + NaOH(aq) → O(l) + CO(g) + NaOH(aq)

Use the volume of the unknown acid solution (354 ml) and the volume of NaOH solution needed to neutralize it (126 ml) to find the concentration of formic acid:

[HCOOH] = [HCOOH] x V

[HCOOH] = 354 ml x 0.21 M

[HCOOH] = 77.6 mM

Use the molarity of the formic acid and the volume of NaOH solution to find the concentration of NaOH:

[NaOH] = [NaOH] x V

[NaOH] = 126 ml x 0.9 M

[NaOH] = 115.6 mM

Use the concentrations of the acid and base to find the stoichiometric equation for the reaction:

[HCOOH] = [NaOH] x (1 + [HCOOH]/[NaOH])

[HCOOH] = 77.6 mM x (1 + 77.6 mM/115.6 mM)

[HCOOH] = 80.4 mM

Use the balanced stoichiometric equation and the volumes of the acid and base to find the change in volume of the solution during the titration:

ΔV = [HCOOH] x V_initial - [HCOOH] x V_final

ΔV = 80.4 mM x 354 ml - 80.4 mM x 126 ml

ΔV = 1284 ml - 1056 ml

ΔV = 228 ml

Finally, use the change in volume to find the volume of NaOH solution needed to neutralize the formic acid:

ΔV_NaOH = -ΔV

ΔV_NaOH = -228 ml

ΔV_NaOH = 228 ml

V_NaOH = -228 ml

V_NaOH = 228 ml

Therefore, at the point in the titration where 354 ml of 0.21 M HCOOH was added to 126 ml of 0.9 M NaOH, the pH is approximately 1.67.  

Learn more about titration visit: brainly.com/question/13307013

#SPJ4

what amperage is required to plate out 0.260 molcr from a cr3 solution in a period of 7.50 h ?

Answers

The amperage required to plate out 0.260 mol of Cr from a Cr3 solution in a period of 7.50 hours can be calculated using Faraday's Law of Electrolysis.

According to Faraday's Law, the amount of substance deposited on an electrode during electrolysis is directly proportional to the amount of electric charge passed through the electrolyte. The formula for this relationship is:

Amount of substance = (Current × Time × Atomic weight) / (Valency × 96500)

Here, the atomic weight of Cr is 52.00 g/mol, and its valency is +3. Substituting these values, we get:

Amount of Cr deposited = (I × 7.50 × 52.00) / (3 × 96500)

0.260 = (I × 390) / 289500

I = 0.387 A

Therefore, the amperage required to plate out 0.260 mol of Cr from a Cr3 solution in a period of 7.50 hours is 0.387 A.

The required amperage can be calculated using Faraday's Law of Electrolysis by substituting the appropriate values in the formula.

In this case, an amperage of 0.387 A is required to plate out 0.260 mol of Cr from a Cr3 solution in a period of 7.50 hours.

For more information on Faraday's law kindly visit to

https://brainly.com/question/9684397

#SPJ11

For the following reaction, 4.26 grams of iron(III) oxide are mixed with excess aluminum. The reaction yields 1.93 grams of aluminum oxide.iron(III) oxide (s) + aluminum (s) ----> aluminum oxide (s) + iron (s)What is the theoretical yield of aluminum oxide ? ____ gramsWhat is the percent yield of aluminum oxide ? ____ %

Answers

The theoretical yield of aluminum oxide is 2.724 grams.

The percent yield of aluminum oxide is 70.88%.

To calculate the theoretical yield of aluminum oxide, first determine the moles of iron(III) oxide and then use the stoichiometry of the reaction.

1. Convert grams of iron(III) oxide to moles: 4.26 g Fe₂O₃ * (1 mol Fe₂O₃ / 159.69 g Fe₂O₃) = 0.0267 mol Fe₂O₃

2. Use the balanced chemical equation to find the moles of aluminum oxide produced:

Fe₂O₃ (s) + 2Al (s) -> Al₂O₃ (s) + 2Fe (s) 0.0267 mol

Fe₂O₃ * (1 mol Al₂O₃ / 1 mol Fe₂O₃) = 0.0267 mol Al₂O₃

3. Convert moles of aluminum oxide to grams: 0.0267 mol Al₂O₃ * (101.96 g Al₂O₃ / 1 mol Al₂O₃) = 2.724 g Al₂O₃

To calculate the percent yield, use the following formula:

Percent Yield = (Actual Yield / Theoretical Yield) * 100

Percent Yield = (1.93 g Al₂O₃ / 2.724 g Al₂O₃) * 100 = 70.88%

Learn more about percent yield at https://brainly.com/question/14531883

#SPJ11

Why is NaI in acetone used as a solvent for SN2 reactions and AgNO3 for SN1 reactions?

Answers

NaI in acetone is often used as a solvent for SN₂ reactions, while AgNO₃ is used for SN₁ reactions. This is because these solvents have different properties that make them more suitable for specific types of reactions.


In SN₂ reactions, the solvent plays a crucial role in facilitating the reaction by providing a medium for the reactants to interact with each other. Acetone is a polar aprotic solvent that can dissolve both the nucleophile and the substrate, making it an ideal solvent for SN₂ reactions. It is also a good solvent for NaI, which acts as a source of iodide ions, which are excellent nucleophiles for SN₂ reactions. When NaI is added to acetone, it dissociates to form iodide ions, which can then react with the substrate in a concerted manner to form the product.

On the other hand, in SN₁ reactions, the solvent plays a less critical role in the reaction mechanism as it is a two-step process involving the formation of a carbocation intermediate. AgNO₃ is often used as a solvent for SN₁ reactions because it is a good source of silver ions, which can help stabilize the carbocation intermediate. This is because silver ions have a high affinity for electrons and can interact with the carbocation to form a complex that is more stable than the free carbocation.

In summary, the choice of solvent for SN₂ and SN₁ reactions depends on the specific properties of the reaction and the reactants involved. NaI in acetone is used for SN₂ reactions because it provides a medium for the reactants to interact with each other, while AgNO₃ is used for SN₁ reactions because it helps stabilize the carbocation intermediate.

To know more about solvent, refer

https://brainly.com/question/25326161

#SPJ11

The gas in 250.0 mL piston experiences a change in pressure from 1.00 atm to 2.60 atm what is the new volume in mL assuming the moles of gas and temperature were held constant

Answers

The ideal gas law can be written as: PV = nRT, the new volume of the gas is 96.15 mL.

To solve this problem, we can use the ideal gas law, which relates the pressure, volume, temperature, and number of moles of a gas. The ideal gas law can be written as:

PV = nRT

Where P is the pressure of the gas, V is its volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

Assuming that the moles of gas and temperature are held constant, we can use the following equation to solve for the new volume:

P1V1 = P2V2

Where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume.

Plugging in the given values, we get:

(1.00 atm)(250.0 mL) = (2.60 atm)(V2)

Solving for V2, we get:

V2 = (1.00 atm)(250.0 mL) / (2.60 atm) = 96.15 mL

Therefore, the new volume of the gas is 96.15 mL.

For more such questions on  gas law

https://brainly.com/question/12873752

#SPJ11

Other Questions
Which sentence best avoids bias?A. See if there's a girl at the front desk who can make a call.B. Any receptionist would love to see her pay go up.C. My research focused mainly on heart disease in men.D. If there's a pilot at your company, he can vouch for me. you find a zero coupon bond with a par value of $10,000 and 19 years to maturity. the yield to maturity on this bond is 4.7 percent. assume semiannual compounding periods. what is the price of the bond? (do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) (GENETICS) With quinea fowls the gene for black colour (B) is dominant over the gene for white (b) Two heterozygotic black quinea fowls are crossed. Use a schematic representation to show the possible genotypic results that would be expected in the F1-generation. Short story about "I'm not talking about that now" what incident that sets the story into motion if materials are stored, recording the purchase at ______ cost provides information on price variances earlier than if the company waits until the materials are used. b. how does the establishment of a sampling plan aid in being able to conduct statistical process control smoothly? when setting your organizations strategy, you take into account its______________ , which is its capability to transform inputs into products or services. the company's net income for the year was $18 and it did not sell or retire any property, plant, and equipment during the year. cash dividends were $4. the net cash provided by (used in) investing activities for the year was: HThe table gives some information about the heights of 30 plants.Height, h in cmFrequency011020h3030Which class interval contains the median?Select your answer.Type here to search0h which post-freudian psychoanalyst theorized that the unconscious is formed at its very root around a set of images common to all human experience, which he called archetypes? in order to locate rows selected by a query, an index scan reads index blocks _____. which would be the best menu choice for a patient who is taking methimazole an antithyroid medication? the specific order that values are inserted into a heap will not affect the internal ordering of the elements in an array-based representation of the heap. question 31 options: true false your final proofreading step in report writing should be for spelling, punctuation, grammar, and other mechanical errors.T/F? you have isolated a single cell from a diploid organism. which of the following would indicate that the cell was at metaphase of meiosis ii (and not metaphase of meiosis i)? Homework 91. Light from a galaxy with a redshift of z = 0.4 took about 4.4 billion years to reach Earth. However, the galaxy is at a distance of 5.2 billion light years. How do we explain this discrepancy? Essay on why too much knowledge is a dangerous thing. Regarding the CIA and public relations, it is fair to say that ________.A) the agency takes public relations very seriouslyB) the agency no longer pursues public relations initiativesC) the Gillette Amendment prohibits public relations activitiesD) the agency has come under fire for its use of public relations A star halfway up the sky due south would have an altitude of... I really need help:/