Answer:
Options (B) and (C)
Step-by-step explanation:
The given expression is [tex](d^{\frac{1}{8}})^5[/tex]
By simplifying this expression,
[tex](d^{\frac{1}{8}})^5[/tex]
= [tex](\sqrt[8]{d})^{5}[/tex]
Option (B)
Similarly,
[tex](d^{\frac{1}{8}})^5[/tex]
= [tex]d^{\frac{5}{8}}[/tex]
= [tex](d^{5})^{\frac{1}{8}}[/tex]
Option (C)
Therefore, Options (B) and (C) will be the correct options.
If $6a^2 + 5a + 4 = 3,$ then what is the smallest possible value of $2a + 1$?
Answer: 0
Step-by-step explanation:
The given equation: [tex]6a^2+5a+4=3[/tex]
Subtract 3 from both the sides, we get
[tex]6a^2+5a+1=0[/tex]
Now , we can split 5a as 2a+3a and [tex]2a\times 3a = 6a^2[/tex]
So, [tex]6a^2+5a+1=0\Rightarrow\ 6a^2+2a+3a+1=0[/tex]
[tex]\Rightarrow\ 2a(3a+1)+(3a+1)=0\\\\\Rightarrow\ (3a+1)(2a+1)=0\\\\\Rightarrow\ (3a+1)=0\text{ or }(2a+1)=0\\\\\Rightarrow\ a=-\dfrac{1}{3}\text{ or }a=-\dfrac{1}{2}[/tex]
At [tex]a=-\dfrac{1}{3}[/tex]
[tex]2a+1=2(-\dfrac{1}{3})+1=-\dfrac{2}{3}+1=\dfrac{-2+3}{3}=\dfrac{1}3{}[/tex]
At [tex]a=-\dfrac{1}{2}[/tex]
[tex]2a+1=2(-\dfrac{1}{2})+1=-1+1=0[/tex]
Since, [tex]0< \dfrac{1}{3}[/tex]
Hence, the possible value of 2a+1 is 0.
Help me please ty ty ♀️❤️ Appreciate it
Answer:
Pretty Simple!
Now that you know about ratios and all that, this is pretty tame compared to the last problem.
Now, the problem is talking 2D(2 Dimensions)
The ratio is not going to work because it has only one parameter.
Thus, we need to square it!
[tex](\frac{1}{20})^{2} =\frac{1}{400}[/tex]
Thus, we have your correct ratio.
Now, we only need to do the same thing for the triangle problem. Meaning that, we need to compare the ratios, with x as the thing we are looking for.
[tex]\frac{1}{400}=\frac{219}{x} \\x=87,600[/tex]
See? X is practically handed to us.
Hope this helps!
I really need this ASAP. There are 25 students in a class. How many ways can the teacher (randomly) pick two students for the lead roles in the class play?
Answer: 300 ways
Step-by-step explanation:
We have to calculate each pair of students. You do this by multiplying 25*24 and then dividing it by 2 because then you would count them 2 times. After solving, you get 300 ways. ( It is correct because I entered it. ).
Express $\frac{15 + 10i}{1 + 2i}$ in rectangular form.
[tex]\dfrac{15 + 10i}{1 + 2i}=\\\\\dfrac{(15 + 10i)(1-2i)}{(1 + 2i)(1-2i)}=\\\\\dfrac{15-30i+10i+20}{1+4}=\\\\\dfrac{35-20i}{5}=\\\\7-4i[/tex]
Answer:
7-4i
Step-by-step explanation:
Multiplying the numerator and denominator by $1-2i$ gives
\begin{align*}
\frac{15+10i}{1+2i} &= \frac{15+10i}{1+2i}\cdot\frac{1-2i}{1-2i}\\
&= \frac{(15+10i)(1-2i)}{1^2 + 2^2} \\
&= \frac{5(3 + 2i)(1 - 2i)}{5} \\
&= (3 + 2i)(1 - 2i) \\
&= 3 + 2i - 6i - 4i^2 \\
&= 3 + 2i - 6i + 4 \\
&= \boxed{7 - 4i}.
Plzzzzzzzzzzzz helpppppppppp
Answer:
B. The horizontal cross-sections of the prisms at the same height have the same area.
Step-by-step explanation:
Notice that the cone and the pyramid have the same volume. This is important.
This follows the Cavalieri's principle that, for the case of 3 dimensions, as the present case, it states, roughly, that if we have two bodies like the cone and the pyramid, and if we have parallel planes crossing each section, and we always have the same area, these two bodies have the same volume.
In this case, both, cone and pyramid have the same volume, then (reciprocally):
B. The horizontal cross-sections of the prisms at the same height have the same area.
Answer:
B. The horizontal cross-sections of the prisms at the same height have the same area.
Step-by-step explanation:
ap333x
!!!!PLEASE HELP!!!!!
Answer:
inverse = ( log(x+4) + log(4) ) / (2log(4)), or
c. y = ( log_4(x+4) + 1 ) / 2
Step-by-step explanation:
Find inverse of
y = 4^(-6x+5) / 4^(-8x+6) - 4
Exchange x and y and solve for y.
1. exchange x, y
x = 4^(-6y+5) / 4^(-8y+6) - 4
2. solve for y
x = 4^(-6y+5) / 4^(-8y+6) - 4
transpose
x+4 = 4^(-6y+5) / 4^(-8y+6)
using the law of exponents
x+4 = 4^( (-6y+5) - (-8y+6) )
simplify
x+4 = 4^( 2y - 1 )
take log on both sides
log(x+4) = log(4^( 2y - 1 ))
apply power property of logarithm
log(x+4) = (2y-1) log(4)
Transpose
2y - 1 = log(x+4) / log(4)
transpose
2y = log(x+4) / log(4) + 1 = ( log(x+4) + log(4) ) / log(4)
y = ( log(x+4) + log(4) ) / (2log(4))
Note: if we take log to the base 4, then log_4(4) =1, which simplifies the answer to
y = ( log_4(x+4) + 1 ) / 2
which corresponds to the third answer.
PLEASE HELP ASAPPPP!!!
Solve the right triangle given that mA =30°, mC = 90° and a = 15. Then round your result to ONE decimal place
Answer:
m∠B = 60°
b = 26 units
c = 30 units
Step-by-step explanation:
In a right triangle ACB,
By applying Sine rule,
[tex]\frac{\text{SinA}}{a}=\frac{\text{SinB}}{b}=\frac{SinC}{c}[/tex]
m∠A = 30°, m∠C = 90°
m∠A + m∠B + m∠C = 180°
30° + m∠B + 90° = 180°
m∠B = 180° - 120°
m∠B = 60°
Therefore, [tex]\frac{\text{Sin30}}{15}=\frac{\text{Sin90}}{c}=\frac{\text{Sin60}}{b}[/tex]
[tex]\frac{1}{30}=\frac{\text{Sin90}}{c}=\frac{\text{Sin60}}{b}[/tex]
[tex]\frac{1}{30} =\frac{1}{c}=\frac{\frac{\sqrt{3}}{2}}{b}[/tex]
[tex]\frac{1}{30}=\frac{1}{c}=\frac{\sqrt{3}}{2b}[/tex]
[tex]\frac{1}{30} =\frac{1}{c}[/tex] ⇒ c = 30 units
[tex]\frac{1}{30}=\frac{\sqrt{3}}{2b}[/tex]
b = 15√3
b = 25.98
b ≈ 26 units
The length of 7 (the minor arc) is 15 cm. What is the circumference of Z?
Answer:450 cm
Step-by-step explanation:
1. What number comes next in this sequence?
483, 759, 264, 837,?
A) 487
B) 592
C) 375
D) 936
Answer:
C 375 this your answer
Hope it will help
Answer:
B) 592
Step-by-step explanation:
483, 759, 264, 837,?
Erase commas.
483759264837
Separate into two-digit groups:
48, 37, 59, 26, 48, 37
There is a common pattern:
48 - 11 = 37 + 22 = 59 - 33 = 26 + 22 = 48 - 11 = 37
The next term:
37 + 22 = 59 (add 22)
59 - 33 = 26 (subtract 33)
5926
Answer this question
Answer:
1.
a) exact form: -1 /14 or decimal form: -0.0714285
b) exact form: -23/120 or decimal form: -0.1916
2.
a) 89
b)98
c) 5.7
d) 4.8
3.
i) 2*2*2*2*2*2*3*3*3
ii) 3*3*3*5*5*5
iii) 2*2*2*2*2*2*2*2*2*2*2*2
iv) 2*2*2*2*2*2*5*5*5
9.
i) x = -9
ii) x + 1/7
I hope this helps get you started :)
The formula for the volume of a pyramid is =13ℎ
V
=
1
3
B
h
, where B is the area of the base and h is the height. Rearrange the formula to solve for the height (h).
Select one:
a. ℎ=3
h
=
3
V
B
b. ℎ=3
h
=
B
3
V
c. ℎ=3
h
=
V
3
B
d. ℎ=3
Answer:
h = V3B
Step-by-step explanation:
V = 1/3B · h
Divide volume by 1/3 B to get h by itself
V/1/3B = V3B
Help plz down below with the question
Answer:
The SAS Postulate
Step-by-step explanation:
SAS means Side-Angle-Side; that is, two sides are equal and an angle between those sides are equal. We're given two sides: TK and TL, and we're given that 1 is congruent to 2. Knowing the latter, we can conclude that the angle between them (let's call it 1.5 for our purposes) will be congruent to itself. Since 1.5 is the angle right in the middle of two congruent sides, our answer is SAS.
The mean one-way commute to work in Chowchilla is 7 minutes. The standard deviation is 2.4 minutes, and the population is normally distributed. What is the probability of randomly selecting one commute time and finding that: a). P (x < 2 mins) _____________________________ b). P (2 < x < 11 mins) _____________________________ c). P (x < 11 mins) ________________________________ d). P (2 < x < 5 mins) _______________________________ e). P (x > 5 mins)
Answer:
The answer is below
Step-by-step explanation:
Given that:
The mean (μ) one-way commute to work in Chowchilla is 7 minutes. The standard deviation (σ) is 2.4 minutes.
The z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
a) For x < 2:
[tex]z=\frac{x-\mu}{\sigma}=\frac{2-7}{2.4} =-2.08[/tex]
From normal distribution table, P(x < 2) = P(z < -2.08) = 0.0188 = 1.88%
b) For x = 2:
[tex]z=\frac{x-\mu}{\sigma}=\frac{2-7}{2.4} =-2.08[/tex]
For x = 11:
[tex]z=\frac{x-\mu}{\sigma}=\frac{11-7}{2.4} =1.67[/tex]
From normal distribution table, P(2 < x < 11) = P(-2.08 < z < 1.67 ) = P(z < 1.67) - P(z < -2.08) = 0.9525 - 0.0188 = 0.9337
c) For x = 11:
[tex]z=\frac{x-\mu}{\sigma}=\frac{11-7}{2.4} =1.67[/tex]
From normal distribution table, P(x < 11) = P(z < 1.67) = 0.9525
d) For x = 2:
[tex]z=\frac{x-\mu}{\sigma}=\frac{2-7}{2.4} =-2.08[/tex]
For x = 5:
[tex]z=\frac{x-\mu}{\sigma}=\frac{5-7}{2.4} =-0.83[/tex]
From normal distribution table, P(2 < x < 5) = P(-2.08 < z < -0.83 ) = P(z < -0.83) - P(z < -2.08) = 0.2033- 0.0188 = 0.1845
e) For x = 5:
[tex]z=\frac{x-\mu}{\sigma}=\frac{5-7}{2.4} =-0.83[/tex]
From normal distribution table, P(x < 5) = P(z < -0.83) = 0.2033
Triangle K M L is shown. Line L K extends through point J to form exterior angle J K M. Which angle is an adjacent interior angle to ∠JKM? ∠JKL ∠MKL ∠KLM ∠LMK
Answer:
The correct option is;
∠MKL
Step-by-step explanation:
From the construction of the line LKJ to form the exterior angle ∠JKM, we have that the segment MK of triangle KML forms two adjacent angles on JKL which are ∠JKM and ∠MKL, therefore, the adjacent interior angle to angle ∠JKM is angle ∠MKL
PLease find attach The drawing of triangle KML showing the extended point J
Answer:
B) ∠MKL
Step-by-step explanation:
Took the quiz on edge
A middle school took all of its 6th grade students on a field trip to see a play at a theatre that has 2000 seats. The students filled 65% of the seats in the theatre. How many 6th graders went on the trip?
Answer: 1,300 students went on the trip
Step-by-step explanation: So we know that 65% filled the seats so let's turn that into a fraction. [tex]\frac{65}{100}[/tex] . Now we know that there are 2,000 seats in total so let's put that into a fraction. [tex]\frac{x}{2,000}[/tex] The x represents the students that went on the trip.
[tex]\frac{65}{100} = \frac{x}{2,000}[/tex] we have to cross multiply
65(2,000) = 100 (x)
130,000 = 100 (x)
130,000 ÷ 100
1,300 = x So now we know that 1,300 went to the trip students
Please can someone help me
Answer:
a. 25%
b. 55%
c. 35%
Hope it helps you and pls mark as brainliest : )
GUYSSSS what is 30kx-6kx=8 but solve for x
Answer:
x = 1/(3k)
Step-by-step explanation:
30kx-6kx=8
Combine like terms
24 kx = 8
Divide each side by 24k
24kx / 24k = 8/(24k)
x = 1/(3k)
How many solutions are there to |x|=-8
Answer:No solution
Step-by-step explanation:An absolute value equation cannot equal a negative number
I can’t figure it out
Answer:
5inch
Step-by-step explanation:
15_10=5
because full length is 15 cm given on another side and length of some part of another side is. given.so we have to subtract it
Answer:
5 inches
Step-by-step explanation:
You can notice that the 15 in side is parallel to the 10 in side and the missing side
let x be the missing side
10+x = 15 substract 10 from both sides 10-10+x = 15-10 x = 5so x is 5 inches
Find the 9th term geometric sequence 1,1/2,1/2^2w. Please show the steps.
Answer:
9th term geometric sequence (a9) = 1 / 256
Step-by-step explanation:
Given:
Geometric sequence 1,1/2,1/2²
First term (a) = 1
Common ratio (r) = A2 / A1 = (1/2) / 1 = 1/2
Number of term (n) = 9
Find:
9th term geometric sequence (a9)
Computation:
[tex]an = ar^{n-1}[/tex]
a9 = ar⁹⁻¹
a9 = (1)(1/2)⁸
a9 = (1/2)⁸
a9 = 1/256
9th term geometric sequence (a9) = 1 / 256
Evaluate 3(4-2) Thanks!! Will give out brainliest
Answer:
6
Step-by-step explanation:
3(4-2)
PEMDAS says parentheses first
3 ( 2)
Then multiply
6
Answer:
The answer is 6Step-by-step explanation:
3(4 - 2)
Solve the terms in the bracket first
That's
4 - 2 = 2
So we have
3( 2) = 6
Hope this helps you
Solve the equation and show the solution set on a number line: |x+5|=x+5
Answer: x ≥ -5
Step-by-step explanation:
First, let's see how the function f(x) = IxI works:
if x ≥ 0, IxI = x
if x ≤ 0, IxI = -x
Notice that for 0, I0I = 0.
Ok, we want that:
|x+5| = x+5
Notice that this is equivalent to:
IxI = x
This means that |x+5| = x+5 is only true when:
(x + 5) ≥ 0
from this we can find the possible values of x:
we can subtract 5 to both sides and get:
(x + 5) -5 ≥ 0 - 5
x ≥ -5
So the graph in the number line will be a black dot in x = -5, and all the right region shaded.
something like:
-7__-6__-5__-4__-3__-2__-1__0__1__2__3__4__ ...
What is the approximate circumference of a circle that has a diameter of 25 yards? (Use 3.14 for pi ). C = a0 yd
Answer:
78.5 yds
Step-by-step explanation:
The circumference is given by
C = pi *d
C = 3.14 * 25
C =78.5
Answer:
[tex]\huge\boxed{C=25\pi\ yd\approx78.5\ yd}[/tex]
Step-by-step explanation:
The formula of a circumference of a circle:
[tex]C=d\pi[/tex]
d - diameter
We have d = 25yd.
Substitute:
[tex]C=25\pi\ yd[/tex]
Use [tex]\pi\approx3.14[/tex]:
[tex]C\approx(25)(3.14)=78.5\ yd[/tex]
Grace starts with 100 milligrams of a radioactive substance. The amount of the substance decreases by 14 each week for a number of weeks, w. She writes the expression 100(14)w to find the amount of radioactive substance remaining after w weeks. Ryan starts with 1 milligram of a radioactive substance. The amount of the substance decreases by 40% each week for a number of weeks, w. He writes the expression (1 – 0.4)w to find the amount of radioactive substance remaining after w weeks. Use the drop-down menus to explain what each part of Grace’s and Ryan’s expressions mean.
Answer:
100= Initial Amount
1/4= decay factor for each week
w= number of weeks
1/4w= decay factor after w weeks
1 - 0.4= decay factor for each week
w= number of weeks
0.4= percent decrease
Step-by-step explanation:
Right triangle ABC is located in A(-1,-2), B(-1,1) and C(3,1) on a coordinate plane. what is the equation of a circle with radius AC?
A) (x+1)*2+(y+2)*2=9
B) (x+1)*2+(y+2)*2=25
C) (x-3)*2+(y-1)*2= 16
D) (x-3)*2+(y-1)*2=25
Answer:
Hey there!
First, we want to find the radius of the circle, which equals the length of line segment AC.
Length of line segment AC, which we can find with the distance formula: [tex]\sqrt{25\\[/tex], which is equal to 5.
The equation for a circle, is: [tex](x-h)^2+(y-k)^2=r^2[/tex], where (h, k) is the center of the circle, and r is the radius.
Although I don't know the center of the circle, I can tell you that it is either choice B or D, because the radius, 5, squared, is 25.
Hope this helps :) (And let me know if you edit the question)
Answer: The equation of the circle is (x+1)²+(y+1)² = 25
Step-by-step explanation: Use the Pythagorean Theorem to calculate the length of the radius from the coordinates given for the triangle location: A(-1,-2), B(-1,1) and C(3,1) The sides of the triangle are AB=3, BC=4, AC=5.
Use the equation for a circle: ( x - h )² + ( y - k )² = r², where ( h, k ) is the center and r is the radius.
As the directions specify, the radius is AC, so it makes sense to use the coordinates of A (-1,-2) as the center. h is -1, k is -2 The radius 5, squared becomes 25.
Substituting those values, we have (x -[-1])² + (y -[-2])² = 25 .
When substituted for h, the -(-1) becomes +1 and the -(-2) for k becomes +2.
We end up with the equation for the circle as specified:
(x+1)²+(y+1)² = 25
A graph of the circle is attached. I still need to learn how to define line segments; the radius is only the segment of the line between the center (-1,-2) and (1,3)
values of r and h, what do you notice about the proportions of the cylinders?
Answer:
Below
Step-by-step explanation:
r us the radius of the base and h is the heigth of the cylinder.
The volume of a cylinder is given by the formula:
V = Pi*r^2*h
V/Pi*r^2 = h
We can write a function that relates h and r
Answer:
One of the cylinders is short and wide, while the other is tall and thin.
Step-by-step explanation:
sample answer given on edmentum
What is the reason for statement 3 in this proof?
Answer:
d
Step-by-step explanation:
Answer: E definition of midpoint
Step-by-step explanation:
Correct on Plato
Which is the length of the hypotenuse of the right triangle? Round your answer to the nearest tenth of a centimeter. Hint: Pythagorean Theorem: a^2+ b^2 = c^2
Answer:
[tex]c =\sqrt{a^{2}+b^{2} }[/tex]
Step-by-step explanation:
You clear c, wich is the hypotenuse
[tex]c =\sqrt{a^{2}+b^{2} }[/tex]
The city park department is planning to enclose a play area with fencing. One side of the area will be against an existing building, so no fence is needed there. Find the dimensions of the maximum rectangular area that can be enclosed with 800 meters of fence. Include the units.
Answer:
The maximum rectangular area will have the length 400 meters and width 200 meters with one side of the length against an existing building.
Step-by-step explanation:
From the given information;
The perimeter of a rectangle = 2 (L+B)
here;
L = the length of the side of the fence
B = the width of the fence
So; The perimeter of a rectangle = 2L+2B
we are also being told that;
One side of the area will be against an existing building
i.e
The perimeter of a rectangle is now = L + 2B = 800 meters
L = 800 - 2B
Similarly; Area of a rectangle = L × B
Area of a rectangle = ( 800 - 2B) × B
Area of a rectangle = 800B - 2B²
assuming A(B) to represent the Area;
Then the maximum area A'(B) = 0 ;
Thus,
A'(B) = 800 - 4B = 0
-4B = - 800
4B = 800
B = 200
Therefore; the maximum area have a width = 200 meters and a length 800 - 2(200) = 800 - 400 = 400 meters
What does the denominator of the fraction \dfrac23 3 2 start fraction, 2, divided by, 3, end fraction mean?
Answer: It represents that 2 will be divided into 3 equal parts.
Step-by-step explanation:
Numerator is the top number in a fraction. It represents the total item it has to divide.Denominator is the bottom number in a fraction. it represents the number of equal parts the item is divided into.The given fraction : [tex]\dfrac{2}{3}[/tex]
here, Numerator = 2
Denominator = 3
It represents that 2 will be divided into 3 equal parts.