In which quadrant or on which axis do each of the points (2, 3 ), ( 5, -6 ), ( 2,0 ) , ( -5, 2 ), (-2,-4), (0,-2).
from the above picture
2,3 = 1 quadrant
5,-6 = 4 quadrant
2,0 = on x axis
-5,2 = 2 quadrant
-2,-4 =3 quadrant
0,-2 = on y axis
why the system of si unit is developed
Step-by-step explanation:
Hi, there!!!!
The main purpose of developing si unit is to have standard unit of measurements and to bring uniformity in whole world in terms of measurements.
I hope it helps you...
A swimming pool can be emptied in 6 hours using a 10-horsepower pump along with a 6-horsepower pump. The 6-horsepower pump requires 5 hours more than the 10-horsepower pump to empty the pool when working by itself. How long will it take to empty the pool using just the 10-horsepower pump?
Answer: 10 hours
Step-by-step explanation:
The 10hp pump takes x hours to empty the pool which means it gets [tex]\dfrac{1}{x}[/tex] of the job done in one hour.
The 6hp pump takes x+5 hours to empty the pool which means it gets [tex]\dfrac{1}{x+5}[/tex] of the job done in one hour.
Together, they can get [tex]\dfrac{1}{x}+\dfrac{1}{x+5}[/tex] of the job done in one hour.
It is given that together they get the job done in 6 hours which means they get [tex]\dfrac{1}{6}[/tex] of the job done in one hour.
10 hp pump + 6 hp pump = Together
[tex]\dfrac{1}{x}\quad +\quad \dfrac{1}{x+5}\quad =\quad \dfrac{1}{6}[/tex]
Multiply by 6x(x+5) to eliminate the denominator:
[tex]\dfrac{1}{x}(6x)(x+5) +\dfrac{1}{x+5}(6x)(x+5) = \dfrac{1}{6}(6x)(x+5)[/tex]
Simplify and solve for x:
6(x + 5) + 6x = x(x + 5)
6x + 30 + 6x = x² + 5x
12x + 30 = x² + 5x
0 = x² - 7x - 30
0 = (x - 10)(x + 3)
0 = x - 10 0 = x + 3
10 = x -3 = x
Since the number of hours cannot be negative, disregard x = -3.
So, the only valid answer is x = 10.
A polygon with 9 sides is shown. An exterior angle has a measure of x degrees. In the regular nonagon shown, what is the measure of angle x? 36° 40° 45° 60°
Answer:
40°Step-by-step explanation:
First we must know that the sum of all the exterior angle of all polygons is 360°.
Measure of each angle of a polygon = 360°/total sides of the polygon
Since a regular nonagon has 9 sides, the measure of each angle of a polygon is expressed as thus;
Measure of each angle of a polygon = 360°/9
Measure of each angle of a polygon = 40°
Hence the measure of an exterior angle x of a nonagon is 40°
Answer:
B in Edg
Step-by-step explanation:
SIMPLIFY: M2 x M5 xM3 PLEASE HELP!!! ASAP!!!!
Answer: M^10
Step-by-step explanation:
since the base number is the same, just add up the exponents: 2+5+3=10
Answer:
Step-by-step explanation:
If its like M^2 x M^5 x M^3 (exponents)
then just add 2+5+3=10
so M^10
Its a rule when the bottom (M) is the same you add the exponents.
If its 2M x 5M x 3M then you multiply
2x5x3=30
so 30M
Hope this helps!
Consider the matrix A = \begin{pmatrix} 7 & 9 & -3 \\ 3 & -6 & 5 \\ 4 & 0 & 1 \end{pmatrix} ⎝ ⎛ 7 3 4 9 −6 0 −3 5 1 ⎠ ⎞ . What is the value of minor M_{11}M 11 ? 5 -6 0 -4
Answer:
The value of M₁₁ is -6.
Step-by-step explanation:
The minor, [tex]M_{ij}[/tex] is the determinant of a square matrix, say P, formed by removing the ith row and jth column from the original square matrix, P.
The matrix provided is as follows:
[tex]A=\left[\begin{array}{ccc}7&9&-3\\3&-6&5\\4&0&1\end{array}\right][/tex]
The matrix M₁₁ is:
Remove the 1st row and 1st column to form M₁₁,
[tex]M_{11}=\left|\begin{array}{cc}-6&5\\4&0\end{array}\right|[/tex]
Compute the value of M₁₁ as follows:
[tex]M_{11}=\left|\begin{array}{cc}-6&5\\4&0\end{array}\right|[/tex]
[tex]=(-6\times 1)-(5\times 0)\\\\=-6-0\\=-6[/tex]
Thus, the value of M₁₁ is -6.
Please answer this question now
Answer:
m∠D = 94°
Step-by-step explanation:
Quadrilateral ABCD is also called a cyclic quadrilateral or a quadrilateral that is inscribed in a circle.
Opposite angles in a cyclic Quadrilateral are supplementary, i.e the sum of two opposite angles in a Quadrilateral = 180°
m∠A + m∠C = 180°
m∠A = 74°
74° + m∠C = 180°
m∠C = 180° - 74°
m∠C = 106°
In a cyclic quadrilateral, the total sum of the angles outside the circle = 360°
i.e =
m∠AB + m∠BC + mDC + mAD = 360°
m∠DAB= ( m∠C) × 2
= 106° × 2 = 212°
m∠DAB = m∠AD + m∠AB
m∠AD = 79°
212° = 79° + m∠AB
m∠AB = 212° - 79°
= 133°
m∠ABC = m∠AB + m∠BC
m∠AB = 133°
m∠BC= 55°
m∠ABC = 133° + 55°
= 188°
We are asked to find m∠D
m∠D = 1/2m∠ABC
m∠ABC = 188°
m∠D = 1/2 × 188°
m∠D = 94°
Therefore, m∠D = 94°
A game has an expected value to you of $1200. It costs $1200 to play, but if you win, you receive $100,000 (including your $1200 bet) for a net gain of $98 comma 800. What is the probability of winning? Would you play this game? Discuss the factors that would influence your decision.
Answer:
A) the probability of winning is 0.24%.
B) Yes i will play the game
C) Despite the fact that the probability of winning is very low, one should play the game because the expected value of the game is positive.
Step-by-step explanation:
Expected value of X is denoted by;
E(X) = x1•p1 + x2•p2 +..... xn•pn
Where;
xi is the observation and pi is the probability of xi
Now, let's make p the probability of the winning bet and 1 - p be the probability of losing the game
If the bet is win, the net gain is $98,800 and if the bet is lose, the loss is -$1200.
Hence the probability distribution will be;
For xi = $98,800, pi = p
For xi = -$1,200, pi = 1 - p
So;
E(X) = Σxi.pi
Thus;
1200 = 98800p - 1200(1 - p)
1200 = 98800p - 1200 + 1200p
1200 + 1200 = 100000p
2400 = 100000p
p = 2400/100000
p = 0.024
Thus, the probability of winning is 0.24%.
Despite the fact that the probability of winning is very low, one should play the game because the expected value of the game is positive.
HELP ASAP MONEY & WAGES!
Answer: $26.70 per hour
Step-by-step explanation:
Regular hours consists of 8 hrs
Overtime hours is 12 - 8 = 4 hours
Regular pay at "x" per hour = 5(8)(x) = 40x
Overtime pay at "2x" per hour = 5(4)(2x) = 40x
Total pay = 80x
Total Pay = $2136 = 80x
[tex]\dfrac{\$2136}{80}=x[/tex]
$26.70 = x
Find the 9th term geometric sequence 1,1/2,1/2^2
Answer: [tex]t_9=\dfrac{1}{2^8}[/tex]
Step-by-step explanation:
[tex]t_n=t_1\times r^{n-1}\\\\Given: t_1=1,\quad r=\dfrac{1}{2}\\\\\\t_9=1\times\bigg(\dfrac{1}{2}\bigg)^{9-1}\\\\\\.\quad =\large\boxed{\dfrac{1}{2^8}}[/tex]
On a number line, a number, b, is located the same distance from 0 as another number, a, but in the opposite direction. The number b varies directly with the number a. For example b = 2 3/4 when a = -2 3/4 . Which equation represents this direct variation between a and b?
Answer:
b=-a
Step-by-step explanation:
Solve.
5x– 2y = 27
-3x +2y=-17
Enter your answer, in the form (x,y), in the boxes.
Answer:
x=5,y=-1
Step-by-step explanation:
5x– 2y = 27
-3x +2y=-17
Add the two equations together to eliminate y
5x– 2y = 27
-3x +2y=-17
----------------------
2x = 10
Divide by 2
2x/2 = 10/2
x = 5
Now find y
-3x +2y = -17
-3(5)+2y = -17
-15+2y =-17
Add 15 to each side
-15+15 +2y = -17+15
2y = -2
Divide by 2
2y/2 = -2/2
y =-1
Find the 20th term from the last term of the AP:3,8,13,..., 253.
Answer:
158
Step-by-step explanation:
The sequence is 3, 8, 13, ..., 253.
Going backwards, it's 253, 248, 243, ..., 3.
First term is 253, common difference is -5.
The nth term is:
a = 253 − 5(n − 1)
The 20th term is:
a = 253 − 5(20 − 1)
a = 158
In a study with four groups and 10 participants in each group, the sum of squares for the between-groups source of variation is 60. What is the value for the mean square between groups in this study
Answer:
20
Step-by-step explanation:
Given that:
The study group n = 4
number of participants = 10
the sum of squares for the between-groups source of variation is 60
The objective is to determine the mean square between groups in this study
The mean square between groups in this study compares the means of the group with the sum of squares for the between-groups source (i.e the grand mean)
For this analysis;
the degree of freedom = n-1
the degree of freedom = 4 - 1
the degree of freedom = 3
Thus; the mean square between groups = [tex]\dfrac{60}{3}[/tex]
the mean square between groups = 20
pleaseeeeeeeeee helllllllpppppp pleaseeeeee hellpppp
Answer:
a. u = 19b. t = 6c. a = 2Step-by-step explanation:
a. Given,
v = 34 , a = 5 , t = 3
[tex]v = u + at[/tex]
plugging the values:
[tex]34 = u + 5 \times 3[/tex]
Calculate the product
[tex]34 = u + 15[/tex]
Move 'u' to L.H.S and change its sign
[tex] - u + 34 = 15[/tex]
Move constant to RHS and change its sign
[tex] - u = 15 - 34[/tex]
Calculate
[tex] - u = - 19[/tex]
The difference sign (-) will be cancelled in both sides:
[tex]u = 19[/tex]
b. Given,
v = 50 , u = 20 , a = 5
[tex]v = u + at[/tex]
plugging the values
[tex]50 = 20 + 5 \times t[/tex]
[tex]50 = 20 + 5t[/tex]
Move 5t to L.H.S and change its sign.
Similarly, Move 50 to R.H.S and change its sign
[tex] - 5t = 20 - 50[/tex]
Calculate
[tex] - 5t = - 30[/tex]
The difference sign (-) will be cancelled in both sides
[tex]5t = 30[/tex]
Divide both sides of the equation by 5
[tex] \frac{5t}{5} = \frac{30}{5} [/tex]
Calculate
[tex]t = 6[/tex]
c. Given,
v = 22 , u = 8 , t = 7
[tex]v = u + at[/tex]
plugging the values
[tex]22 = 8 + a \times 7[/tex]
[tex]22 = 8 + 7a[/tex]
Move 7a to LHS and change its sign
Similarly, Move constant to R.H.S and change its sign
[tex] - 7a = 8 - 22[/tex]
Calculate
[tex] - 7a = - 14[/tex]
The difference sign (-) will be cancelled in both sides
[tex]7a = 14[/tex]
Divide both sides of the equation by 7
[tex] \frac{7a}{7} = \frac{14}{7} [/tex]
Calculate
[tex]a = 2[/tex]
Hope this helps...
Good luck on your assignment..
Which of these triangle pairs can be mapped to each other using both a translation and a reflection across the line containing AB? Triangles X Y Z and A B C are congruent. Triangle X Y Z is reflected across a line to form triangle A B C. It is also slightly higher than triangle A B C. Triangles A B C and A Y C are congruent and share common side A C. Triangle A B C is reflected across line A C to form triangle A Y C. Triangles A B C and X Y Z are congruent. Triangle X Y Z is slightly higher and to the right of triangle A B C. Triangles A B C and X Y Z are congruent. Triangle A B C is rotated to the right to form triangles X Y Z. Triangle X Y Z is also higher and to the right of triangle A B C.
Answer:
B. Triangles A B C and A Y C are congruent and share common side A C. Triangle A B C is reflected across line A C to form triangle A Y C.
Step-by-step explanation:
Translation and reflection are examples of methods of rigid transformation. Translation ensure that each point on a given figure is moved the same distance with respect to the reference plane. Reflection involves the flipping of a given figure across a given line.
From the question, both reflection and transformation would map the triangles into one another. Since the reference line contains AB, then the two triangles are congruent and would share a common side.
Thus, the triangle pairs that can be mapped into each other is that of option B.
Based on the information given, the triangle pairs that can be mapped to each other using both a translation and a reflection across the line containing AB will be A. Triangles X Y Z and A B C are congruent. Triangle X Y Z is reflected across a line to form triangle A.
Triangles.The triangle pair that can be mapped to each other using both translation and reflection across line containing AB is the first triangle pair.
The first figure consists of ΔXYZ and ΔABC that are a reflection of each other across the line AB and a translation.
Learn more about triangles on:
https://brainly.com/question/12261308
Match the system with the amounts of solutions. pls
From top to bottom, the answers are
no solutionsone solutioninfinitely many solutionsone solution==============================================
Explanation:
The first system of equations has each equation with the same slope 2, but different y intercepts. This indicates we have parallel lines. Parallel lines never cross, so there are no solutions. A solution is where the two lines cross.
The second system of equation has one solution where the two lines cross. This is because the slopes are different
The third system has infinitely many solutions. We have the same line graphed out twice. One line is directly on top of the other to yield infinitely many intersection points.
The fourth system is similar to the second system. Different slopes lead to exactly one solution. The y intercept doesn't affect the number of solutions (whether its 0, 1 or infinitely many)
For each equation shown, they are in the form y = mx+b with m as the slope and b as the y intercept.
find the value of x in the figure below. (picture included)
Answer:
Option D. 6√5.
Step-by-step explanation:
Please see attached photo for details.
The value of x can be obtained by using pythagoras theory as illustrated below:
In triangle ΔABC:
x² = z² + 12².... (1)
In triangle ΔABD:
15² = x² + y²...... (2)
In triangle ΔACD:
y² = z² + 3²....(3)
Substitute the value of y² in equation 3 into equation 2. We have:
15² = x² + y²
15² = x² + z² + 3²... (4)
From equation:
x² = z² + 12²
Make z² the subject
z² = x² – 12²
Substitute the value of z² into equation 4. We have:
15² = x² + z² + 3²
15² = x² + x² – 12² + 3²
15² = 2x² – 12² + 3²
225 = 2x² – 144 + 9
Collect like terms
225 + 144 – 9 = 2x²
360 = 2x²
Divide both side by 2
360/2 = x²
180 = x²
Take the square root of both side
x = √180
Expressing in surd form, we have:
x = √(36 x 5)
x = √36 x √5
x = 6√5
A rectangular tank, 1 1/2m long and 1m wide,
contains water to a depth of 50 cm. How
many litres does it contain?
You measure the sides of a pool and find that it is 20 yards wide and 50 yards long. Approximately, how far would it be diagonally between corners of the pool?
A. 54 yards
B. 58 yards
C. 62 yards
D. 66 yards
Answer:
[tex]\boxed{d = 54 yards}[/tex]
Step-by-step explanation:
Formula for diagonal is as follows:
[tex]d = \sqrt{l^2+w^2}[/tex]
Where d is diagonal, l is length (50 yards) and w is width (20 yards)
[tex]d = \sqrt{(50)^2+(20)^2}[/tex]
[tex]d = \sqrt{2500+400}[/tex]
[tex]d = \sqrt{2900}[/tex]
d = 53.85 yards
d ≈ 54 yards
Answer:
[tex]\boxed{\mathrm{54 \: yards}}[/tex]
Step-by-step explanation:
The shape of the pool is a rectangle.
The diagonal of a rectangle can be found through a formula by using Pythagorean theorem.
[tex]d^2=l^2 +w^2[/tex]
[tex]d=diagonal\\l=length\\w=width[/tex]
The length is given 50 yards, and width is given 20 yards. Find the diagonal.
[tex]d^2 =50^2 +20^2[/tex]
[tex]d^2 =2500+400[/tex]
[tex]d^2 =2900[/tex]
[tex]d=\sqrt{2900}[/tex]
[tex]d \approx 53.851648[/tex]
[tex]d \approx 54[/tex]
Find the other endpoint of the line segment with the given endpoint
and midpoint
Endpoint 1: (9,1)
Midpoint: (1,6)
Endpoint 2= (
Step-by-step explanation:
Let the other endpoint be (x,y)
Since, (1,6) is the midpoint between (9,1) and (x,y)
Therefore,
1=(9+x)/2
=> 2=9+x
=> x= -7
and,
6=(1+y)/2
=>12= 1+y
=> y=11
So, the other endpoint is ( -7, 11)
Answer:
( - 7 , 11)Step-by-step explanation:
Let the coordinates of Endpoint 2 be
(x ,y)
The midpoint of the endpoints is given by
[tex](1,6) = ( \frac{9 + x}{2} , \frac{1 + y}{2} )[/tex]
Where x and y are coordinates of Endpoint 2
Comparing with the midpoint we have
[tex]1 = \frac{9 + x}{2} \\ 2 = 9 + x \\ \\ x = 2 - 9 \\ \\ x = - 7[/tex]
[tex]6 = \frac{1 + y}{2} \\ 12 = 1 + y \\ \\ y = 12 - 1 \\ \\ y = 11[/tex]
Therefore x = - 7 and y = 11
The coordinates of Endpoint 2 are
( - 7 , 11)Hope this helps you
4) John's sister is 8 years less than twice his age. If John is 39, what age is his sister?
Answer:
Sister is 70
Step-by-step explanation:
John is 39.
8 less than twice his age is
39*2-8 = 70
Answer:
70 years old.
Step-by-step explanation:
Since John's sister is 8 years younger than TWICE his age, we just need to multiply 39*2 which equals 78. Now we just need to subtract 8 which equals 70.
Hope this helps!! <3
ASAP! Please help me!!!
Answer:
120 cm³Step-by-step explanation:
First we have to find out area of the base
[tex]s = \frac{a + b + c}{2} [/tex]
[tex] = \frac{5 + 12 + 13}{2} [/tex]
[tex] = \frac{30}{2} [/tex]
[tex] = 15[/tex]
Area of base = [tex] \sqrt{s(s - a)(s - b)(s - c)} [/tex]
[tex] = \sqrt{15(15 - 5)(15 - 12)(15 - 13)} [/tex]
[tex] = \sqrt{15 \times 10 \times 3 \times 2} [/tex]
[tex] = \sqrt{5 \times 3 \times 5 \times 2 \times 3 \times 2} [/tex]
[tex] = 2 \times 3 \times 5[/tex]
[tex] = 30 \: {cm}^{2} [/tex]
Now, let's find the volume of triangular pyramid
[tex] = \frac{1}{3} \times a \times h[/tex]
[tex] = \frac{1}{3} \times 30 \times 12[/tex]
[tex] = 120 \: [/tex] cm³
Hope this helps..
best regards!!
A sphere has a diameter of 12 ft. What is the volume of the sphere? Give the exact value in terms of pi
Answer:
288π
Step-by-step explanation:
V=4 /3πr^3 is the formula. We have the diameter, so the radius is half (6). We now have V=4 /3π(6)^3 = 4/3π216 = 288π.
PLEASE HELP
For his long distance phone service, David pays a $5 monthly fee plus 9 cents per minute. Last month, David’s long distance bill was $10.58. For how many minutes was David billed?
Subtract the monthly fee:
10.58 -5 = 5.58
Divide the remaining amount by cost per minute:
5.58/ 0.09 = 62
He was billed for 62 minutes.
solve systems by substitution method x + y = 20 3x + 4y = 72
Answer:
x = 8; y = 12.
Step-by-step explanation:
x + y = 20
x = -y + 20
3x + 4y = 72
3(-y + 20) + 4y = 72
-3y + 60 + 4y = 72
y = 12
x + 12 = 20
x = 8
Check your work!
3(8) + 4(12) = 72
24 + 48 = 72
72 = 72
Hope this helps!
Answer:
X=-12 and Y= 32
Step-by-step explanation:
x+y=20 -> 1
3x+4y=72 -> 2
Form 1,
[x+y=20]×4
4x+4y=60 ->3
Form 2,
3x+4y=72
4y= 72 -3x ->4
Sub (4) into (3)
4x+72-3x= 60
x = -12
Sub X=-12 into (1)
-12+y=20
y= 32
Hope this helps.
Alexandria is practicing her long distance running. On day 0, she can run 2 miles without stopping. She wants to add 1/4 mile to her run each day. What is the slope for this linear relationship?
Answer:
1/4
Step-by-step explanation:
The slope of a graph is always the rate of change for every value of x, in this case, days. Since she is adding 1/4 of a mile to her run each day, this means that the slope of this linear relationship is 1/4.
She increases a full mile in 4 days, just a little note.
Given each set of vertices, determine whether PQRS is a rhombus, a rectangle, or a square. List all that apply. Explain your reasoning, P(-2, -3). Q(2, - 6). R(6. - 3). S(2, 1)
Answer:
RectangleStep-by-step explanation:
Given the coordinates P(-2, -3). Q(2, - 6). R(6. - 3). S(2, 1), to determine the type of shape the quadrilateral is, we need to find the measure of the sides. To get the measure of each sides, we will take the distance between the adjacent coordinates using the formula to formula for calculating the distance between two points as shown;
D = √(x₂-x₁)²-(y₂-y₁)²
For the side PQ with the coordinate P(-2, -3). Q(2, - 6)
PQ = √(2-(-2))²-(-6-(-3))²
PQ = √(2+2)²-(-6+3)²
PQ = √4²-(-3)²
PQ = √16-9
PQ = √7
For the side QR with the coordinate Q(2, - 6) and R(6, -3)
QR = √(6-2))²-(-3-(-6))²
QR = √(4)²-(3)²
QR = √16-9
QR = √7
For the side RS with the coordinate R(6. - 3) and S(2, 1)
RS = √(2-6)²-(1-(-3))²
RS = √(-4)²-(1+3)²
RS = √16-(4)²
RS = √16-16
RS = 0
For the side PS with the coordinate P(-2, -3) and S(2, 1)
PS = √(2-(-2))²-(1-(-3))²
PS = √(4)²-(1+3)²
PS = √16-(4)²
PS = √16-16
PS = 0
For the quadrilateral to be a rectangle, then two of its sides must be equal and parallel to each other. A rectangle is a plane shape that has two of its adjacent sides equal and parallel to each other. Since two of he sides are equal i.e RS = PS and PQ = QR then the quadrilateral PQRS is a rectangle. Both rhombus and square has all of its sides equal thereby making them wrong.
convert this number to scientific notation 1260000
Answer:
1.26 * 10 ^6
Step-by-step explanation:
1260000
Scientific notation is of the form a* 10 ^b
where a is a number between 1 and less than 10
Move the decimal 6 places to the left
1.26 ( dropping the extra zeros)
b = +6 since we moved the decimal 6 places)
1.26 * 10 ^6
The number 1260000 in scientific notation is 1.26 x [tex]10^6[/tex].
We have,
1260000
Write the zeroes in powers of 10.
Write a number between 1 to 10 along with the power of 10.
Now,
126 x 10000
This can be written as,
126 x [tex]10^4[/tex]
Now,
126 can be written as 126/100 x 100.
i.e
1.26 x 100 or 1.26 x 10²
Now,
1.26 x 10² x [tex]10^4[/tex]
1.26 x [tex]10^{2 + 4}[/tex]
1.26 x [tex]10^6[/tex]
Thus,
The number 1260000 in scientific notation is 1.26 x [tex]10^6[/tex].
Learn more about scientific notation here:
https://brainly.com/question/18073768P
#SPJ6
Louis traveled 2,795 on an airplane from
Los Angeles to New York City. Then he
switched planes and traveled 3,460
miles to London. After that, he switched
planes again and traveled 889 miles from
London to Rome. How many miles did he
fly in all?
Louis traveled 7,144 miles