Answer:
It is the first graph
Step-by-step explanation:
Just got it right on the test review :)
Inequalities help us to compare two unequal expressions. The graph shows that all the values of x that satisfies the given inequality are x>7. Thus, the correct option is A.
What are inequalities?Inequalities help us to compare two unequal expressions. Also, it helps us to compare the non-equal expressions so that an equation can be formed. It is mostly denoted by the symbol <, >, ≤, and ≥.
The given inequality can be solved as,
[tex]\dfrac29(x+3) > 4(\dfrac59)\\\\\dfrac{2x+6}{9} > \dfrac{20}{9}\\\\2x + 6 > 20\\\\2x > 20 - 6\\\\x > \dfrac{14}{2}\\\\x > 7[/tex]
Hence, the graph shows that all the values of x that satisfies the given inequality are x>7. Thus, the correct option is A.
Learn more about Inequality:
https://brainly.com/question/19491153
#SPJ2
Which set of three numbers can be used to make a right triangle? select Yes or no
Answer:
answer is
B) 36,72,80
Step-by-step explanation:
because is the right angle it is exactly 90°
Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )
Answer:
[tex]\boxed{x = 9}[/tex]
Step-by-step explanation:
m = -1/3
b = 7
And y = 4 (Given)
Putting all of the givens in [tex]y = mx+b[/tex] to solve for x
=> 4 = (-1/3) x + 7
Subtracting 7 to both sides
=> 4-7 = (-1/3) x
=> -3 = (-1/3) x
Multiplying both sides by -3
=> -3 * -3 = x
=> 9 = x
OR
=> x = 9
Answer:
x = 9
Step-by-step explanation:
m = -1/3
b = 7
Using slope-intercept form:
y = mx + b
m is slope, b is y-intercept.
y = -1/3x + 7
Solve for x:
Plug y as 4
4 = 1/3x + 7
Subtract 7 on both sides.
-3 = -1/3x
Multiply both sides by -3.
9 = x
Smoothing a time series of observations A. is a form of statistical cheating. B. allows statisticians to use less data than would otherwise be required. C. renders the resultant forecast unusable. D. is used to reveal an underlying pattern in the data.
Answer:
D. is used to reveal an underlying pattern in the data.
Step-by-step explanation:
Smoothing a time series is achieved when a computer uses some pre-programmed calculation methods to remove noise from large volumes of data. Smoothing helps a user detect patterns in a set of data, thus making it possible to make future predictions. For example, smoothing can be used in the prediction of the rise and fall of stock prices. This helps the traders to have an idea of what to expect in the cost of trading.
Although smoothing reveals the patterns in a set of data, it provides no explanation as to why it is so. It is left to the researcher to draw conclusions as to the reasons for the patterns.
which linear inequality is represented by the graph
Answer:
The first choice.
Step-by-step explanation:
When you are using y≥, then this means that the positive area needs to be shaded, but as you can see, the negative area is shaded, so the symbol '≤' would best fit this.
Now, that we see that, we can eliminate the 2nd and 4th option.
Now, looking at points (0, 2) and (2, 3), the slope is 1/2 <-- rise over run.
So, the first option will be correct!
Hope this helps:)
Answer:
You have selected the correct one!
Step-by-step explanation:
What is the range of the function (-1,2) (3,6) (5,8)
Answer:
Range { 2,6,8}
Step-by-step explanation:
The domain is the input and the range is the output
Range { 2,6,8}
Answer:
2, 6, 8
Step-by-step explanation:
The range is the possible values of y, (x, y). So in this case, y could be 2, 6, or 8.
Rewrite the equation in =+AxByC form. Use integers for A, B, and C. =−y6−6+x4
Answer:
6x + y = -18
Step-by-step explanation:
The given equation is,
y - 6 = -6(x + 4)
We have to rewrite this equation in the form of Ax + By = C
Where A, B and C are the integers.
By solving the given equation,
y - 6 = -6x - 24 [Distributive property]
y - 6 + 6 = -6x - 24 + 6 [By adding 6 on both the sides of the equation]
y = -6x - 18
y + 6x = -6x + 6x - 18
6x + y = -18
Here A = 6, B = 1 and C = -18.
Therefore, 6x + y = -18 will be the equation.
my number is the first multiple of 3,6, and 9 what is my number
Answer:
18 is the first multiple of 3,6, and 9.
Step-by-step explanation:
Answer:
18
Step-by-step explanation:
We need to find the LCM (lowest common multiple) of 3, 6, and 9. Let's count by multiples of 3 to find it.
3 (not a multiple of 6 or 9), 6 (not a multiple of 9), 9 (not a multiple of 6), 12 (not a multiple of 9), 15 (not a multiple of 6 or 9), 18.
Since 18 is the first number that is a multiple of 3, 6, and 9, that is the answer.
Heights of women (in inches) are approximately N(64.5,2.5) distributed. Compute the probability that the average height of 25 randomly selected women will be bigger than 66 inches.
Answer:
the probability that the average height of 25 randomly selected women will be bigger than 66 inches is 0.0013
Step-by-step explanation:
From the summary of the given statistical dataset
The mean and standard deviation for the sampling distribution of sample mean of 25 randomly selected women can be calculated as follows:
[tex]\mu_{\overline x} = \mu _x[/tex] = 64.5
[tex]\sigma_{\overline x }= \dfrac{\sigma}{\sqrt n}[/tex]
[tex]\sigma_{\overline x }= \dfrac{2.5}{\sqrt {25}}[/tex]
[tex]\sigma_{\overline x }= \dfrac{2.5}{5}[/tex]
[tex]\sigma_{\overline x }[/tex] = 0.5
Thus X [tex]\sim[/tex] N (64.5,0.5)
Therefore, the probability that the average height of 25 randomly selected women will be bigger than 66 inches is:
[tex]P(\overline X > 66) = P ( \dfrac{\overline X - \mu_\overline x}{\sigma \overline x }>\dfrac{66 - 64.5}{0.5} })[/tex]
[tex]P(\overline X > 66) = P ( Z>\dfrac{66 - 64.5}{0.5} })[/tex]
[tex]P(\overline X > 66) = P ( Z>\dfrac{1.5}{0.5} })[/tex]
[tex]P(\overline X > 66) = P ( Z>3 })[/tex]
[tex]P(\overline X > 66) = 1- P ( Z<3 })[/tex]
[tex]P(\overline X > 66) = 1- 0.9987[/tex]
[tex]P(\overline X > 66) =0.0013[/tex]
the probability that the average height of 25 randomly selected women will be bigger than 66 inches is 0.0013
???????????????????
?
?
?
?
Answer:
It should be 10 for the first box, 1000 for the second box and 100 for the third box.
Step-by-step explanation:
Each extra decimal place value added, u have to multiply it by the next value place such as tenths/hundreths/thousandths
In a cinema, there are eight seats in a row. Four of the seats in one row are occupied. What fraction of seats are available in that row?
Answer:
[tex] \frac{1}{2} [/tex]Step-by-step explanation:
Given,
There are 8 seats in a row.
There are 8 seats in a row.4 seats are occupied.
Available seats = 8 - 4 = 4 seats
Fraction of seats available:
[tex] \frac{number \: of \: seats \: available}{total \: number \: of \: seats} [/tex]
[tex] = \frac{4}{8} [/tex]
Reduce the fraction with GCF 4
[tex] = \frac{1}{2} [/tex]
Hope this helps..
Best regards!!
Answer:
Your correct answer is that there are 4 seats available. The fraction version is 1/2
Step-by-step explanation:
Since there are 8 in a row and 4 are taken, subtract 8 by 4.
8 - 4 = 4 seats that are available.
3 sides of the triangle are distinct perfect squares. What is the smallest possible perimeter of the triangle?
Answer:
77
Step-by-step explanation:
At first, you would probably think that the side lengths are 1², 2², 3² = 1, 4 and 9 but these side lengths don't form a triangle. The Triangle Inequality states that the sum of the two shortest side lengths must be greater than the largest side length, and since 1 + 4 > 9 is a false statement, it's not a triangle. Let's try 2², 3², 4² = 4, 9, 16. 4 + 9 > 16 is also false so that doesn't work. 3², 4², 5² = 9, 16, 25 but since 9 + 16 > 25 is false (25 isn't greater than 25), that doesn't work either. 4², 5², 6² = 16, 25, 36 and since 16 + 25 > 36 is true, this is our triangle which means that the perimeter is 16 + 25 + 36 = 77.
Answer:
e
Step-by-step explanation:
e
pls answer for my little friend A paperweight in the shape of a rectangular prism is shown (in the picture) If a cross section of the paperweight is cut parallel to the base, which shape describes the cross section? Rectangle Triangle Parallelogram Hexagon (DO NOT look answers up on another brainly answer pls)
Answer:
Hey there!
The cross section would be a rectangle. No matter where you cut the figure parallel to the base, the cross section would be a rectangle.
Let me know if this helps :)
Answer: Rectangle
Step-by-step explanation:
In a rectangular prism, every cross-section parallel to a side is a rectangle.
Hope it helps <3
plzzzzz helpp j + 9 - 3 < 8
Answer:
j < 2
Step-by-step explanation:
Simplify both sides of the inequality and isolating the variable would get you the answer
Natalie went to store A and bought 3 4/5 pounds of pistachios for $17. 75. Nicholas went to a store B and brought 4 7/10 pounds of pistachios for $ 19.50. Who got the better deal?
Answer:
Nicholas
Step-by-step explanation:
If you want an explanation I can add one
Which option is the correct option, quick please!
Answer:
168°Option A is the correct option
Step-by-step explanation:
Since, we know that angle at center is double that of the circumference.
JL = 2 × 84°
calculate the product
= 168°
Hope this helps..
Best regards!!
Answer:
Option A is the correct answer.
Step-by-step explanation:
By the incribed angle theorem, we have
1/2of angle JKL.
so, JL = 84°×2
Therefore, the answer is 168°.
Hope it helps..
Use the drop-downs to answer the questions about this geometric sequence. –243, 81, –27, 9 … What is the common ratio? What is the fifth term in the sequence? What is the sixth term in the sequence?
Answer:
a= -243
r=81/-243, r= -0.33(common ratio)
to find the 5th term; T5= -243×(0.33)^(5-1)
T5= -243 × (0.33)^4
T5= -3
to find the 6th term; T6= -243 ×(0.33)^(6-1)
T6= -243 ×(-0.33)^5
T6= 1
Answer:
Answer above is correct
Step-by-step explanation:
–243, 81, –27, 9 …
What is the common ratio?
–1/3
What is the fifth term in the sequence?
–3
What is the sixth term in the sequence?
1
Mia agreed to borrow a 3 year loan with 4 percent interest to buy a motorcycle if Mia will pay a total of $444 in interest how much money did she borrow how much interest would Mia pay if the simple interest rate was 5 percent
Answer:
a) $3700
b) $555
Step-by-step explanation:
The length of the loan is 3 years.
The interest after 3 years is $444.
The rate of the Simple Interest is 4%.
Simple Interest is given as:
I = (P * R * T) / 100
where P = principal (amount borrowed)
R = rate
T = length of years
Therefore:
[tex]444 = (P * 3 * 4) / 100\\\\444 = 12P / 100\\\\12P = 444 * 100\\\\12P = 44400\\\\P = 44400 / 12\\[/tex]
P = $3700
She borrowed $3700
b) If the simple interest was 5%, then:
I = (3700 * 5 * 3) / 100 = $555
The interest would be $555.
Which of the following ordered pairs satisfied the inequality 5x-2y<8
A) (-1,1)
B) (-3,4)
C) (4,0)
D) (-2,3)
Answer: A, B, and D
Step-by-step explanation:
Input the coordinates into the inequality to see which makes a true statement:
5x - 2y < 8
A) x = -1, y = 1 5(-1) - 2(1) < 8
-5 - 2 < 8
-7 < 8 TRUE!
B) x = -3, y = 4 5(-3) - 2(4) < 8
-15 - 8 < 8
-23 < 8 TRUE!
C) x = 4, y = 0 5(4) - 2(0) < 8
20 - 0 < 8
20 < 8 False
D) x = -2, y = 3 5(-2) - 2(3) < 8
-10 - 6 < 8
-16 < 8 TRUE!
A drawer contains 3 white shirts, 2 blue shirts, and 5 gray shirts. A shirt is randomly
selected from the drawer and set aside. Then another shirt is randomly selected from the
drawer.
What is the probability that the first shirt is white and the second shirt is gray?
Answer:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Step-by-step explanation:
Given that
3 white, 2 blue and 5 gray shirts are there.
To find:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = ?
Solution:
Here, total number of shirts = 3+2+5 = 10
First of all, let us learn about the formula of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
[tex]P(First\ White) = \dfrac{\text{Number of white shirts}}{\text {Total number of shirts left}}[/tex]
[tex]P(First\ White) = \dfrac{3}{10}[/tex]
Now, this shirt is set aside.
So, total number of shirts left are 9 now.
[tex]P(First\ White\ and\ second\ gray) = P(First White) \times P(Second\ Gray)\\\Rightarrow P(First\ White\ and\ second\ gray) = P(First White) \times \dfrac{\text{Number of gray shirts}}{\text{Total number of shirts left}}\\\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{3}{10} \times \dfrac{5}{9}\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{1}{2} \times \dfrac{1}{2}\\\Rightarrow P(First\ White\ and\ second\ gray) = \bold{\dfrac{1}{4} }[/tex]
So, the answer is:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Rotate the figure 90 counterclockwise about the origin. Determine the orientation of the rotated figure and place it in the correct position (PLS HELP)
Answer:
see below
Step-by-step explanation:
The rotated location of D' is (-2, 1). The "arrow" points to the left. The attached figure is the best I could do with your distorted image.
You have to rotate the figure 90 counterclockwise about the origin.
A 25-foot ladder is placed against a building and the top of the ladder makes a 32° angle with the building. How many feet away from the building is the base of the ladder?
Answer:
since the top of the ladder is making the angle, the of the ladder's base from the building is our opposite and the ladder is the hypotnuse,
sin (32)=opp/hyp, 0.52=opp/25, opp=13 ft
Mai invests $20,000 at age 20. She hopes the investment will be worth $500,000 when she turns 40. If the interest compounds continuously, approximately what rate of growth will she need to achieve her goal? Round to the nearest tenth of a percent.
Answer:
[tex]\approx[/tex] 17.5% per annum
Step-by-step explanation:
Given:
Money invested = $20,000 at the age of 20 years.
Money expected to be $500,000 at the age of 40.
Time = 40 - 20 = 20 years
Interest is compounded annually.
To find:
Rate of growth = ?
Solution:
First of all, let us have a look at the formula for compound interest.
[tex]A = P \times (1+\frac{R}{100})^T[/tex]
Where A is the amount after T years compounding at a rate of R% per annum. P is the principal amount.
Here, We are given:
P = $20,000
A = $500,000
T = 20 years
R = ?
Putting all the values in the formula:
[tex]500000 = 20000 \times (1+\frac{R}{100})^{20}\\\Rightarrow \dfrac{500000}{20000} =(1+\frac{R}{100})^{20}\\\Rightarrow 25 =(1+\frac{R}{100})^{20}\\\Rightarrow \sqrt[20]{25} =1+\frac{R}{100}\\\Rightarrow 1.175 = 1+0.01R\\\Rightarrow R \approx17.5\%[/tex]
So, the correct answer is [tex]\approx[/tex] 17.5% per annum and compounding annually.
Answer:
16.1%
Step-by-step explanation:
(the other person is wrong, trust me)
Dimitri is solving the equation x2 – 10x = 21. Which value must be added to both sides of the equation to make the left side a perfect-square trinomial?
Answer:
[tex]\boxed{\sf \ \ 25 \ \ }[/tex]
Step-by-step explanation:
Hello,
we can see that
[tex]x^2-10x = x^2-2*5x[/tex]
is the beginning of
[tex]x^2-2*5x+5^2=(x-5)^2[/tex]
so we must add 5*5=25 to both sides of the equation to make the left side a perfect square trinomial
hope this helps
Answer:
25.
Step-by-step explanation:
To find the value that will make the left side a perfect-square trinomial, you need to find (b/2)^2. In this case, b = -10.
(-10 / 2)^2
= (-5)^2
= (-5) * (-5)
= 25
Once you add 25 to both sides, the left side becomes x^2 - 10x + 25, which is equal to (x - 5)^2.
Hope this helps!
WILL MARK AS BRAINLIEST!!! 5. A 2011 study by The National Safety Council estimated that there are nearly 5.7 million traffic accidents year. At least 28% of them involved distracted drivers using cell phones or texting. The data showed that 11% of drivers at any time are using cell phones . Car insurance companies base their policy rates on accident data that shows drivers have collisions approximately once every 19 years. That’s a 5.26% chance per year. Given what you know about probability, determine if cell phone use while driving and traffic accidents are related. Step A: Let DC = event that a randomly selected driver is using a cell phone. What is P(DC)? (1 point) Step B: Let TA = event that a randomly selected driver has a traffic accident. What is P(TA)? Hint: What is the probability on any given day? (1 point) Step C: How can you determine if cell phone use while driving and traffic accidents are related? (1 point) Step D: Given that the driver has an accident, what is the probability that the driver was distracted by a cell phone? Write this event with the correct conditional notation. (1 point) Step E: What is the probability that a randomly selected driver will be distracted by using a cell phone and have an accident? (2 points) Step F: For a randomly selected driver, are the events "driving while using a cell phone" and "having a traffic accident" independent events? Explain your answer. (2 points)
Answer:
Step-by-step explanation:
Hello!
Regarding the reasons that traffic accidents occur:
28% are caused by distracted drivers using cell phones or texting
11% of the drivers' user their phones at any time
The probability of a driver having an accident is 5.26%
a)
DC = event that a randomly selected driver is using a cell phone.
P(DC)= 0.11
b)
TA = event that a randomly selected driver has a traffic accident.
P(TA)= 0.0526
c) and f)
If both events are related, i.e. dependent, then you would expect that the occurrence of one of these events will affect the probability of the other one. If they are not related, i.e. independent events, then their probabilities will not be affected by the occurrence of one or another:
If both events are independent P(TA|DC)= P(TA)
If they are dependent, then:
P(TA|DC)≠ P(TA)
P(TA|DC)= 0.28
P(TA)= 0.0526
As you can see the probability of the driver having an accident given that he was using the cell phone is different from the probability of the driver having an accident. This means that both events are related.
d) and e)
You have to calculate the probability that "the driver was distracted with the phone given that he had an accident", symbolically P(DC|TA)
P(DC|TA) = [tex]\frac{P(DCnTA)}{P(TA)}[/tex]
[tex]P(TA|DC)= \frac{P(TAnDC}{P(DC)}[/tex] ⇒ P(DC∩TA)= P(TA|DC)*P(DC)= 0.28 * 0.11= 0.0308
P(DC|TA) = [tex]\frac{0.0308}{0.0526}= 0.585= 0.59[/tex]
I hope this helps!
Let X denote the distance (m) that an animal moves from its birth site to the first territorial vacancy it encounters. Suppose that for banner-tailed kangaroo rats, X has an exponential distribution with parameter λ = 0.0143. (a) What is the probability that the distance is at most 100 m? What is the probability that the distance is at most 200 m? What is the probability that the distance is between 100 m and 200 m? (b) What is the probability that distance exceeds the mean distance by more than 2 standard deviations? (c) What is the value of the median distance?
Answer and Step-by-step explanation: For an exponential distribution, the probability distribution function is:
f(x) = λ.[tex]e^{-\lambda.x}[/tex]
and the cumulative distribution function, which describes the probability distribution of a random variable X, is:
F(x) = 1 - [tex]e^{-\lambda.x}[/tex]
(a) Probability of distance at most 100m, with λ = 0.0143:
F(100) = 1 - [tex]e^{-0.0143.100}[/tex]
F(100) = 0.76
Probability of distance at most 200:
F(200) = 1 - [tex]e^{-0.0143.200}[/tex]
F(200) = 0.94
Probability of distance between 100 and 200:
F(100≤X≤200) = F(200) - F(100)
F(100≤X≤200) = 0.94 - 0.76
F(100≤X≤200) = 0.18
(b) The mean, E(X), of a probability distribution is calculated by:
E(X) = [tex]\frac{1}{\lambda}[/tex]
E(X) = [tex]\frac{1}{0.0143}[/tex]
E(X) = 69.93
The standard deviation is the square root of variance,V(X), which is calculated by:
σ = [tex]\sqrt{\frac{1}{\lambda^{2}} }[/tex]
σ = [tex]\sqrt{\frac{1}{0.0143^{2}} }[/tex]
σ = 69.93
Distance exceeds the mean distance by more than 2σ:
P(X > 69.93+2.69.93) = P(X > 209.79)
P(X > 209.79) = 1 - P(X≤209.79)
P(X > 209.79) = 1 - F(209.79)
P(X > 209.79) = 1 - (1 - [tex]e^{-0.0143*209.79}[/tex])
P(X > 209.79) = 0.0503
(c) Median is a point that divides the value in half. For a probability distribution:
P(X≤m) = 0.5
[tex]\int\limits^m_0 f({x}) \, dx[/tex] = 0.5
[tex]\int\limits^m_0 {\lambda.e^{-\lambda.x}} \, dx[/tex] = 0.5
[tex]\lambda.\frac{e^{-\lambda.x}}{-\lambda}[/tex] = [tex]-e^{-\lambda.x} + e^{0}[/tex]
[tex]1 - e^{-\lambda.m}[/tex] = 0.5
[tex]-e^{-\lambda.m}[/tex] = - 0.5
ln([tex]e^{-0.0143.m}[/tex]) = ln(0.5)
-0.0143.m = - 0.0693
m = 48.46
In right triangle ABC, 2B is a right angle, AB = 48 units, BC = 55 units, and AC = 73 units.
literally please help me
Answer:
73/55
Step-by-step explanation:
The cosecant (csc) is one of the reciprocal functions:
csc(θ) = 1/sin(θ)
sec(θ) = 1/cos(θ)
cot(θ) = 1/tan(θ)
So, if we can find the sine, we can find the cosecant.
__
The mnemonic SOH CAH TOA reminds you that the sine is ...
Sin = Opposite/Hypotenuse
The above tells you that ...
Csc = 1/Sin = Hypotenuse/Opposite
The hypotenuse of your triangle is AC = 73. The side opposite angle θ is BC = 55. So, the ratio you want is ...
csc(θ) = 73/55
Answer:
[tex]csc (\theta)=\frac{33}{55}[/tex]
Step-by-step explanation:
Hello!
1) The cosecant function is the inverse the sine function. So we can write:
[tex]csc(\theta)=\frac{1}{sin(\theta)}[/tex]
2) The sine function is the side opposite angle to [tex]\angle \theta[/tex] over the hypotenuse:
[tex]sin(\theta)=\frac{55}{33}[/tex]
3) So, remembering operations with fractions then the cosecant is:
[tex]csc \theta = \frac{1}{\frac{55}{33} } =1 \times \frac{33}{55}[/tex]
[tex]csc (\theta)=\frac{33}{55}[/tex]
please what's the solution for 2a²×4a³
Answer:
8a^5
Step-by-step explanation:
Well to start off 2*4=8
So the coefficent will be 8
and when multipling ezponents we add the exponents and 2+3=5 so the exponent will be 5.
So 8a^5 is the answer
In the given figure, find AB, given thatAC = 14 andBC = 9.
Answer:
Given:
AC = 14 and BC = 9
AB = ?
Solution:
From the fig:
AC = AB + BC
Putting the values
14 = AB + 9
AB = 14 - 9
AB = 5
(you can also take AB = x or any other variable)
Step-by-step explanation:
Use differentials to approximate the value of the expression. Compare your answer with that of a calculator. (Round your answers to four decimal places.)
24.5
Calculator =
Differentials =
Answer:
With calculator;√24.5 = 4.9497
With differentials;With calculator;√24.5 = 4.95
The value of the square root gotten using differentials is an approximate value of the one gotten with a calculator
Step-by-step explanation:
With calculator;√24.5 = 4.9497
Using differentials;
The nearest number to 24.5 whose square root can be taken is 25, so let us consider that x = 25 and δx = dx = - 0.5
Now, let's consider;
y = √x - - - (eq 1)
Differentiating with respect to x, we have;
dy/dx = 1/(2√x) - - - - (eq 2)
Taking the differential of eq 2,we have;
dy = (1/(2√x)) dx
Using the values of x = 25 and dx = 0.5,we have;
dy = (1/(2√25)) × 0.5
dy = 0.05
Now;
√24.5 = y - dy
√24.5 = √x - dy
√24.5 = √25 - 0.05
√24.5 = 5 - 0.05
√24.5 = 4.95
Which transformation should be applied to the graph of the function y=cot(x) to obtain the graph of the function y=6 cot(3x-pi/2)+4
Answer:
The correct answer is the first one.
Step-by-step explanation:
Let's analyse the effect of each modification in the function.
The value 6 multiplying the cot function means a vertical stretch.
The value of 3 multiplying the x inside the function is a horizontal compression, which causes the period to be 3 times lower the original period.
The original period of the cotangent function is pi, so the horizontal compression will make the period be pi/3.
The value of -pi/2 inside the cotangent function normally causes a horizontal shift of pi/2 to the right, but the x-values were compressed by a factor of 3 (horizontal stretch), so the horizontal shift will be 3 times lower: (pi/2) /3 = pi/6
And the value of 4 summing the whole equation is a vertical shift of 4 units up.
So the correct answer is the first one.
Answer:
option 1
Step-by-step explanation: