Answer:
Hope this is correct and helpful
HAVE A GOOD DAY!
In the figure, m∠CED = m∠A. Complete the following proportions: ED/ A F= CE/? = CD/?
Answer:
The completed proportions are;
ED/A_F = CE/CA = CF/CD
Step-by-step explanation:
The given m∠CED = m∠A
∴ Angle ∠CDE = Angle ∠A_FC, (corresponding angles)
Angle ∠ECD = Angle ∠ACF (reflexive property)
Triangle ΔDCE is similar to triangle ΔACF (Angle Angle Angle (AAA) similarity)
In triangle ΔDCE and triangle ΔACF
m∠A is bounded by CA and A_F
m∠CED is bounded by CE and ED
∠DCE is bounded by CE and DE
∠C is bounded by CA and CF
Based on the orientation of the two triangles, we have
ED is the corresponding side to A_F, CD is the corresponding side to CF, CE is the corresponding side to CA
Therefore, we have;
ED/A_F = CE/CA = CF/CD.
Select the number of solutions for each system of two linear equations.
Answer:
work is shown and pictured
C, infinitely many solutions.
B, one solution.
C, infinitely many solution.
A system of linear equations:A system of linear equations is a collection of one or more linear equations involving the same variables.
A system of linear equation has
one solution when the graph intersect at a point.no solution when the graphs are parallel.infinitely many solutions when the graphs are exact same line.According to the given questions
the given system of equations
(1). 2x+2y=3 and 4x+4y=6
if we see the graph of the above system of linear equations, the graphs are the" exact at same line".
Hence, they have infinitely many solution.
(2). 7x+5y=8 and 7x+7y =8
if we see the graph of the above system of linear equations, the graphs are intersecting at a single point.
Hence, there is only one solution.
(3). -2x+3y=7 and 2x-3y=-7
if we see the graph of the above system of linear equations, the graphs are exact at same line.
Hence, there is infinitely many solutions.
Learn more about the system of linear equations here:https://brainly.in/question/5130012
#SPJ2
describe the end behavior f(x)=5x^4+3x^2-1.
You are testing the claim that the mean GPA of night students is greater than the mean GPA of day students. You sample 30 night students, and the sample mean GPA is 2.36 with a standard deviation of 0.96 You sample 60 day students, and the sample mean GPA is 2.19 with a standard deviation of 0.66 Calculate the test statistic, rounded to 2 decimal places
Answer:
Z = 0.87
Explanation:
Given the following data;
Sample 1:
n1 = 30
Mean, X = 2.36
Standard deviation, Ox = 0.96
Sample 2:
n2 = 60
Mean, Y = 2.19
Standard deviation, Oy = 0.66
The formula for test statistics for two population is;
[tex]Z = \frac{X-Y}{\sqrt{(\frac{Ox^2} {n_1} } +\frac{Oy^2}{n_2} )}}[/tex]
Substituting the values, we have;
[tex]Z = \frac{2.36-2.19}{\sqrt{(\frac{0.96^2} {30} +\frac{0.66^2}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(\frac{0.9216} {30} +\frac{0.4356}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(0.03072 +0.00726)}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{0.03798}}[/tex]
[tex]Z = \frac{0.17}{0.19488}[/tex]
Z = 0.8723
The test statistics to 2 d.p is 0.87
Therefore, Z = 0.87
n the diagram below, points $A,$ $E,$ and $F$ lie on the same line. If $ABCDE$ is a regular pentagon, and $\angle EFD=90^\circ$, then how many degrees are in the measure of $\angle FDE$?
[asy]
size(5.5cm);
pair cis(real magni, real argu) { return (magni*cos(argu*pi/180),magni*sin(argu*pi/180)); }
pair a=cis(1,144); pair b=cis(1,72); pair c=cis(1,0); pair d=cis(1,288); pair e=cis(1,216);
pair f=e-(0,2*sin(pi/5)*sin(pi/10));
dot(a); dot(b); dot(c); dot(d); dot(e); dot(f);
label("$A$",a,WNW);
label("$B$",b,ENE);
label("$C$",c,E);
label("$D$",d,ESE);
label("$E$",e,W);
label("$F$",f,WSW);
draw(d--f--a--b--c--d--e);
draw(f+(0,0.1)--f+(0.1,0.1)--f+(0.1,0));
[/asy]
Answer:
18
Step-by-step explanation:
Each interior angle of a regular pentagon is 108 degrees. So Angle AED is 108 degrees. Since Angle AEF is a straight line (180 degrees), Angle FED is 72. This is because 180-108 = 72. Now, since a triangle has a total of 180 degrees, we add 72 and 90, because those are the 2 degrees we have calculated. This gives us a total of 162. Now, we subtract 162 from 180 to find out the degree of Angle FDE. This is 18. So our final answer is 18.
Sidenote: I hope this answer helps!
The properties of a pentagon and the given right triangle formed by
segments EF and FD give the measure of ∠FDE.
Response:
∠FDE = 18°Which properties of a pentagon can be used to find ∠FDE?The given parameters are;
A, E, F are points on the same line.
ABCDE is a regular pentagon
∠EFD = 90°
Required:
The measure of ∠FDE
Solution:
The points A and E are adjacent points in the pentagon, ABCDE
Therefore;
line AEF is an extension of line side AE to F
Which gives;
∠DEF is an exterior angle of the regular pentagon = [tex]\frac{360 ^{\circ}}{5}[/tex] = 72°∠EFD = 90°, therefore, ΔEFD is a right triangle, from which we have;
The sum of the acute angles of a right triangle = 90°
Therefore;
∠DEF + ∠FDE = 90°
Which gives;
72° + ∠FDE = 90°
∠FDE = 90° - 72° = 18°
∠FDE = 18°
Learn more about the properties of a pentagon here:
https://brainly.com/question/15392368
What is m∠A? please help
Answer: 50 degrees
Step-by-step explanation:
180-85=95
180-145=35
interior angle sum for a triangle is 180 degrees, so 180=95+35+a
m of angle A is 50 degrees
Find the center and radius of x^2 – 18x + y^2 -10y = -6. part two write x2 – 18x + y2 -10y = -6 in standard form
Answer:
see explanation
Step-by-step explanation:
I will begin with part two, first.
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius.
Given
x² - 18x + y² - 10y = - 6
Using the method of completing the square
add ( half the coefficient of the x/ y terms )² to both sides
x² + 2(- 9)x + 81 + y² + 2(- 5)y + 25 = - 6 + 81 + 25, that is
(x - 9)² + (y - 5)² = 100 ← in standard form
with centre = (9, 5 ) and r = [tex]\sqrt{100}[/tex] = 10
Triangle ABC has vertices at A(2,5), B(4,11) and C(-1,6). Determine the angles in this triangle.
I need this solved using vectors please
Answer:
The angles are
∠A = 90°, ∠B = 26.56°, ∠C = 63.43°
Step-by-step explanation:
We have that the angles of a vector are given as follows;
[tex]cos\left ( \theta \right ) = \dfrac{\mathbf{a\cdot b}}{\left | \mathbf{a} \right |\left | \mathbf{b} \right |}[/tex]
Whereby the vertices are represented as
A= (2, 5, 0), B = (4, 11, 0), C = (-1, 6, 0),
AB =(4, 11, 0) - (2, 5, 0) = (2, 6, 0) , BA = (-2, -6, 0)
BC = (-1, 6, 0) - (4, 11, 0) = (-5, -5, 0), CB = (5, 5, 0)
AC = (-1, 6, 0) - (2, 5, 0) = (-3, 1, 0), CA = (3, -1, 0)
θ₁ = AB·AC
a·c = a₁c₁ + a₂c₂ + a₃c₃ = 2×(-3) + 6×1 = 0
Therefore, θ₁ = 90°
BA·BC = (-2)×(-5) + (-6)×(-5) = 40
[tex]{\left | \mathbf{}BA \right |\left | \mathbf{}BC \right |}[/tex] = (√((-2)² + (-6)²)) × (√((-5)² + (-5)²)) = 44.72
cos(θ₂) = 40/44.72 = 0.894
cos⁻¹(0.894) =θ₂= 26.56°
CA·CB = 5×3 + 5×(-1) = 10
[tex]{\left | \mathbf{}CA \right |\left | \mathbf{}CB \right |}[/tex] = (√((3)² + (-1)²)) × (√((5)² + (5)²)) = 22.36
10/22.36 = 0.447
cos(θ₃) = 0.447
θ₃ = cos⁻¹(0.447) = 63.43°.
2.) Evaluate 6a² if a = 4
Answer:
96
Step-by-step explanation:
We simply need to plug in a = 4 so 6a² = 6 * 4² = 6 * 16 = 96.
please help :) What is 96,989,200 written in scientific notation? A. 96.9892 × 10 to the 5 power B. 9.69892 × 10 to the 7 power C. 9.69892 × 10 to the 6 power D. 9.69892 × 10 to the 8 power
Answer: B. 9.69892 × 10^7
You'd have to move the imaginary decimal at the end of the number 96,989,200 seven times in order to get only one number that isn't zero before the decimal point.
Please give me the correct answer her please
Answer:
9.3 inStep-by-step explanation:
m∠UTV = 112° ⇒ m∠WTV = 180° - 112° = 68°
sin(68°) ≈ 0.9272
sin(∠WTV) = WV/TV
WV/10 ≈ 0.9272
WV ≈ 9.272
WV ≈ 9.3
9/10 of the weight of a loaf of bread comes from the flour used in its baking. 2/9 of the weight is the protein what fraction of the weight is protein?
Answer:
1/5
Step-by-step explanation:
2/9 * 9/10 = 2/10 = 1/5
How many real solutions In this problem
Answer:
D
Step-by-step explanation:
Given
y = x² + 1
y = x
Equating gives
x² + 1 = x ( subtract x from both sides )
x² - x + 1 = 0
Consider the discriminant Δ = b² - 4ac
with a = 1, b = - 1 and c = 1
b² - 4ac = (- 1)² - (4 × 1 × 1) = 1 - 4 = - 3
Since b² - 4ac < 0 then there are no real solutions
The table below lists some of the characteristics of the houses on Katrina’s street. Characteristics of Homes For Sale on Katrina’s Street Bedrooms Acres of land Sale price Appraised value Property tax 2 0.17 $230,000 $200,000 $1,220 2 0.20 $210,000 $220,000 $1,232 3 0.20 $275,000 $250,000 $1,400 4 0.24 $275,000 $275,000 $1,540 4 0.52 $360,000 $310,000 $1,736 4 0.75 $350,000 $320,000 $1,792 5 1.23 $375,000 $350,000 $1,960 Which relationship describes a function?
Answer:
your welcome and hope this helps
Jane exchanged £100 for 216 Swiss francs. After buying a meal and a present to take home,she had 70 francs left.How much is this in £?
Answer:
£32.4
Step-by-step explanation:
£100 = 216 Swiss francs
x = 70 francs
70 x 100=7000/216=32.4
help plzz ... Trigonometry
Answer:
XYZ = 21.8
Step-by-step explanation:
the missing angle is XYZ
cos XYZ = [tex]\frac{adjacent}{hypotenus}[/tex] tan XYZ = [tex]\frac{6}{15}[/tex] tan XYz = 0.4using a calculator:
tan^(-1)(0.4)= 21.8so XYZ = 21.8
find the distance of the line segment joining the two points (-4 /2 - /12) and (/32, 2/3)
Answer: [tex]4\sqrt{3}[/tex] .
Step-by-step explanation:
Distance formula : Distance between points (a,b) and (c,d) is given by :-
[tex]D=\sqrt{(d-b)^2+(b-a)^2}[/tex]
Distance between points [tex](-4\sqrt{2},\sqrt{12}) \text{ and }(-\sqrt{32}, 2\sqrt{3})[/tex].
[tex]D=\sqrt{(2\sqrt{3}-(-\sqrt{12}))^2+(-\sqrt{32}-(-4\sqrt{2}))}\\\\=\sqrt{(2\sqrt{3}+\sqrt{2\times2\times3})^2+(-\sqrt{4\times4\times2}+4\sqrt{2})^2}\\\\=\sqrt{(2\sqrt{3}-\sqrt{2^2\times3})^2+(-\sqrt{4^2\times2}+4\sqrt{2})^2}\\\\=\sqrt{(2\sqrt{3}+2\sqrt{3})^2+(-4\sqrt{2}+4\sqrt{2})^2}\\\\=\sqrt{(4\sqrt{3})^2+0}\\\\=4\sqrt{3}\text{ units}[/tex]
Hence, the correct option is [tex]4\sqrt{3}[/tex] .
Help please thanks don’t know how to do this
Answer:
a = 11.71 ; b = 15.56
Step-by-step explanation:
For this problem, we need two things. The law of sines, and the sum of the interior angles of a triangle.
The law of sines is simply:
sin(A)/a = sin(B)/b = sin(C)/c
And the sum of interior angles of a triangle is 180.
45 + 110 + <C = 180
<C = 25
We can find the sides by simply applying the law of sines.
length b
7/sin(25) = b/sin(110)
b = 7sin(110)/sin(25)
b = 15.56
length a
7/sin(25) = a/sin(45)
a = 7sin(45)/sin(25)
a = 11.71
I don't understand the British system of colonization
Answer:
Which of the following numbers is a composite number that is divisible by 3? A. 49 B. 103 C. 163 D. 261 Answer: B) 245
Step-by-step explanation:
My state's lottery has 30 white balls numbered from 1 through 30 and 20 red balls numbered from 1 through 20. In each lottery drawing, 3 of the white balls and 2 of the red balls are drawn. To win, you must match all 3 white balls and both red balls, without regard to the order in which they were drawn. How many possible different combinations may be drawn?
Answer:
I dont give you the answer right away so you will read what i write and fully understand :D
Step-by-step explanation:
We are picking 3 balls from 30 balls, so its C(30,3) because the order of picking the balls doesnt matter. We also need to pick 2 balls from 20 balls, which is C(20,2). So the answer is C(30,3) * C(20,2).
Find the value of x.
Answer:
8.8Option A is the correct option.
Step-by-step explanation:
As PW is the median.
PW = [tex] \frac{1}{2} [/tex] ( YZ + TM )
Plug the values
x = [tex] = \frac{1}{2} (5.5 + 12.1)[/tex]
Calculate the sum
x = [tex] = \frac{1}{2} \times 17.6[/tex]
Calculate the product
x = [tex] = 8.8[/tex]
Hope this helps...
Best regards!
Solve for x. 60 10 20 120
Answer:
Hey there!
We have the angle is equal to half the measure of the arc of 120 degrees. (Just another rule for circles)
7x-10=0.5(120)
7x-10=60
7x=70
x=10
Hope this helps :)
Answer:
x = 10
Step-by-step explanation:
Tangent Chord Angle = 1/2 Intercepted Arc
7x-10 = 1/2 ( 120)
7x -10 = 60
Add 10 to each side
7x -10+10 = 60+10
7x = 70
Divide by 7
7x/7 = 70/7
x = 10
10. Read the following word problem, then choose which linear equation models the problem.
The length of a rectangle is six feet more than twice the width. The rectangle’s perimeter is 84 feet. Find the width and length of the rectangle.
A. 2w + 6 + w = 84
B. 2(2w + 6) + 2w = 84
C. 2(2w +6) • (2w) = 84
D. (2w + 6) • (w) = 84
Answer:
D. ( 2w+6). (w)
i tried my best
hope this is the answer
stay at home stay safe
no clue how to do this, someone pls help
Answer:
6π
Step-by-step explanation:
First we need to find the circumference of the circle. We know that the radius is 4 and the formula is πd or 2πr
Leaving it in terms of pi, the circumference is 8π
Now we need to find the length of the arc.
Since the missing part of the circle is labeled with a right angle, we know that it's exactly 1/4 of the whole circle. That means the arc we need to find is 3/4 of the circumference.
3/4 of 8π is 6π
*Marie made a model (shown below) of the square pyramid she plans to build when she grows up. Find the surface area of the model. 8 12 12
Answer:
336m^2
Step-by-step explanation:
The triangle area is half of base times height so: 1/2*8*12=48m^2
There are 4 triangles so 48*4=192
Then the square base area is side times side so: 12*12=144m^2
Then surface area of model is 192m^2+144m^2=336m^2
Answer:
336 m²
Step-by-step explanation:
We can find the surface area of this pyramid by finding the surface area of one of the sides, multiplying it by 4 (as there are 4 sides to the pyramid) then adding it to the surface area of the base.
Each side of this (excluding the base) is a triangle, and to find the area of a triangle we use the equation [tex]\frac{b \cdot h}{2}[/tex].
[tex]\frac{12 \cdot 8}{2}[/tex]
[tex]\frac{96}{2}[/tex]
48.
So, one side of this is 48. Multiplying it by 4 gets us 192.
Now we have to add the area of the base. The area of the bass is a square with side lengths of 12, so we can square 12 to get the area of the bass. 12² = 144.
Now let's add these numbers:
192+144 = 336
So, 336 m² is what this comes out to.
Hope this helped!
Starting at sea level, a submarine descended at a constant rate to a depth of −5/6 mile relative to sea level in 4 minutes. What was the submarine's depth relative to sea level after the first minute? Answer with a fraction :3
Answer:
-5/24 miles
Step-by-step explanation:
The submarine descends at a rate of -5/6 miles every 4 minutes.
To find the depth of the submarine relative to sea level after the first minute, we have to multiply the rate of descent by he time spent (1 minute). That is:
[tex]\frac{\frac{-5}{6} }{4} * 1[/tex]
=> D = -5 / (6 * 4) = -5/24 miles
Therefore, the submarine's depth is -5/24 miles.
Answer:
-1 1/5
Step-by-step explanation:
I took the test and this was the correct answer :D
If the m1 = 40, what is the m 3
Answer:
Your Answer is 120Step-by-step explanation:
m1=40
Taking m3
m3=40 ×3
m3= 120
Hope It helps UWhich transformations can be used to carry ABCD onto itself? The point of rotation is (3, 2). Check all that apply. A. Reflection across the line y = 2 B. Rotation of 180 C. Rotation of 90 D. Translation two units up
Answer: rotate 180 degrees and reflection across the line y=2
Step-by-step explan
Answer:
Step-by-step explanation:
Pls solve ASAP!! Review the attachment and solve. Pls hurry!
Answer:
A. 3
Step-by-step explanation:
ΔDEC is bigger than ΔABC by 5. For the hypotenuse, 25 is 5 times bigger than 5.
So, side DE on ΔDEC has to be 5 times bigger than side AB on ΔABC.
If side AB equals 3, side DE equals 18 - 3, which is 15.
15 is five times bigger than 3, so the answer is A. 3.
Hope that helps.
plssssssss helppp 3x – 5 = 1
Answer:
x = 2
Step-by-step explanation:
Add 5 to both sides to get the 5 to the right side since we are trying to isolate the variable x:
3x – 5 + 5 = 1 + 5
Simplify: 3x=6
Divide each side by 3 to isolate and solve for x:
3x/3=6/3
Simplify: x=2