Answer:
if the frequency is double, the wavelength is only half as long
Explanation:
Considering the definition of wavelength, frequency and propagation speed, if the wavelength is doubled, the frequency is reduced by half.
In a periodic wave the wavelength (λ) is the physical distance between two points from which the wave repeats itself. That is, the wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).
The frequency (f) is a measure of the number of cycles or repetitions of the wave per unit of time. Its unit is s⁻¹ or hertz (Hz).
The wavelength and its frequency are related from the speed at which the wave travels. The propagation speed (v) is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave's disturbance propagates along its displacement. So, the speed expression is:
v=λ×f
This indicates that the higher the frequency, the shorter the wavelength and the lower the frequency, the longer the wavelength.
All electromagnetic waves propagate in a vacuum at a constant speed of 300,000,000 m/s, the speed of light. Then, since an inversely proportional relationship is established between the frequency and the wavelength, if the wavelength is doubled, the frequency is reduced by half.
In summary, if the wavelength is doubled, the frequency is reduced by half.
Learn more:
brainly.com/question/2232652?referrer=searchResults brainly.com/question/7321084?referrer=searchResults brainly.com/question/14946166?referrer=searchResultsPlants that respond to light are responding
to an:
a. internal stimulus
b. external stimulus
please answer
Answer:
The answer would be a
Explanation:
An ideal gas is confined to a container with constant volume. The number of moles is constant. By what factor will the pressure change if the absolute temperature triples
Answer:
1/3
Explanation:
Gay Lusaac's law states that "the pressure of a given mass of gas is directly proportional with the absolute temperature of the gas, provided that the volume is kept constant."
In formula, we say that
P/T = k
Where
P = pressure at different points
T = temperature at different points
k = constant of proportionality
From the stated formula, if we multiply the temperature by 3, we have
P/3T = k
P * 1/3T = k
And from this, we see the pressure will change by a value of 1/3
If the net work done on a particle is zero, which of the following statements must be true?
A. The speed is unchanged.
B. The velocity is zero.
C. The velocity is unchanged.
D. More information is needed.
E. The velocity is decreased.
Answer:
A. The speed is unchanged.
Explanation:
In the case when the work is to be done on a particle i.e. zero so the change made in KE of the particle would be zero. This represent the work energy theroem. But when the KE remains same or does not change so it should be the same and the particle speed would also the same
Therefore as per the given statement, the first option is correct
And rest of the options are wrong
What us the difference in the ways objects move at a speed of a car and an object mkvinf close to the speed of light?
Answer:
The difference is in who or what is observing the speed.
Explanation:
Giving that speed is relative between the objects and the reference point from which it is being observed.
It is concluded that speed alone has no direct effect on a moving object, hence it is just a determining unit for the difference in distance between two objects.
Therefore, in this case, the difference is in who or what is observing the speed.
derive an expression for torque experiend by an electric dipole placed in a uniform electric field
Answer:
The torque τ on an electric dipole with dipole moment p in a uniform electric field E is given by τ = p × E where the "X" refers to the vector cross product. Ref: Wikipedia article on electric dipole moment.
Explanation:
Tell me the max amount you should owe on this card.
Your credit limit is $1,000.
What is the max you should ever owe on this card?
$
Your credit limit is $2,500.
What is the max you should ever owe on this card?
$
Answer:
the max is 2,500 or less
Explanation:
because you cant owe anymore
How does temperature rise and impurities affect the surface tension of water
(2 mks)
Answer:
Surface tension is the downward force acting on the surface of liquid due to presence of inter molecular forces or cohesive forces between the particles of liquid.
Surface tension decreases with increase in temperature as the forces among particles decrease due to increase in kinetic energy and thus the cohesive nature decreases and thus surface tension also decreases.
Surface tension may decrease or increase with increase in soluble impurities .Insoluble impurities decrease the surface tension.
A woman exerts a horizontal force of 113 N on a crate with a mass of 31.2 kg.
a. If the crate doesn't move, what's the magnitude of the static friction force (in N)?
b. What is the minimum possible value of the coefficient of static friction between the crate and the floor?
Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate doesn't move (static), acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = Fm - Ff = 0.
Fm is the applied force
Ff is the frictional force
Since Fm - Ff = 0
Fm = Ff
This means that the applied force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
R = 31.2 × 9.8
R = 305.76N
From the formula
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
PLEASE ANSWER ASAP BEFORE MY TEACHER AND MY MOM KILLES ME PLEASE ASAP
The first person with the right answer gets to be a brainlest
In the attachment there is a density column where there is colour
Question: tell me why is the red at the bottom of the density column if it is the least dense
Answer:
That is not meant to be red, it is the bottom of the beaker
That is not meant to be red, it‘s the bottom of the beaker. The star is at the very bottom of the beaker. it’s just the base of the beaker.
What is a
physical
property of
snowflakes?
If a net horizontal force of 0.8 N is applied to a toy whose mass is 1.2 kg, acceleration is?
Hello!
[tex]\large\boxed{a = \frac{2}{3}m/s^{2}}[/tex]
Use the equation F = m · a to solve. We are given the force (N) and mass (kg), so we can solve for the acceleration by plugging in the given values:
0.8 = 1.2a
0.8 / 1.2 = a
a = 2/3 m/s²
For an object like a planet, with a typical temperature of a few hundred kelvin, what kind of blackbody radiation would it principally emit
Answer:
Low-temperature blackbody
Explanation:
There are 3 types of blackbody temperatures.
Low-temperature blackbody
High temperature extended area blackbody
High-temperature cavity blackbody
A Low-temperature blackbody is a type of black body radiation that has the range of -40° C to 175° C, typically between 233 K and 448 K. A perfect fit for the temperature range mentioned in the question, "a few hundred Kelvin". Therefore, it's the kind of blackbody temperature that the object would emit.
For the following types of electromagnetic radiation, how do the wavelength, frequency, and photon energy change as one goes from the top of the list to the bottom?
a. radio waves
b. infared radiation
c. visible light
d. ultraviolet radiation
e. gamma radiation
Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
A 64.1 kg runner has a speed of 3.10 m/s at one instant during a long-distance event.(a) What is the runner's kinetic energy at this instant?
KEi = _________________J
(b) If he doubles his speed to reach the finish line, by what factor does his kinetic energy change?
KEf/KEi=______________
Answer:
(a) the runner's kinetic energy at the given instant is 308 J
(b) the kinetic energy increased by a factor of 4.
Explanation:
Given;
mass of the runner, m = 64.1 kg
speed of the runner, u = 3.10 m/s
(a) the kinetic energy of the runner at this instant is calculated as;
[tex]K.E_i = \frac{1}{2} mu^2\\\\K.E_i = \frac{1}{2} \times 64.1 \times 3.1^2\\\\K.E_i = 308 \ J[/tex]
(b) when the runner doubles his speed, his final kinetic energy is calculated as;
[tex]K.E_f = \frac{1}{2} mu_f^2\\\\K.E_f = \frac{1}{2} m(2u)^2\\\\K.E_f = \frac{1}{2} \times 64.1 \ \times (2\times 3.1)^2\\\\K.E_f = 1232 \ J[/tex]
the change in the kinetic energy is calculated as;
[tex]\frac{K.E_f}{K.E_i} = \frac{1232}{308} =4[/tex]
Thus, the kinetic energy increased by a factor of 4.
Question 18 of 20
Which situation results in the least attraction between two magnets?
A. The south pole of one magnet is near the south pole of the other
magnet
B. The north pole of one magnet is near the south pole of the other
magnet
C. The north pole of one magnet is far away from the north pole of
the other magnet
D. The north pole of one magnet is far away from the south pole of
the other magnet.
Answer:D
Explanation:
Answer:
Explanation: the answer is D.
A thin-walled vessel of volume V contains N particles which slowly leak out of a small hole of area A. No particles enter the volume through the hole. Find the time required for the number of particles to decrease to N/2. Express your answer in terms of A, V, and v.
Answer:
[tex]\frac{V}{2av}[/tex]
Explanation:
From the question we are told that
Volume V
Contains N particles
Leaks from a small hole of area A
Generally the equation for Flow rate is given as
Volume Flow Rate [tex]V_r = A * v[/tex]
Mathematically we find the time taken to flow half way which is given by
[tex]\frac{(V/2)}{A*v}[/tex]
Therefore the time taken is
[tex]\frac{V}{2av}[/tex]
In a test run, a certain car accelerates uniformly from zero to 20.4 m/s in 2.60 s.
Required:
a. What is the magnitude of the cars acceleration?
b. How long does it take the car to change speed from 10.0 m/s to 20 m/s.
c. Will doubling the time always double the change in speed? why?
Answer:
(a) The acceleration is 7.85 m/s²
(b) It takes the car to change speed from 10.0 m / s to 20 m / s in a time of 1.27 seconds.
(c) Doubling the time will double the change in velocity if the acceleration is kept constant.
Explanation:
(a) Acceleration is the physical quantity that measures the rate of change of velocity with time. That is, acceleration relates changes in speed with the time in which they occur, that is, it measures how fast the changes in speed are.
The average acceleration is calculated using the following expression:
[tex]a=\frac{vf-vi}{t}[/tex]
where a is the acceleration, vf is the final velocity, vi is the initial velocity and t is the time.
In this case:
vf= 20.4 m/svi=0 m/st= 2.60 sReplacing:
[tex]a=\frac{20.4 \frac{m}{s} - 0\frac{m}{s} }{2.60 s}[/tex]
a= 7.85 m/s²
The acceleration is 7.85 m/s²
(b) In this case you know:
a= 7.85 m/s²vf= 20 m/svi= 10 m/sReplacing:
[tex]7.85 \frac{m}{s^{2} } =\frac{20 \frac{m}{s} - 10\frac{m}{s} }{t}[/tex]
and solving you get:
[tex]t=\frac{20 \frac{m}{s} - 10\frac{m}{s} }{7.85 \frac{m}{s^{2} } }[/tex]
t=1.27 s
It takes the car to change speed from 10.0 m / s to 20 m / s in a time of 1.27 seconds.
(c) Being:
[tex]a=\frac{vf-vi}{t}[/tex]
Then:
a*t= vf - vi
vf - vi represents the change in velocity. You can see that, if a (acceleration) is constant, then (vf - vi) is directly proportional to the time t: therefore, if t doubles, the change in velocity doubles as well.
In other words, doubling the time will double the change in velocity if the acceleration is kept constant.
4. You’re driving a car that can climb a maximum gradient of 500m/km. The hill in front of you starts at an elevation of 20m and reaches 100m. The total distance up the hill is 1.5km? What is the gradient of the hill and will your car make it?
Answer:
Gradient of the hill is 53.33m/km which is lesser than the 500 m/km. So, he will be able to climb the hill conveniently.
Explanation: Given that
Maximum gradient = 500 m/km
Total distance = 1.5 km
Starting elevation = 20 m
Final elevation = 100 m
Gradient = change in elevation/ total distance.
Now, substitute the values into the formula.
Gradient = (100m - 20m)/1.5km
= 80m/1.5km
= 53.33m/km
Gradient of the hill is 53.33m/km which is lesser than the 500 m/km. So, he will be able to climb the hill conveniently.
An object has a mass of 19 kg. Attached to the end of a spring, if the spring constant is 486 N/m, what is the maximum frequency?
Answer:
The frequency [tex]f = 0.8048 \ Hz[/tex]
Explanation:
From the question we are told that
The mass of the object is [tex]m = 19 \ kg[/tex]
The spring constant is [tex]k = 486 \ N/ m[/tex]
Generally the maximum frequency is mathematically represented as
[tex]f = \frac{1}{2 \pi } * \sqrt{ \frac{k}{m } }[/tex]
=> [tex]f = \frac{1}{2 * 3.142 } * \sqrt{ \frac{486}{ 19 } }[/tex]
=> [tex]f = 0.8048 \ Hz[/tex]
My dad gifted me a calculator. I have observed that very small cells are used in a calculator. What are these cells called and what are their main advantage?
Two particles are separated by 0.38 m and have charges of -6.25 x 10-°C and 2.91 x 10-°C. Use Coulomb's law to predict the force between the particles if the distance is cut in half. The equation for Coulomb's law is F = kqi 42, and the constant, k, equals 9.00 x 109 Nm2/C2 2
Answer:
-4.35 × 10^-6 N
Explanation:
i just answered it on ap3x :)
Sugar crystals enter a dryer at the rate of 1000 kg h-1 and at 20% w.b. moisture content. They leave the dryer at 3% w.b. moisture content. If the drying process requires 3000 kJ kg-1 of water removed, estimate the amount of heat required per hour and the rate of dry crystals out of the dryer.
Answer:
The dryer evaporate 200 - 24.74 kg of water per hour
To remove 1kg of water it need 3000 K J
So to remove, 175.26 Kg
it need 5.257x [tex]10^{5}[/tex] KJ of heat per hour.
Explanation:
In one hour, the amount of sugar entering = 1000 kg
w.b moisture content is defined as,
weight of water / weight of water + weight of dry
[tex]W_{w}[/tex]/[tex]W_{w}[/tex] + [tex]W_{d}[/tex] x 100
[tex]W_{w}[/tex] + [tex]W_{d}[/tex] = 1000 kg when entering
it has 20% moisture content when entering
[tex]W_{w}[/tex] = 0.2 x 1000 = 200 kg
when leaving it has 3% moisture content then weight of dry material
[tex]W_{d}[/tex] = 1000 - 200 = 800 Kg
[tex]\frac{W_{w}^{'} }{W_{w}^{'} + W_{d}^{'} }[/tex] = 0.03
[tex]\frac{W_{w}^{'} }{W_{w}^{'} + 800 }[/tex] = 0.03
[tex]W_{w} ^{'}[/tex] = 0.03 x [tex]W_{w} ^{'}[/tex] + 0.03 x 800
[tex]W_{w} ^{'}[/tex] = 24.74 kg
When leaving the dryer, the crystals has total weight of the water = 24.74 kg per hour.
The dryer evaporate 200 - 24.74 kg of water per hour
To remove 1kg of water it need 3000 K J
So to remove, 175.26 Kg
it need 5.257x [tex]10^{5}[/tex] KJ of heat per hour.
1. Add 17.35 g, 25.6 g and 8.498 g. chaper 1 physical quantity 11class .physic
51.448 g is the required answer!
Why do we perform stork stand test
Answer:
umm becuase it is a test and you need them
Explanation:
A woman exerts a horizontal force of 113 N on a crate with a mass of 31.2 kg.
Required:
a. If the crate doesn't move, what's the magnitude of the static friction force (in N)?
b. What is the minimum possible value of the coefficient of static friction between the crate and the floor?
Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate is not moving then its acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = 0
Fm - Ff = 0.
Fm is the moving force
Ff is the frictional force
Fm = Ff
This means that the moving force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
m is the mass of the crate = 31.2kg
g is the acceleration due to gravity = 9.8m/s²
R = 31.2 × 9.8
R = 305.76N
Recall that;
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
An astronaut weighing 190 lbs on Earth is on a mission to the Moon and Mars.
Required:
a. What would he weigh in newtons when he is on the Moon?
b. How much would he weigh in newtons when he is on Mars, where the acceleration due to gravity is 0.38 times that on Earth?
Answer:
The weight is defined as:
W = m*g
where:
m = mass
g = gravitational acceleration.
We know that in Earth the astronaut weights 190 lb-f (this is force, not mass, the correct unit here is 190 lb*m/s^2)
then:
190 lb*m/s^2 = m*9.8m/s^2
(190 lb*m/s^2)/(9.8m/s^2) = 19.39 lb
Now we know the mass of the astronaut.
a) wieght on the moon in Newtons.
Newtons uses kilograms as the units of mass, then we need to rewrite the mass of the astronaut in kg.
we know that 1lb = 0.454 kg
Then 19.39 lb is equal to: 19.39*0.454 kg = 8.8 kg
We know that the acceleration due to gravity on the Moon is one-sixth that on Earth.
then: g = (9.8m/s^2)/6
And the weight of the astronaut in the moon will be:
W = 8.8 kg*(9.8m/s^2)/6 = 14.37 N
b) The weight on mars, where the acceleration due to gravity is 0.38 times that on Earth, we have:
g = (9.8m/s^2)*0.38
then the weight will be:
W = 8.8kg*(9.8m/s^2)*0.38 = 32.77 N
If the Earth were flat, then the shadows of two towers at two different places on the Earth would:__________.
A. be different lengths with the one further South being longer
B. be different lengths with the one further North being longer
C. be different lengths with the one further East being longer
D. be the exact same length
The energy of a photon is ________ proportional to its wavelength.
Answer:
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
Explanation:
Plz mark brainliest thanks
What was your train of thought as you navigated the picture of the candle?
Answer:
Where is the picture
Explanation:
WHERE IS THE PICTURE
At a distance of 10 km from a radio transmitter, the amplitude of the E-field is 0.20 volts/meter. What is the total power emitted by the radio transmitter
Answer:
The total power is [tex]P = 6.665 *10^{4} \ W[/tex]
Explanation:
From the question we are told that
The distance is [tex]r = 10 \ km = 1000 \ m[/tex]
The amplitude of the electric field is [tex]E = 0.20 \ volt/meter[/tex]
Generally the average intensity of the electromagnetic field from the radio transmitter is mathematically represented as
[tex]I = \frac{E^2}{ 2 \mu_o * c }[/tex]
Here c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]
[tex]\mu_o[/tex] is the permeability of free space with value [tex]\mu_o = 4\pi *10^{-7} \ N/A^2[/tex]
So
[tex]I = \frac{0.2^2}{ 2 * 4\pi *10^{-7} * 3.0*10^{8} }[/tex]
=> [tex]I = 5.307 *10^{-5} \ W/m^2[/tex]
Generally this intensity can also be mathematically represented as
[tex]I = \frac{P }{ 4 \pi r^2 }[/tex]
=> [tex]P = I ( 4 \pi r^2 )[/tex]
=> [tex]P = 5.307 *10^{-5} ( 4 * 3.142 * 1000^2 )[/tex]
=> [tex]P = 6.665 *10^{4} \ W[/tex]
The total power emitted by the radio transmitter is [tex]6.67\times 10^4 \ W[/tex].
The given parameters;
amplitude of the electric field, E = 0.2 V/mdistance of the transmitter, = 10 km = 10,000 mThe intensity of the radio wave from the transmitter is calculated as follows;
[tex]I = \frac{E^2}{2\mu_0 c} \\\\I = \frac{0.2^2 }{2\times 4\pi \times 10^{-7} \times 3\times 10^8} \\\\I = 5.305 \times 10^{-5} \ W/m^2[/tex]
The total power emitted by the radio transmitter is calculated as follows;
[tex]I = \frac{P}{A} \\\\P = IA\\\\P = I \times 4\pi r^2\\\\P = (5.305\times 10^{-5} )\times 4\pi \times (10,000)^2\\\\P = 6.67\times 10^{4} \ W[/tex]
Thus, the total power emitted by the radio transmitter is [tex]6.67\times 10^4 \ W[/tex].
Learn more here:https://brainly.com/question/19340071