Answer:
x = 1.5
Step-by-step explanation:
5(4x-10)+10x=4(2x-3)+2(x-4)
Distribute(5)
20x-50+10x=4(2x-3)+2(x-4)
Distribute(4)
20x-50+10x=8x-12+2(x-4)
Distribute(2)
20x-50+10x=8x-12+2x-8
Combine like terms
30x-50=10x-20
Subtract(10x)
20x-50=-20
Add(50)
20x=30
Divide(20)
x = 1.5
Hope it helps <3
Answer:
x = 3/2Step-by-step explanation:
5 ( 4x - 10) + 10x = 4(2x - 3) + 2(x - 4)
Expand the terms
That's
20x - 50 + 10x = 8x - 12 + 2x - 8
Simplify
30x - 50 = 10x - 20
Group the constants at the right side of the equation
That's
30x - 10x = - 20 + 50
20x = 30
Divide both sides by 20
x = 3/2
Hope this helps you
Eighty percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 63% have an emergency locator, whereas 89% of the aircraft not discovered do not have such a locator. Suppose a light aircraft has disappeared. (Round your answers to three decimal places.) (a) If it has an emergency locator, what is the probability that it will not be discovered? (b) If it does not have an emergency locator, what is the probability that it will be discovered?
Answer:
a) P(B'|A) = 0.042
b) P(B|A') = 0.625
Step-by-step explanation:
Given that:
80% of the light aircraft that disappear while in flight in a certain country are subsequently discovered
Of the aircraft that are discovered, 63% have an emergency locator,
whereas 89% of the aircraft not discovered do not have such a locator.
From the given information; it is suitable we define the events in order to calculate the probabilities.
So, Let :
A = Locator
B = Discovered
A' = No Locator
B' = No Discovered
So; P(B) = 0.8
P(B') = 1 - P(B)
P(B') = 1- 0.8
P(B') = 0.2
P(A|B) = 0.63
P(A'|B) = 1 - P(A|B)
P(A'|B) = 1- 0.63
P(A'|B) = 0.37
P(A'|B') = 0.89
P(A|B') = 1 - P(A'|B')
P(A|B') = 1 - 0.89
P(A|B') = 0.11
Also;
P(B ∩ A) = P(A|B) P(B)
P(B ∩ A) = 0.63 × 0.8
P(B ∩ A) = 0.504
P(B ∩ A') = P(A'|B) P(B)
P(B ∩ A') = 0.37 × 0.8
P(B ∩ A') = 0.296
P(B' ∩ A) = P(A|B') P(B')
P(B' ∩ A) = 0.11 × 0.2
P(B' ∩ A) = 0.022
P(B' ∩ A') = P(A'|B') P(B')
P(B' ∩ A') = 0.89 × 0.2
P(B' ∩ A') = 0.178
Similarly:
P(A) = P(B ∩ A ) + P(B' ∩ A)
P(A) = 0.504 + 0.022
P(A) = 0.526
P(A') = 1 - P(A)
P(A') = 1 - 0.526
P(A') = 0.474
The probability that it will not be discovered given that it has an emergency locator is,
P(B'|A) = P(B' ∩ A)/P(A)
P(B'|A) = 0.022/0.526
P(B'|A) = 0.042
(b) If it does not have an emergency locator, what is the probability that it will be discovered?
The probability that it will be discovered given that it does not have an emergency locator is:
P(B|A') = P(B ∩ A')/P(A')
P(B|A') = 0.296/0.474
P(B|A') = 0.625
You are given the following information obtained from a random sample of 5 observations. 20 18 17 22 18 At 90% confidence, you want to determine whether or not the mean of the population from which this sample was taken is significantly less than 21. (Assume the population is normally distributed.) a) State the null and the alternative hypotheses. b) Compute the standard error of the mean. c) Determine the test statistic. d) Test to determine whether or not the mean of the population is significantly less than 21.
Answer:
a
The null hypothesis is
[tex]H_o : \mu = 21[/tex]
The Alternative hypothesis is
[tex]H_a : \mu< 21[/tex]
b
[tex]\sigma_{\= x} = 0.8944[/tex]
c
[tex]t = -2.236[/tex]
d
Yes the mean population is significantly less than 21.
Step-by-step explanation:
From the question we are given
a set of data
20 18 17 22 18
The confidence level is 90%
The sample size is n = 5
Generally the mean of the sample is mathematically evaluated as
[tex]\= x = \frac{20 + 18 + 17 + 22 + 18}{5}[/tex]
[tex]\= x = 19[/tex]
The standard deviation is evaluated as
[tex]\sigma = \sqrt{ \frac{\sum (x_i - \= x)^2}{n} }[/tex]
[tex]\sigma = \sqrt{ \frac{ ( 20- 19 )^2 + ( 18- 19 )^2 +( 17- 19 )^2 +( 22- 19 )^2 +( 18- 19 )^2 }{5} }[/tex]
[tex]\sigma = 2[/tex]
Now the confidence level is given as 90 % hence the level of significance can be evaluated as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10[/tex]%
[tex]\alpha =0.10[/tex]
Now the null hypothesis is
[tex]H_o : \mu = 21[/tex]
the Alternative hypothesis is
[tex]H_a : \mu< 21[/tex]
The standard error of mean is mathematically evaluated as
[tex]\sigma_{\= x} = \frac{\sigma}{ \sqrt{n} }[/tex]
substituting values
[tex]\sigma_{\= x} = \frac{2}{ \sqrt{5 } }[/tex]
[tex]\sigma_{\= x} = 0.8944[/tex]
The test statistic is evaluated as
[tex]t = \frac{\= x - \mu }{ \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 19 - 21 }{ 0.8944 }[/tex]
[tex]t = -2.236[/tex]
The critical value of the level of significance is obtained from the critical value table for z values as
[tex]z_{0.10} = 1.28[/tex]
Looking at the obtained value we see that [tex]z_{0.10}[/tex] is greater than the test statistics value so the null hypothesis is rejected
What is the image of (-8, 10) when reflected in the y-axis?
Answer:
if you're just reflecting the point over the y-axis it just becomes (8,10)
Answer: (8, 10)
Explanation and Example:
I have a trick that I use. I'm not sure if it will make sense to you but I'll explain it. When the question asks you to reflect over the x-axis, then keep the x in (x,y) the same and just flip the sign for the y. If the question asks you to reflect over the y-axis, then keep y the same and flip the sign for x.
Reflect over x-axis:
(-2, 6) -----> (-2, -6)
Reflect over y-axis:
(-4, -8) -----> (4, -8)
What is a3 if an=64(12)n−1
Answer:
[tex]\huge\boxed{a_3=9,216}[/tex]
Step-by-step explanation:
[tex]a_n=64(12)^{n-1}\\\\\text{substitute}\ n=3:\\\\a_3=64(12)^{3-1}=64(12)^2=64(144)=9,216[/tex]
magazine provided results from a poll of adults who were asked to identify their favorite pie. Among the respondents, % chose chocolate pie, and the margin of error was given as percentage points. What values do , , n, E, and p represent? If the confidence level is %, what is the value of ?
Complete Question
A magazine provided results from a poll of 500 adults who were asked to identify their favorite pie. Among the 500 respondents, 12 % chose chocolate pie, and the margin of error was given as plus or minus 5 percentage points.What values do [tex]\r p , \ \r q[/tex], n, E, and p represent? If the confidence level is 90%, what is the value of [tex]\alpha[/tex] ?
Answer:
a
[tex]\r p[/tex] is the sample proportion [tex]\r p = 0.12[/tex]
[tex]n[/tex] is the sample size is [tex]n = 500[/tex]
[tex]E[/tex] is the margin of error is [tex]E = 0.05[/tex]
[tex]\r q[/tex] represents the proportion of those that did not chose chocolate pie i.e [tex]\r q = 1- \r p[/tex]
b
[tex]\alpha = 10\%[/tex]
Step-by-step explanation:
Here
[tex]\r p[/tex] is the sample proportion [tex]\r p = 0.12[/tex]
[tex]n[/tex] is the sample size is [tex]n = 500[/tex]
[tex]\r q[/tex] represents the proportion of those that did not chose chocolate pie i.e
[tex]\r q = 1- \r p[/tex]
[tex]\r q = 1- 0.12[/tex]
[tex]\r q = 0.88[/tex]
[tex]E[/tex] is the margin of error is [tex]E = 0.05[/tex]
Generally [tex]\alpha[/tex] is the level of significance and it value is mathematically evaluated as
[tex]\alpha = ( 100 - C )\%[/tex]
Where [tex]C[/tex] is the confidence level which is given in this question as [tex]C = 90 \%[/tex]
So
[tex]\alpha = ( 100 - 90 )\%[/tex]
[tex]\alpha = 10\%[/tex]
Select the correct answer. Brad is planting flowers in a grid-like pattern in his garden. He is trying to determine the possible numbers of rows and columns in which he can plant his flowers. He determines that two possibilities are 8 rows and 25 columns or 10 rows and 20 columns. What is the constant of proportionality in this inverse variation?
Answer:
[tex]C.\ 200[/tex]
Step-by-step explanation:
Given
Let R represents rows and C represents Columns
When R = 8, C = 25
When R = 10, C = 20
Required
Given that there exist an inverse variation, determine the constant of proportionality;
We start by representing the variation;
[tex]R\ \alpha \ \frac{1}{C}[/tex]
Convert proportion to an equation
[tex]R\ = \ \frac{k}{C}[/tex]
Where k is the constant of proportion;
[tex]R * C\ = \ \frac{k}{C} * C[/tex]
Multiply both sides by C
[tex]R * C\ = k[/tex]
Reorder
[tex]k = R * C[/tex]
When R = 8, C = 25;
The equation [tex]k = R * C[/tex] becomes
[tex]k = 8 * 25[/tex]
[tex]k = 200[/tex]
When R = 10, C = 20;
The equation [tex]k = R * C[/tex] becomes
[tex]k = 10 * 20[/tex]
[tex]k = 200[/tex]
Hence, the concept of proportionality is 200
what other numbers can you square that result in 9 ?
Step-by-step explanation:
I'm not sure what your answers are, but you can only square 3 and -3 to get 9.
Answer:
3, -3
Step-by-step explanation:
3*3 = 9
-3 * -3 = 9
These are the only two numbers that square to 9
24=3(n-5) solve for n
Answer:
n = 13
Step-by-step explanation:
24 = 3 (n-5)
3n - 15 = 24
3n = 24 +15
3n = 39
n = 39/3
n = 13
Answer:
[tex]\boxed{\sf n=13}[/tex]
Step-by-step explanation:
[tex]\sf 24=3(n-5)[/tex]
[tex]\sf Expand \ brackets.[/tex]
[tex]\sf 24=3n-15[/tex]
[tex]\sf Add \ 15 \ to \ both \ sides.[/tex]
[tex]\sf 24+15=3n-15+15[/tex]
[tex]\sf 39=3n[/tex]
[tex]\sf Divide \ both \ sides \ by \ 3.[/tex]
[tex]\sf \frac{39}{3} =\frac{3n}{3}[/tex]
[tex]\sf 13=n[/tex]
For each function, determine if it intersects or is parallel to the line y=−1.5x. If it intersects the line, find the intersection point. y=0.5x−6
Answer: the intersection point is (2.4, -4.8)
Step-by-step explanation:
A) we have the function:
y = 0.5*x - 6.
First we want to know if this function intersects the line y´ = -1.5*x
Now, first we can recall that two lines are parallel only if the slope is the same for both lines, here we can see that the slopes are different, so the lines are not parallel, which means that the lines must intersect at some point.
Now, to find the intersection point we asumme y = y´ and want to find the value of x.
0.5*x - 6 = -1.5*x
(0.5 + 1.5)*x - 6 = 0
2.5*x = 6
x = 6/2.5 = 2.4
Now, we evaluate one of the functions in this value of x.
y = 0.5*2.4 - 6 = -4.8
So the intersection point is (2.4, -4.8)
Write 3 expressions containing exponents so that each expression equals 81
Answer:
9x9= 81
3x3x3x3=81
81 to the first power.
Step-by-step explanation:
I hope this helps in any way:)
Need help finding the length
Answer:
27
Step-by-step explanation:
First, we need to find x. We are given the perimeter, which is 2l + 2w, so from there, we have an equation of 2(4x-1) + 2(3x+2) = 100. By working through it, we get that x = 7. We're asked to find WX, so plug 7 into 4x - 1 and get 27.
Answer:
27 unitsStep-by-step explanation:
Perimeter of rectangle is 2(l) + 2(w).
The perimeter is given 100 units.
2(4x-1) + 2(3x+2) = 100
Solve for x.
8x-2+6x+4=100
14x+2=100
14x=98
x=7
Plug x as 7 for the side WX.
4(7) - 1
28-1
= 27
Hi any help is appreciated. Just wanna graduate:))
Answer: C
Step-by-step explanation:
h · k(x) = 2(3x - 5)(-2x + 1)
= (6x - 10)(-2x + 1)
= -12x² + 6x + 20x - 10
= -12x² + 26x - 10
Answer:
C
Step-by-step explanation:
h(x) × k(x)
= 2(3x - 5)(- 2x + 1) ← expand factors using FOIL
= 2(- 6x² + 3x + 10x - 5)
= 2(- 6x² + 13x - 5) ← distribute parenthesis by 2
= - 12x² + 26x - 10 → C
Solve the simultaneous equations 2x-y=7 3x+y=3
Answer:
( 2 , - 3 )Step-by-step explanation:
Using elimination method:
2x - y = 7
3x + y = 3
--------------
5x = 10
Divide both sides of the equation by 5
[tex] \frac{5x}{5} = \frac{10}{5} [/tex]
Calculate
[tex]x = 2[/tex]
Now, substitute the given value of X in the equation
3x + y = 3
[tex]3 \times 2 + y = 3[/tex]
Multiply the numbers
[tex]6 + y = 3[/tex]
Move constant to R.H.S and change it's sign
[tex]y = 3 - 6[/tex]
Calculate
[tex]y = - 3[/tex]
The possible solution of this system is the ordered pair ( x , y )
( x , y ) = ( 2 , -3 )---------------------------------------------------------------------
Check if the given ordered pair is the solution of the system of equation
[tex]2 \times 2 - ( - 3) = 7[/tex]
[tex]3 \times 2 - 3 = 3[/tex]
Simplify the equalities
[tex]7 = 7[/tex]
[tex]3 = 3[/tex]
Since all of the equalities are true, the ordered pair is the solution of the system
( x , y ) = ( 2 , - 3 )Hope this helps..
Best regards!!
Find three consecutive even integers such that the square of the third is 60 more that the square of the second
Answer:
-4,4,16
Step-by-step explanation:
They are all even integers.
-4^2=16
4^2=16
16^2=256
the square of the third,16 is 256 which is more than the square of the second,4=16
The three consecutive even integers such that the square of the third is 60 more than the square of the second are -18, -16 and -14.
What are integers?Any positive or negative number without fractions or decimal places is known as an integer, often known as a "round number" or "whole number."
Given:
Let the three even consecutive integers are 2n-2, 2n and 2n + 2.
According to the question,
So,
(2n + 2)² = (2n)² - 60
4n² + 4 + 8n = 4n² -60
8n = -64
n = -8
That means, the integers are -18, -16 and -14.
Therefore, the required even integers are -18, -16 and -14.
To learn more about the integers;
brainly.com/question/1768254
#SPJ5
(25 points) PLEASE HELP, I gotta get this done or my mom will beat the hell out of me
Solve
x + y = 2
4y = -4x + 8
by elimination (not Gaussian!)
Thanks!
(also, please show work!)
Answer:
x=1
y=1
Step-by-step explanation:
Please look at the image below for solutions⬇️
Answer:
Step-by-step explanation:
Add the equations in order to solve for the first variable . Plug this value into the equations in order to solve for the remaining variables.
Point form
(x, 2-x)
what are the coordinates of point b on ac such that ab=2/5ac
Answer:
[tex](-\frac{36}{7},\frac{40}{7})[/tex]
Step-by-step explanation:
Coordinates of points A and C are (-8, 6) and (2, 5).
If a point B intersects the segment AB in the ratio of 2 : 5
Then coordinates of the point B will be,
x = [tex]\frac{mx_2+nx_1}{m+n}[/tex]
and y = [tex]\frac{my_2+ny_1}{m+n}[/tex]
where [tex](x_1, y_1)[/tex] and [tex](x_2,y_2)[/tex] are the coordinates of the extreme end of the segment and a point divides the segment in the ratio of m : n.
For the coordinates of point B,
x = [tex]\frac{2\times 2+(-8)\times 5}{2+5}[/tex]
= [tex]-\frac{36}{7}[/tex]
y = [tex]\frac{2\times 5+5\times 6}{2+5}[/tex]
= [tex]\frac{40}{7}[/tex]
Therefore, coordinates of pint B will be,
[tex](-\frac{36}{7},\frac{40}{7})[/tex]
Transformations of exponential functions
Answer:
Since the transformation is made by shifting the function right, it is a horizontal transformation.
How does the frequency of f(x) = cos(2x) relate to the frequency of the parent function cos x?
Answer:
The frequency of f(x) is two times the frequency of the parent function.
Step-by-step explanation:
We can say that the number that is beside the x is equal to [tex]2\pi *f[/tex], where f is the frequency.
Then, for the parent function, we get:
[tex]1 = 2\pi f_1[/tex]
or solving for [tex]f_1[/tex]:
[tex]f_1=\frac{1}{2\pi }[/tex]
At the same way, for f(x), we get:
[tex]2=2\pi f_2\\f_2=2(\frac{1}{2\pi })[/tex]
But [tex]\frac{1}{2\pi }[/tex] is equal to [tex]f_1[/tex], so we can write the last equation as:
[tex]f_2=2f_1[/tex]
It means that the frequency of f(x) is two times the frequency of the parent function.
Zoey wants to use her iPad throughout a 6-hour flight. Upon takeoff, she uses the iPad for 2 hoursand notices that the battery dropped by 25%, from 100% to 75%. How many total hours can Zoeyexpect from the iPad on a full battery charge?
Answer:
8 hours
Step-by-step explanation:
25%= 2 hrs
100%=8 hrs
brainliest plsssssssssssssssssssss
-zylynn
Enter a range of values of x
Answer:
[tex]-5<x<26[/tex].
Step-by-step explanation:
We know that if two corresponding sides of two triangles are equal, then third sides of the triangles depend on angle between equal sides.
Angle opposite to larger side is larger.
Since, 14 < 15, therefore
[tex]2x+10<62[/tex]
[tex]2x<62-10[/tex]
[tex]2x<52[/tex]
[tex]x<26[/tex] ...(1)
We know that, angle can not not negative.
[tex]2x+10>0[/tex]
[tex]2x>-10[/tex]
[tex]x>-5[/tex] ...(2)
From (1) and (2), we get
[tex]-5<x<26[/tex]
Therefore, the range of values of x is [tex]-5<x<26[/tex].
Olivia, a golfer, claims that her drive distance is more than 174 meters, on average. Several of her friends do not believe her, so she decides to do a hypothesis test, at a 10% significance level, to persuade them. She hits 15 drives. The mean distance of the sample drives is 188 meters. Olivia knows from experience that the standard deviation for her drive distance is 14 meters. H0: μ=174; Ha: μ>174 α=0.1 (significance level) What is the test statistic (z-score) of this one-mean hypothesis test, rounded to two decimal places?
Answer:
3.87
Step-by-step explanation:
The computation is shown below:
Data provided in the question
mean distance = [tex]\bar x[/tex] = 188 meters
Standard deviaton = [tex]\sigma = 14[/tex]
Hits drivers = 15
The distance = 174 meters
H_0: μ≤174;
H_a: μ>174
Based on the above information, the test statistic z-score is
[tex]z = \frac{\bar x - \mu }{\sigma / \sqrt{n} } \\\\ = \frac{188 - 174}{\ 14 / \sqrt{15} }[/tex]
= 3.87
Hence, the test statistic is 3.87
Note:
We take the μ≤174 instead of μ=174;
Given p(x) = x4 + x3 - 13x2 - 25x - 12
1. What is the remainder when p(x) is divided by X - 4?
2. Describe the relationship between the linear expression and the polynomial?
How do we describe the relationship?
An unbiased coin is tossed 14 times. In how many ways can the coin land tails either exactly 9 times or exactly 3 times?
Answer
[tex]P= 0.144[/tex] ways
the coin can land tails either exactly 8 times or exactly 5 times in
[tex]0.144[/tex] ways
Step by step explanation:
THis is a binomial distribution
Binomial distribution gives summary of the number of trials as well as observations as each trial has the same probability of attaining one particular value.
P(9)=(14,9).(0.5)⁹.(0.5)¹⁴⁻⁹
p(3)=(14,3).(0.5)⁹.(0.5)¹⁴⁻³
p=(9)+p(3)
p=C(14,9)(0.5)¹⁴ + C(14,3). (0.5)¹⁴
P= (0.5)¹⁴ [C(14,9) + C(14,3)]
P= (0.5)¹⁴ [2002 * 364]
P= 1/16384 * (2002 +364)
P= 91091/2048
P= 0.144
Hence,the coin can land tails either exactly 8 times or exactly 5 times in
[tex] 0.144[/tex] ways
find the values of x and y that make k ll j and m ll n
Answer:
x = 80
y = 130
Step-by-step explanation:
The 2 angles are supplementary. so, x-30 + x+50 = 180.
We solve and get 2x = 180-20
x = 80
y = x+50, because of parallel rules.
y = 130
Answer:
x = 80
y = 130
Step-by-step explanation:edge 2020
a warehouse had 3 shelves long enough to hold 8 boxes and high enough to hold 4 boxes. all the shelves are full how many boxes are on the shelves all together?
Answer:
8*4*3=96 boxes in total
Step-by-step explanation:
I think. I just multiplies the 3 numbers. Hope this helps (:
Answer:
8*4*3=96 boxes in total
Step-by-step explanation:
I just multiplies the 3 numbers.
A random sample of 61 Foreign Language movies made in the last 10 years has a mean length of 135.7 minutes with a standard deviation of 13.7 minutes. Construct a 95% confidence interval.
Answer:
95% confidensce interval of the mean (two-tail) = [132.2, 139.2]
Step-by-step explanation:
Given:
N = size of sample = 61
m = sample mean = 135.7
s = sample standard deviation 13.7
Need 95% confidence interval
Solution.
alpha (95% confidence interval) = 0.05
(1-alpha/2) = 0.975 [two sided]
Equation for confidence interval of the mean
= m +/- t(1-alpha/2,N-1) * s / sqrt(N)
= 135.7 +/- 2.0003 * 13.7 / sqrt(60)
= [132.16, 139.24]
simplify (3+3 / x(x+1) )(x-3 / x(x-1) )
Answer:
I think it is [tex]\frac{6x-18}{x^{4} }[/tex]
Step-by-step explanation:
Line segment TS is tangent to circle O at point N.
Circle O is shown. Line segment Q N goes from one side of the circle to the other side. Tangent T S intersects the circle at point N. Point P is on the circle between points Q and N. Point R is on the circle between points Q and N. Angle Q N T is 74 degrees.
If the measure of Angle Q N T is 74°, what is the measure of Arc Q P N?
37°
74°
148°
212°\
Answer:
148°
Step-by-step explanation:
The measure of the intercepted arc QN is twice the measure of inscribed angle QNT.
arc QN = 2(74°) = 148°
_____
Comment on the question and answer
Your description "on the circle between points Q and N" is ambiguous. You used the same description for both points P and R. The interpretation we used is shown in the attachment. If point P is on the long arc NQ, then the measure of arc QPN will be the difference between 148° and 360°, hence 212°. You need to choose the answer that matches the diagram you have.
__
We call angle QNT an "inscribed angle" because it is a degenerate case of an inscribed angle. The usual case has the vertex of the angle separate from the ends of the arc it intercepts. In the case of a tangent meeting a chord, the vertex is coincident with one of the ends of the intercepted arc. The relation between angle measure and arc measure remains the same: 1 : 2.
Answer:
148
Step-by-step explanation:
Edge 2020
What is 25÷5what is 25 / 5
Answer:
5
Step-by-step explanation:
25/5
=5✖️5=25
=5/1
Answer:
25÷5 = 5 and 25/5 = 125
Step-by-step explanation:
hope this helps!
PLEASEEEEE HELPPOO
For Individual or Group Explorations
Maximizing the Total Profit
Payles at The Christmas Store very periodically with a high ef 550.000 in December
the Christmas Stove also comes the Powe, where profits reach a high of $80,000
in Aurust and a few of $20,000 in February Assume that the profit function for
Crm Store
Save
40
20
10
1 2 3 4 5 6 7 8 9 10 11 12
Month
a) Write the profit function for The Christmas Store as a function of the month
and sketch its graph
b)
Write the profit function for The Pool Store as a function of the month and
sketch its graph.
are are length
Write the total profit as a function of the month and sketch its graph. What is
the period?
are inside the
est enth of a
Use the maximum feature of a graphing calculator to find the owner's maxi-
mum total profit and the month in which it occurs.
Find the owner's minimum total profit and the month in which it occurs.
We know that y -a sin x + bcos x is a sine function. However, the sum of
two arbitrary sine or cosine functions is not necessarily a sine function. Find an
example in which the graph of the sum of two sine functions does not look like
a sine curve.
Explain.
is tangent to one
Answer:
what
Step-by-step explanation: