Answer:
50*0.4*45=900cm²
Suppose that Vera wants to test the hypothesis that women make less money than men doing the same job. According to the Bureau of Labor Statistics (BLS), the median weekly earnings for men in the professional and related occupation sector in 2015 was $1343. Vera collected median weekly earnings data for women in 2015 from a random subset of 18 positions in the professional and related occupation sector. The following is the sample data. $1811, $728, $1234, $966, $953, $1031, $990, $633, $796, $1325, $1448, $1125, $1144, $1082, $1145, $1256, $1415, $1170 Vera assumes that the women's median weekly earnings data is normally distributed, so she decides to perform a t-test at a significance level of α = 0.05 to test the null hypothesis, H0:µ=1343H0:μ=1343 against the alternative hypothesis, H1:µ<1343H1:μ<1343 , where µμ is the population mean. If the requirements for performing a t-test have not been met, only answer the final question. Otherwise, answer all five of the following questions. First, compute the mean, x⎯⎯⎯x¯ , of Vera's sample. Report your answer with two decimals of precision.
Answer:
There is sufficient evidence to conclude that women make less money than men doing the same job.
Step-by-step explanation:
The hypothesis for the test can be explained as follows:
H₀: Women does not make less money than men doing the same job, i.e. [tex]\mu\geq \$1343[/tex].
Hₐ: Women make less money than men doing the same job, i.e. [tex]\mu<\$1343[/tex].
From the provided data compute the sample mean and standard deviation:
[tex]\bar x=\frac{1}{n}\sum X=\frac{1}{18}[1811+728+...+1170]=1125.11\\\\s=\sqrt{\frac{1}{n-1}\sum (X-\bar x)^{2}}=\sqrt{\frac{1}{18-1}\times 1322541.86}=278.92[/tex]
Compute the test statistic as follows:
[tex]t=\frac{\bar x-\mu}[\s/\sqrt{n}}=\frac{1125.11-1343}{278.92/\sqrt{18}}=-3.143[/tex]
The test statistic value is -3.143.
Compute the p-value as follows:
[tex]p-value=P(t_{n-1}<-3.143)=P(t_{17}<-3.143)=0.003[/tex]
*Use a t-table.
The p-value of the test is 0.003.
The p-value of the test is very small for all the commonly used significance level. The null hypothesis will be rejected.
Conclusion:
There is sufficient evidence to conclude that women make less money than men doing the same job.
1). f(x) = 3x + 15 then what's f^-1(x)?
Answer:
Step-by-step explanation:
f(x)=3x+15
let f(x)=y
y=3x+15
flip x and y
x=3y+15
3y=x-15
y=1/3 x-5
or f^{-1}x=1/3 x-5
Yesterday at 1:00 P.M., Maria’s train was 42 miles north of Gull’s Beach, traveling north at an average speed of 90 mph. At the same time on the adjacent track, Elena’s train was 6 miles north of Gull’s Beach, traveling north at an average speed of 101 mph. To the nearest hundredth of an hour, after how much time will the trains meet up? 0.23 hours 0.31 hours 3.27 hours 4.36 hours
Answer:
3.27 hours
Step-by-step explanation:
Calculate the difference in speed and distance between the trains.
The relative speed:
101 - 90 = 11 mph
Difference in distance:
42 - 6 = 36 miles
[tex]time=\frac{distance}{speed}[/tex]
[tex]t=\frac{36}{11}[/tex]
[tex]t = 3.27[/tex]
Answer:
yeah she is correct
Step-by-step explanation:
and click Submit
By visual inspection, determine the best fitting regression model for the
scatterplot.
O A Quadratic
O B. Linear
OC Exponential
OD. No pattern
Answer:
quadratic
Step-by-step explanation:
This graph has a parabola form wich is a propertie for qaudratic functions
Answer:
A
Step-by-step explanation:
Part A Each time you press F9 on your keyboard, you see an alternate life for Jacob, with his status for each age range shown as either alive or dead. If the dead were first to appear for the age range of 75 to 76, for example, this would mean that Jacob died between the ages of 75 and 76, or that he lived to be 75 years old. Press F9 on your keyboard five times and see how long Jacob lives in each of his alternate lives. How long did Jacob live each time? Part B The rest of the potential clients are similar to Jacob, but since they’ve already lived parts of their lives, their status will always be alive for the age ranges that they’ve already lived. For example, Carol is 44 years old, so no matter how many times you press F9 on your keyboard, Carol’s status will always be alive for all the age ranges up to 43–44. Starting with the age range of 44–45, however, there is the possibility that Carol’s status will be dead. Press F9 on your keyboard five more times and see how long Carol lives in each of her alternate lives. Remember that she will always live to be at least 44 years old, since she is already 44 years old. How long did Carol live each time? Part C Now you will find the percent survival of each of your eight clients to the end of his or her policy using the simulation in the spreadsheet. For each potential client, you will see whether he or she would be alive at the end of his or her policy. The cells in the spreadsheet that you should look at to determine this are highlighted in yellow. Next, go to the worksheet labeled Task 2b and record either alive or dead for the first trial. Once you do this, the All column will say yes if all the clients were alive at the end of their policies or no if all the clients were not alive at the end of their policies. Were all the clients alive at the end of their policies in the first trial? Part D Next, go back to the Task 2a worksheet, press F9, and repeat this process until you have recorded 20 trials in the Task 2b worksheet. In the Percent Survived row at the bottom of the table on the Task 2b worksheet, it will show the percentage of times each client survived to the end of his or her policy, and it will also show the percentage of times that all of the clients survived to the end of their respective policies. Check to see whether these percentages are in line with the probabilities that you calculated in questions 1 through 9 in Task 1. Now save your spreadsheet and submit it to your teacher using the drop box. Are your probabilities from the simulation close to the probabilities you originally calculated?
Step-by-step explanation:
brain list me please......
Answer:
Jacob:
Alive 69-70
alive 79-80
alive 62-63
alive 73-74
alive 78-Died 79
Carol:
alive 88-89
alive 67-68
alive 99-100
alive 73-74
alive 94- Died 95
Step-by-step explanation:
A rectangular piece of sheet metal has an area of 1200 in2. It is going to be bent into a cylinder with volume 600 in3. What are the dimensions of rectangular piece of sheet metal
Answer:
x=6.28 inches
y=191.08 inches
Step-by-step explanation:
Let the dimensions of the rectangle be x and y
Area of the rectangular sheet
x*y=1200 in^2}
x = circumference of the cylinder
This means x=2πr
Volume of a cylinder=πr^2h
h=y
Volume of the cylind=πr^2(y)=600 in^3
From x=2πr
r=x/2π
Substitute r=x/2π into Volume=πr^2(y)=600 in^3
We have,
Volume of the cylinder=πr^2(y)=600 in^3
π*(x/2π)^2(y)=600
(x^2/4π)y=600
Recall, x*y=1200
y=1200/x
Substitute y=1200/x into (x^2/4π)y=600
(x^2/4π)y=600
(x^2/4π)(1200/x)=600
1200x/4π=600
Multiply both sides by 4π
(x^2/4π)(1200/x)(4π)=600*4π
1200x=2400π
Divide both sides by 1200
1200x/1200 = 2400π/1200
x=2π
Substitute x=2π into y=1200/x
We have,
y=1200/2π
y=600/π
The dimensions are x=2π and y=600/π
Let π=3.14
x=2π
=2(3.14)
=6.28 inches
y=600/π
=600/3.14
=191.08 inches
Suppose that the local sales tax rate is 6% and you purchase a computer for $1260.
a. How much tax is paid?
b. What is the computer’s total cost?
Answer:
a. $75.60
b. $1335.60
Step-by-step explanation:
A. First convert the percentage to a decimal.
6% = 0.06
Multiply the cost of the computer by the decimal to find the tax paid.
$1260 × 0.06 = $75.60
B. To find the total cost, add the cost of the computer with the tax.
$1260 + $75.60 = $1335.60
Please explain this to me If f(x)=4x-2 than f(x-1)= A. 4x^2-6x+2 B. 4x^2+2x+2 C. 4x+2 D. 4x-6 E. 4x-1
Answer:
D. 4x − 6
Step-by-step explanation:
f(x) = 4x − 2
f(x−1) = 4(x−1) − 2
f(x−1) = 4x − 4 − 2
f(x−1) = 4x − 6
The function y = sin^?1(3x + 1) is a composition, and so we must use the Chain Rule, given below, to find the derivative. d dx [f(g(x))] = f '(g(x))g'(x) For the given function sin^?1(3x + 1), the "inside" function is 3x + 1 and the "outside" function is f(x) = arcsin(x).
Recall that the derivative of y = sin?1(x) is y' =__________?
Answer:
dy/dx = 3/√1-(3x+1)²
Step-by-step exxplanation:
Given the inverse function y = sin^-1(3x+1), to find the derivative of the expression, we will use the chain rule as shown;
Let u = 3x+1 ...1
y = sin⁻¹u ...2
From equation 1, du/dx = 3
from equation 2;
Taking the sin of both sides;
siny = sin(sin⁻¹u)
siny = u
u = siny
du/dy = cosy
dy/du = 1/cosy
from trig identity, cos y = √1-sin²y
dy/du = 1/√1-sin²y
Ssince u = siny
dy/du = 1/√1-u²
According to chain rule, dy/dx = dy/dy*du/dx
dy/dx = 1/√1-u² * 3
dy/dx = 3/√1-u²
Substituting u = 3x+1 into the final equation, we will have;
dy/dx = 3/√1-(3x+1)²
A system of linear equations includes the line that is created by the equation y = 0.5 x minus 1 and the line through the points (3, 1) and (–5, –7), shown below. On a coordinate plane, points are at (negative 5, negative 7) and (3, 1). What is the solution to the system of equations? (–6, –4) (0, –1) (0, –2) (2, 0)
Answer:
(2,0)
Step-by-step explanation:
From the information the first equation is y = 0.5 x - 1 and the the line through (3,1) and (-5,-7) is
y = x - 2 . From those two equations you get
x - 2 = 0.5 x -1 and x = 2 , y = 0. So it is the last point. (2,0)
Answer:
D. (2,0)
Step-by-step explanation:
Find the 12th term of the following geometric sequence.
10, 30, 90, 270, ...
Answer:
r = 90/30
r = 3
T12 = 10 × 3¹¹
T12 = 1771470
A data set is summarized in the frequency table below. Using the table, determine the number of values less than or equal to 6.
Answer:
18
Step-by-step explanation:
Given the above table of the data set, the number of values less than or equal to 6 would be the sum of the frequencies of all values that is equal to or less than 6.
From the table above, we would add up the frequencies of the values of 6 and below, which is:
2 + 3 + 6 + 4 + 3 = 18
Answer = 18
The number of values less than or equal to 6 is 18
Calculation of the number of values:Here the number of values should be less than or equivalent to 6 represent the sum of the frequencies i.e. equal or less than 6
So, here the number of values should be
= 2 + 3 + 6 + 4 + 3
= 18
Hence, we can conclude that The number of values less than or equal to 6 is 18
Learn more about frequency here: https://brainly.com/question/20875379
1. An architect is designing a house for the Mullet family. In the design he
must consider the desires of the family and the local building codes. The
rectangular lot on which the house will be built has 91 feet of frontage
on a lake and is 158 feet deep.
Answer:
An architect is designing a house for the Frazier family. In the design he must consider the desires of the family and the local building codes. The rectangular lot on which the house will be built has 91 feet of frontage on a lake and is 158 feet deep.
The building codes states that one can build no closer than 10 ft. to the lot line. Write an inequality and solve to see how long the front of the house facing the lake may be.
------
length = 91 - 2*10 = 71 ft.
-------------------------------
The Fraziers requested that the house contain no less 2800 ft square and no more than 3200 ft square of floor sample. Write an inequality to represent the range of permissible widths for the house.
---------
2800 <= area <= 3200
2800 <= (length)(width) <= 3200
2800 <= 71w <= 3200
39.44 <= width <= 45.07
hope it helpsss
Step-by-step explanation:
Answer: An architect is designing a house for the Frazier family. In the design he must consider the desires of the family and the local building codes. The rectangular lot on which the house will be built has 91 feet of frontage on a lake and is 158 feet deep.
The building codes states that one can build no closer than 10 ft. to the lot line. Write an inequality and solve to see how long the front of the house facing the lake may be.
------
length = 91 - 2*10 = 71 ft.
-------------------------------
The Fraziers requested that the house contain no less 2800 ft square and no more than 3200 ft square of floor sample. Write an inequality to represent the range of permissible widths for the house.
---------
2800 <= area <= 3200
2800 <= (length)(width) <= 3200
2800 <= 71w <= 3200
39.44 <= width <= 45.07
Ten thousand raffle tickets are sold for $1 each. One first prize of $2000, 4 second prizes of $700 each, and 8 third prizes of $300 each are to be awarded, with all winners selected randomly. If you purchase one ticket, what are your expected winnings? 132 cents -$0.28 72 cents -$0.88
Answer:
72 cents.
Step-by-step explanation:
The expected winnings is the amount times the probability that you will get that amount.
2,000 * (1/10,000) = 2,000 / 10,000 = 2 / 10 = 0.2.
700 * (4 / 10,000) = 2,800 / 10,000 = 28 / 100 = 0.28.
300 * (8 / 10,000) = 2,400 / 10,000 = 24 / 100 = 0.24.
0.2 + 0.28 + 0.24 = 0.72.
Hope this helps!
Which of the following can be calculated using the formula c=2r ?
A.
Area of a circle
B.
Circumference of a circle
C.
Arc length of a circle
D.
Diameter of a circle
Answer:
B. Circumference of a circle
Step-by-step explanation:
The circumference of a circle can be found using formula 2πr where r is the radius of circle.
What is the circumference of a circle?A circle's or an ellipse's circumference is its perimeter. The circumference would be the length of the circle's arc, if the circle were opened up and straightened out to a line segment, in other words.
Here, we have,
Suppose the radius of a circle is 5cm
So, we can find the circumference by using formula 2πr
Circumference = 2 × π × 5 = 10π cm.
Hence, The circumference of a circle can be found using formula 2πr where r is the radius of circle.
To learn more about Circumference and Perimeter,
brainly.com/question/20489969
#SPJ2
complete question;
The circumference of a circle can be found using the formula c 2r
Find the unknown side length, x. Write your answer in simplest radical form.
Answer:
Correct option: D
Step-by-step explanation:
In the figure we have a right triangle, that is, one of the angles is a 90° angle. Therefore, we can use the Pythagoras' theorem to find the relation between the sides of the triangle:
[tex]a^2 = b^2 + c^2[/tex]
Where b and c are cathetus of the triangle (sides adjacent to the 90° angle) and a is the hypotenuse (opposite side to the 90° angle).
So in our case, we have that x is the hypotenuse, and 40 and 42 are cathetus, so we have:
[tex]x^2 = 40^2 + 42^2[/tex]
[tex]x^2 = 1600 + 1764[/tex]
[tex]x^2 = 3364[/tex]
[tex]x = 58[/tex]
So the correct option is D.
what is the constant of proportionality for 4y=16
Answer:
Step-by-step explanation:
y=4x
YOU WILL GET 30 POINTS AND BRAINLIEST IF YOU GET THIS CORRECT AND ANSWER THIS IN 5 MIN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A car manufacturer is reducing the number of incidents with the transmission by issuing a voluntary recall. During week 3 of the recall, the manufacturer fixed 391 cars. In week 13, the manufacturer fixed 361 cars. Assume that the reduction in the number of cars each week is linear. Write an equation in function form to show the number of cars seen each week by the mechanic. f(x) = 3x + 400 f(x) = 3x + 391 f(x) = −3x + 391 f(x) = −3x + 400
Answer:
f(x)= -3x + 400
Step-by-step explanation:
[tex]\frac{x-x_{1} }{x_{2}-x_{1} } = \frac{y-y_{1} }{y_{2}-y_{1} }[/tex]
[tex]\frac{x-3}{13-3} =\frac{y-391}{361-391}[/tex]
-3 ( x-3 ) = (y - 391 )
-3x + 400
Answer:
he is correct
Step-by-step explanation:
The principal P is borrowed at a simple interest rate r for a period of time t. Find the simple interest owed for the use of the money. Assume there are 360 days in a year. P = $7000, r = 0.2%, t = 6months
Answer:
$7
Step-by-step explanation:
Simple interest formula:
I = Prt
6 months = 6 * 30 days = 180 days
1 year = 360 days
t = (180 days)/(360 days) = 0.5
I = $7000 * 0.002 * 0.5
I = $7
Answer:
$7
Step-by-step explanation:
Recall that simple interest is given by
I = Prt,
Where :
I = interest (we are asked to find this)
P = principal amount = given as $7000
r = rate = given as 0.2% = 0.002
t = time in years = given as 6 months = 0.5 years
SImply substitute the known values into the equation above:
I = Prt
= (7000)(0.002)(0.5)
= $7
Explain the connection between the chain rule for differentiation and the method of u-substitution for integration.
Answer:
Chain rule: [tex]\frac{d}{dx} [f[u(x)]] = \frac{df}{du} \cdot \frac{du}{dx}[/tex], u-Substitution: [tex]f\left[u(x)\right] = \int {\frac{df }{du} } \, du[/tex]
Step-by-step explanation:
Differentiation and integration are reciprocal to each other. The chain rule indicate that a composite function must be differentiated, describing an inductive approach, whereas u-substitution allows integration by simplifying the expression in a deductive manner. That is:
[tex]\frac{d}{dx} [f[u(x)]] = \frac{df}{du} \cdot \frac{du}{dx}[/tex]
Let integrate both sides in terms of x:
[tex]f[u(x)] = \int {\frac{df}{du} \frac{du}{dx} } \, dx[/tex]
[tex]f\left[u(x)\right] = \int {\frac{df }{du} } \, du[/tex]
This result indicates that f must be rewritten in terms of u and after that first derivative needs to be found before integration.
VW=40in. The radius of the circle is 25 inches. Find the length of CT.
Answer:
The answer is B. 40 inches.
Step-by-step explanation:
The question starts by telling you that line VW is equal to 40 in. If you look at the picture you can see it is divided into 2 equal parts of 20 in each. If you look at line CT, you can see that there are the same marks meaning that those segments are also 20 in. That means that line CT and line VW are equal and that line CT is equal to 40 in.
A group of children is trying to share a pile of stickers. If every
child gets two stickers, there will be 7 stickers left over. If two
children do not get any stickers, then each of the remaining
children will get exactly 3 stickers.
How many children are in the group?
Answer:
7 children
Step-by-step explanation:
Answer:
7 children is the correct answer
and you follow me if you can't I will unfollow you
The rate of earnings is 6% and the cash to be received in four years is $20,000. The present value amount, using the following partial table of present value of $1 at compound interest, is
Answer:
$15,842
Step-by-step explanation:
We use the Present value formula
Present Value = Future value/(1 + r)ⁿ
r = 6% = 0.06
n = 4 years
Future value = $20,000
Present value = 20,000/(1 + 0.06)⁴
= $15841.873265
≈ $15,842
During a camping trip, a group went one -third of the total distance by boat, 10km by foot and One – sixth of it by riding horses. Find the total distance of the trip.
Determine the domain of the function. f as a function of x is equal to the square root of two minus x.
x ≤ 2
All real numbers
x > 2
All real numbers except 2
Answer:
A. x <= 2
Step-by-step explanation:
The domain of a real function should be all real numbers. In
f(x) = sqrt(2-x)
we need 2-x to be non-negative, therefore
2-x >= 0
which implies
x <= 2
Answer:
[tex]\Huge \boxed{{x\leq 2}}[/tex]
Step-by-step explanation:
The function is given,
[tex]f(x)=\sqrt{2-x}[/tex]
The domain of a function are all possible values of x.
There are restrictions for the value of x.
2 - x cannot be equal to a negative number, because the square root of a negative number is undefined. 2 - x has to equal to 0 or be greater than 0.
[tex]2-x\geq 0[/tex]
[tex]-x\geq -2[/tex]
[tex]x\leq 2[/tex]
The domain of the function is x ≤ 2.
Explain how estimating the quotient helps you place the first
digit in the quotient of a division problem.
Step-by-step explanation:
look at the picture and if you still need help let me know or if this doenst help then well im sorry lol
hellllllllppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Answer:
see below.
Step-by-step explanation:
1st row has four small boxes
2nd row has three big boxes
big box 1 has no items ragged in it.
big box 2 has small box 1 and also small box 1 dragged into it.
big box 3 has small box 3 and small box 4 dragged into it.
Consider the inequality x3 + 4x2 - 5x < 0.
Select all intervals for which the statement is true.
There may be more than one correct answer. Select all correct answers.
Answer:
Interval notation is
[tex]\left(-\infty, -5\right)\cup \left(0,1)[/tex]
Solutions:
[tex]\left(-\infty, -5\right)[/tex]
[tex]\left(0,1)[/tex]
Step-by-step explanation:
[tex]x^3 + 4x^2 - 5x < 0[/tex]
In this inequality, luckly we can easily factor it.
[tex]x^3 + 4x^2 - 5x[/tex]
[tex]x(x^2+4x-5)[/tex]
[tex]x(x-1)(x+5)[/tex]
So we have
[tex]x(x-1)(x+5)<0[/tex]
In exercises of this kind I usually do in my mind, but just to make it clear, let's do a table to organize. This table represents the x-intercepts in order to evaluate the inequality.
Consider [tex]x(x-1)(x+5)=0[/tex]. Here, those are the possible values for [tex]x[/tex] for each factor to be 0:
The first step to complete the table is the x value where the factor will be equal to zero.
[tex]x<-5[/tex] [tex]x=5[/tex] [tex]-5<x<0[/tex] [tex]x=0[/tex] [tex]0<x<1[/tex] [tex]x=1[/tex] [tex]x>1[/tex]
[tex]x[/tex] 0
[tex]x-1[/tex] 0
[tex]x+5[/tex] 0
Then, just consider the signal:
[tex]x<-5[/tex] [tex]x=5[/tex] [tex]-5<x<0[/tex] [tex]x=0[/tex] [tex]0<x<1[/tex] [tex]x=1[/tex] [tex]x>1[/tex]
[tex]x[/tex] - - - 0 + + +
[tex]x-1[/tex] - - - - - 0 +
[tex]x+5[/tex] - 0 + + + + +
[tex]x(x-1)(x+5)[/tex] - 0 + 0 - 0 +
When [tex]x(x-1)(x+5)<0[/tex] ?
It happens when [tex]x<-5[/tex] and when [tex]0<x<1[/tex]
The solution is
[tex]\{x \in \mathbb{R} | x<-5 \text{ or } 0<x<1 \}[/tex]
[tex]\left(-\infty, -5\right)\cup \left(0,1)[/tex]
The triangles are similar. Write a similarity statement for the triangles.
Answer:
Option (2)
Step-by-step explanation:
In the two triangles ΔWVZ and ΔYXZ,
If the sides WV and XY are parallel and the segments WY and VX are the transverse.
∠X ≅ ∠V [Alternate angles]
∠W ≅ ∠Y [Alternate angles]
Therefore, ΔWVZ ~ ΔYXZ [By AA postulate of the similarity]
Option (2) will be the answer.
please please please help me. i need to pass, will do anything. ANYTHING!
Answer:
[tex]d \approx 5.8[/tex]
Step-by-step explanation:
Just use the distance formula.
[tex]d=\sqrt{(x_2-x_{1})^2+(y_2-y_{1})^2}[/tex]
[tex]d=\sqrt{(3-0)^2+(5-0)^2}}[/tex]
[tex]d=\sqrt{(3)^2+(5)^2}}[/tex]
[tex]d=\sqrt{9+25}[/tex]
[tex]d=\sqrt{34[/tex]
[tex]d \approx 5.8[/tex]