Answer:
[tex]\dfrac{1}{x^{48}y^{36}z^{6}}[/tex]
Step-by-step explanation:
[tex] (\dfrac{(x^2y^3)^{-2}}{(x^6y^3z)^{2}})^3 = [/tex]
[tex] = (\dfrac{1}{(x^6y^3z)^{2}(x^2y^3)^{2}})^3 [/tex]
[tex] = (\dfrac{1}{x^{12}y^6z^{2}x^4y^6})^3 [/tex]
[tex]= (\dfrac{1}{x^{16}y^{12}z^{2}})^3[/tex]
[tex]= \dfrac{1}{x^{48}y^{36}z^{6}}[/tex]
Answer:
[tex]\displaystyle \frac{1}{x^{48}y^{36}z^6}[/tex]
Step-by-step explanation:
[tex]\displaystyle[\frac{(x^2 y^3)^{-2}}{(x^6 y^3 z)^2 } ]^3[/tex]
[tex]\displaystyle \frac{(x^2 y^3)^{-6}}{(x^6 y^3 z)^6 }[/tex]
[tex]\displaystyle \frac{(x^{-12} y^{-18})}{(x^{36} y^{18}z^6 ) }[/tex]
[tex]\displaystyle \frac{x^{-48} y^{-36}}{z^6 }[/tex]
[tex]\displaystyle \frac{1}{x^{48}y^{36}z^6}[/tex]
17. Mary bought 10 quarts of juice at the
grocery. How many gallons of juice did
she buy?
A 1.4 gal
C 3.5 gal
B 2.5 gal
D 4.5 gal
Pls help
Answer:
B 2.5 Gal
Step-by-step explanation:
Answer:
I think the correct answer may be B.
Step-by-step explanation:
A television set costs $350 cash. When bought on hire purchse, a deposit of $35 is required, followed by 12 monthly payments of $30. How much is saved by paying cash?
Answer:
$45
Step-by-step explanation:
find the hire purchase price: 12 months x $30 = $360 + $35 deposit = $395
difference: 395 - 350 = $45
Instructions: Find the missing side. Round your answer to the
nearest tenth
Answer:
x = 64Step-by-step explanation:
To find x we use tan
tan∅ = opposite / adjacent
From the question
The adjacent is x
The opposite is 30
So we have
tan 25° = 30/x
x tan 25 = 30
Divide both sides by tan 25
x = 30/tan 25
x = 64.34
x = 64 to the nearest tenth
Hope this helps you
Natasha and her two dogs were walking on a perfectly straight road when her two dogs ran away from her in opposite directions. Her beagle is now \dfrac{25}{4} 4 25 start fraction, 25, divided by, 4, end fraction meters directly to her right, and her labrador is \dfrac{51}{20} 20 51 start fraction, 51, divided by, 20, end fraction meters directly to her left. Which of the following expressions represents how far apart the two dogs are?
Answer:
[tex]\dfrac{74}{20}=3.7 meters[/tex]
Step-by-step explanation:
Hello!
1) Since no other data has been given. Suppose Natasha is in the center and the beagle is to the right.
[tex]\dfrac{25}{4} \:meters[/tex]
2) The labrador is [tex]\dfrac{51}{20}\: to\: the\: left.[/tex]
[tex]\dfrac{25}{4} -\dfrac{51}{20} =\dfrac{(5*25)-51}{20} \\\dfrac{(125-51}{20} =\dfrac{74}{20}[/tex]
Answer:
The answer is B :D hope this helps
Step-by-step explanation:
Gemma wants to draw a triangle with side lengths of 4 inches, 12 inches, and 17 inches. Which statement is true? This triangle exists because the sum of any two side lengths is greater than the length of the third side. This triangle exists because the sum of 4 and 12 is less than 17. This triangle does not exist because the sum of any two side lengths is greater than the length of the third side. This triangle does not exist because the sum of 4 and 12 is less than 17.
Answer:
The triangle inequality states that the sum of the lengths of the two shortest sides of a triangle must be greater than the length of the largest side. Because 4 + 12 > 17 is not a true statement, the answer is "This triangle does not exist because the sum of 4 and 12 is less than 17."
Answer:
This triangle does not exist due to the fact that the sum of 4 and 12 is less than 17
Step-by-step explanation:
The triangle formaction rule states that the 2 smaller sides must be able to combine and be greater than the greatest side.
Triangle
Sides - 3, 4, 5
3+4=7
Meaning the two smaller sides add up to because greater than 5.
Non-Triangle
Sides - 5, 6, 13
5+6=11
This means that this is not a triangle because the smaller sides ‘5 and 6’ do not add up to become greater than 13.
Gemma’s Triangle
Sides - 4, 12, 17
4+12=16
Hence, Gemma‘s figure is not a triangle because the 2 smaller sides ‘4 and 12’ don‘t add up to be greater than 17.
Andrew's bicycle has tires with a radius of 7 inches. What is the area of one of the bicycle tires, in terms of π?
Answer:
49π
Step-by-step explanation:
The formula for the area of a circle is,
[tex]\pi r^2[/tex]
If the radius is 7 inches we need to plug that in for r in the formula.
π(7)^2
7*7 = 49
Thus,
the area in terms of pi is 49π.
Hope this helps :)
Answer:
49πStep-by-step explanation:
[tex]r = 7\\A = ?\\A =\pi r^2\\A =\pi7^2\\A = 49\pi[/tex]
How many real solutions In this problem
Answer:
D
Step-by-step explanation:
Given
y = x² + 1
y = x
Equating gives
x² + 1 = x ( subtract x from both sides )
x² - x + 1 = 0
Consider the discriminant Δ = b² - 4ac
with a = 1, b = - 1 and c = 1
b² - 4ac = (- 1)² - (4 × 1 × 1) = 1 - 4 = - 3
Since b² - 4ac < 0 then there are no real solutions
The text classifies information systems as either operations or management support information systems. Which one of the following would not be classified as an operations support system?
A. Transaction processing systems
B. Process control systems
C. Enterprise collaboration systems
D. Decision support systems
Answer:
D. Decision support systems
Step-by-step explanation:
Operation Support System, sometimes referred to a group of computer programs that is used by the communications service provider for carrying out various operations or functions, such as monitoring, controlling, analyzing and managing a telephone or computer network.
It is often used by professionals such as Network planners, service designers, operations, architects and engineering teams in the service provider.
There are however, types of Operation Support System which are being used for different and specific purpose. They are classified into the following categories:
1. Transaction Processing Systems
2. Process control system
3. Enterprise collaboration system
4. Enterprise Resource
Hence, from the question above, the DECISION SUPPORT SYSTEM is not classified as Operation Support System.
What is the difference? StartFraction 2 x + 5 Over x squared minus 3 x EndFraction minus StartFraction 3 x + 5 Over x cubed minus 9 x EndFraction minus StartFraction x + 1 Over x squared minus 9 EndFraction StartFraction (x + 5) (x + 2) Over x cubed minus 9 x EndFraction StartFraction (x + 5) (x + 4) Over x cubed minus 9 x EndFraction StartFraction negative 2 x + 11 Over x cubed minus 12 x minus 9 EndFraction StartFraction 3 (x + 2) Over x squared minus 3 x EndFraction
Answer:
[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]First option is the correct option.
Step-by-step explanation:
[tex] \frac{2x + 5}{ {x}^{2} - 3x } - \frac{3x + 5}{ {x}^{3} - 9x } - \frac{x + 1}{ {x}^{2} - 9 } [/tex]
Factor out X from the expression
[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x( {x}^{2} - 9)} - \frac{x + 1}{ {x}^{2} - 9} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a - b)(a + b)[/tex] , factor the expression
[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x(x - 3)(x + 3) } - \frac{x + 1}{(x - 3)(x + 3)} [/tex]
Write all numerators above the Least Common Denominators x ( x - 3 ) ( x + 3 )
[tex] \frac{(x + 3) \times (2x - 5) - (3x + 5) - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]
Multiply the parentheses
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - (3x + 5) - x(x + 1)}{x(x - 3)(x + 3)} [/tex]
When there is a (-) in front of an expression in parentheses, change the sign of each term in the expression
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]
Distribute -x through the parentheses
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x }{x(x - 3)(x + 3)} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a + b)(a - b)[/tex] , simplify the product
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x}{x( {x}^{2} - 9)} [/tex]
Collect like terms
[tex] \frac{ {x}^{2} + 7x + 15 - 5}{x( {x}^{2} - 9)} [/tex]
Subtract the numbers
[tex] \frac{ {x}^{2} + 7x + 10}{ x({x}^{2} - 9)} [/tex]
Distribute x through the parentheses
[tex] \frac{ {x}^{2} + 7x + 10}{ {x}^{3} - 9x} [/tex]
Write 7x as a sum
[tex] \frac{ {x}^{2} + 5x +2x + 10 }{ {x}^{3} - 9x } [/tex]
Factor out X from the expression
[tex] \frac{x(x + 5) + 2x + 10}{ {x}^{3} - 9x} [/tex]
Factor out 2 from the expression
[tex] \frac{x( x + 5) + 2(x + 5)}{ {x}^{3} - 9x } [/tex]
Factor out x + 5 from the expression
[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]
Hope this helps...
Best regards!!
The difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
The expression is given as:
[tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex]
Factorize the denominators
[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x^2 - 9)} - \frac{x + 1}{x^2 - 9}[/tex]
Apply the difference of two squares to the denominators
[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x - 3)(x + 3)} - \frac{x + 1}{(x - 3)(x + 3)}[/tex]
Take LCM
[tex]\frac{(2x + 5)(x + 3) - 3x - 5 -x(x + 1) }{x(x - 3)(x + 3)}[/tex]
Expand the numerator
[tex]\frac{2x^2 +6x + 5x + 15 - 3x - 5 -x^2 - x }{x(x - 3)(x + 3)}[/tex]
Collect like terms
[tex]\frac{2x^2 -x^2 - x +6x + 5x - 3x+ 15 - 5 }{x(x - 3)(x + 3)}[/tex]
Simplify
[tex]\frac{x^2+7x+ 10 }{x(x - 3)(x + 3)}[/tex]
Factorize the numerator
[tex]\frac{(x+5)(x+ 2) }{x(x - 3)(x + 3)}[/tex]
Expand the denominator
[tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
Hence, the difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832
My state's lottery has 30 white balls numbered from 1 through 30 and 20 red balls numbered from 1 through 20. In each lottery drawing, 3 of the white balls and 2 of the red balls are drawn. To win, you must match all 3 white balls and both red balls, without regard to the order in which they were drawn. How many possible different combinations may be drawn?
Answer:
I dont give you the answer right away so you will read what i write and fully understand :D
Step-by-step explanation:
We are picking 3 balls from 30 balls, so its C(30,3) because the order of picking the balls doesnt matter. We also need to pick 2 balls from 20 balls, which is C(20,2). So the answer is C(30,3) * C(20,2).
Large samples of women and men are obtained, and the hemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2:
negative 1.76 g divided by dL less than mu 1 minus mu 2 less than minus 1.62 g divided by dL
−1.76 g/dL<μ1−μ2<−1.62 g/dL. Complete parts (a) through (c) below.
a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?
Answer:
a) Because the confidence interval does not include 0 it appears that there
is a significant difference between the mean level of hemoglobin in women and the mean level of hemoglobin in men.
b)There is 95% confidence that the interval from −1.76 g/dL<μ1−μ2<−1.62 g/dL actually contains the value of the difference between the two population means μ1−μ2
c) 1.62 < μ1−μ2< 1.76
Step-by-step explanation:
a) What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men?
Given:
95% confidence interval for the difference between the two population means:
−1.76g/dL< μ1−μ2 < −1.62g/dL
population 1 = measures from women
population 2 = measures from men
Solution:
a)
The given confidence interval has upper and lower bound of 1-62 and -1.76. This confidence interval does not contain 0. This shows that the population means difference is not likely to be 0. Thus the confidence interval implies that the mean hemoglobin level in women and the mean hemoglobin level in men is not equal and that the women are likely to have less hemoglobin than men. This depicts that there is significant difference between mean hemoglobin level in women and the mean hemoglobin level in men.
b)
There is 95% confidence that the interval −1.76 g/dL<μ1−μ2<−1.62 g/dL actually contains the value of the difference between the two population means μ1−μ2.
c)
If we interchange men and women then
confidence interval range sign will become positive.μ1 becomes the population mean of the hemoglobin level in menμ2 becomes the population mean of the hemoglobin level in women So confidence interval becomes:1.62 g/dL<μ1−μ2<1.76 g/dL.
There is a significant difference between the mean level of hemoglobin in women and in men.
How to interpret the confidence intervalThe confidence interval of the mean is given as:
[tex]-1.76 g/dL < \mu_1-\mu_2 < -1.62 g/dL[/tex]
The above confidence interval shows that the confidence interval is exclusive of 0.
This means that 0 is not part of the confidence interval
Since the confidence interval is exclusive of 0, then there is a significant difference between the mean level of hemoglobin in women and in men.
Read more about confidence intervals at:
https://brainly.com/question/17097944
Audrey charges a flat fee of $4 for each delivery plus a certain amount,in dollars per mile, for each mile she drives. For a distance of 30 miles, Curtis and Audrey charge the same amount
The number of people contacted at each level of a phone tree can be represented by f(x) = 3^x where x represents the level.
What is x when f(x) = 27?
A. X = 2; At level 2, 27 people will be contacted.
B. x = 24; At level 24, 27 people will be contacted.
C. x = 3; At level 3, 27 people will be contacted.
D. x = 9; At level 9,27 people will be contacted.
Answer:
3
Step-by-step explanation:
Answer:
c is the correct answer
Step-by-step explanation:
7 3/8 + (-4 1/2) ÷ (-5 2/3) Please Explain
Answer:
7 3/8 + (-4 1/2) ÷ (-5 2/3) = 8 23/136
Step-by-step explanation:
1) First I turned all the mix numbers into improper fractions:
7 3/8 ----> ( 7(8)+3/8) = 59/8, 4 1/2 ----> (4(2)+1/2) = 9/2, 5 2/3 ----> (5(3)+2/3) = 17/3
So now it should look like this: 59/8 + (-9/2)÷(-17/3)
2) Now our goal is to divide both of the improper fractions (-9/2)÷(-17/3),
- We first apply our fraction rule: -a/-b = a/b (when we have two negatives they cancel out each other and make a positive)
Our Case, From this:-9/2 ÷ -17/3 = To This: 9/2 ÷ 17/3
3) Now we can divide the fractions using this rule: a/b ÷ c/d = a times d / b times
Our Case, From This: 9/2 ÷ 17/3 To This: 9(3)/2(17) Which Gives Us: 27/34
(9 x 3 = 27, 2 x 17= 34)
So now it looks like this: 59/8 +27/34
4) Our look goal is to have the same denominator (which is the bottom part of the fraction) which are 8 and 34
To find it we find the LCM or Least Common Multiple of 8 and 34
(The LCM of a, b is the smallest positive number that is divisible by both a and b) which in this case a and b are 8 and 34
LCM is 136
5) We adjust our two fractions based on the LCM,
(Multiply each numerator ( top part of the fraction) by the same amount of needed to multiply its corresponding denominator to turn it to the LCM 136.
From This: 59/8 and 27/34 To This: 1003/136 and 108/36 ( 59(17)/8 (17) = 1003/136, 27(4)/34(4) = 108/306
6) Finally we can add the numerator (1003 and 108) together: 1003+108= 1111 and now we are left with 1111/136
Then we turn our improper fraction back into a mix number: 1111/138= 8 23/136
Answer:
[tex]\frac{1111}{136} = 8 \frac{23}{136}[/tex]
Step-by-step explanation:
We want to simplify:
[tex]7 \frac{3}{8} + \frac{ -4 \frac{1}{2} }{ -5 \frac{2}{3} }[/tex]
First, convert all the fractions to improper fractions:
[tex]\frac{59}{8} + \frac{ - \frac{9}{2} }{ - \frac{17}{3} } \\\\= \frac{59}{8} + \frac{27}{34}[/tex]
Find the LCM of the denominators:
[tex]\frac{(17 * 59) + (4 * 27)}{136} \\\\ = \frac{1003 + 108}{136}\\ \\= \frac{1111}{136} \\\\= 8 \frac{23}{136}[/tex]
A smaller number is 3 less than half a larger number. The larger number is 10 times 1 less than the smaller number. Let x represent the smaller number, and let y represent the larger number. Which equations can be used to model the situation? Check all that apply. x = one-half y minus 3 2 x minus y = negative 6 2 x minus y = negative 3 x = one-half (y minus 3) y = 10 (x minus 1)
Answer: x=one-half y minus
Step-by-step explanation:
Answer:
x=1/2 y-3
Step-by-step explanation:
What is the slope of the line shown below? (-2,3) (-4,-9)
Answer:
6Step-by-step explanation:
Let the points be A and B
A ( - 2 , 3 ) -------> ( x1 , x2 )
B ( -4 , -9 ) -------> ( x2 , y2 )
Now, finding the slope:
[tex]slope \: (m) = \frac{y2 - y1}{x2 - x1} [/tex]
Plug the values
[tex] = \frac{ - 9 - 3}{ - 4 - ( - 2)} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 4 - ( - 2)} [/tex]
When there is a (-) in front of an expression in parentheses , change the sign of each term in expression
[tex] = \frac{ - 12}{ - 4 + 2} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 2} [/tex]
Reduce the fraction with -2
[tex] = 6[/tex]
Hope this helps..
Best regards!!
8 7 12 7 11
10 7 12
Find:
a)the median
b) the range
c)the mode
Answer:
a) Median: 9
b) Range: 5
c) Mode: 7
Step-by-step explanation:
The median is the number in the middle.
First, you put the numbers in order: 7, 7, 7, 8, 10, 11, 12, 12
The middle of this is 8 and 10, so you plus them and divide by to 2, then it gives 9, so the median is 9.
To find the range, you minus the highest number and the lowest number, 12-7=5.
Mode is the most occurring and repetitive number, in this case, 7, because it is written 3 times.
Hope this helps!!!
Answer:
[tex]\boxed{\mathrm {Median = 9}}[/tex]
[tex]\boxed{\mathrm{Range = 5}}[/tex]
[tex]\boxed{\mathrm{Mode = 7}}[/tex]
Step-by-step explanation:
The observations are:
8,7,12,7,11,10,7,12
In ascending order:
=> 7,7,7,8,10,11,12,12
A) Median => Middlemost no.
Median = 8,10
=> [tex]\frac{8+10}{2}[/tex]
=> [tex]\frac{18}{2}[/tex]
Median = 9
B) Range = Highest No. = Lowest No.
RANGE = 12-7
Range = 5
C) Mode => frequently occurring number
Mode = 7
What is the value of x
Answer:
4
Step-by-step explanation:
For the first triangle which is triangle <KJL
Hypotenuse= 8✓2
Angle=30°
Opposite = ?
Therefore we will use Sine formula
Sin30° = Y/8✓2
Y=4✓2
For the second triangle which is triangle <JML
Hypotenuse= 4✓2
Opposite=X
Angle=45°
Therefore we will use Sine formula again
Sin45°=X/4✓2
X=4
Answer:
x = 4Step-by-step explanation:
ΔJKL is half of equilateral triangle and ΔJML is half of square.
We can use properties of these triangles (picture):
m∠KJL=90° and m∠JKL = 30° ⇒ JL = 0.5KL = 0.5•8√2 = 4√2
m∠JML=90° and m∠MJL = 45° ⇒ JL = ML√2
4√2 = x√2
x = 4
Two choises! Pick the right one!
Answer:
The function has a maximum value of 3 that occurs at x = 1.
Step-by-step explanation:
First, note that the leading coefficient is negative. This means that the parabola will curve downwards. Because of this, the function has a maximum. The maximum value will simply be the vertex.
The formula for the x-coordinate of the vertex is -b/2a.
a=-3, b=6, c=0
Plug in the numbers:
x=-(6)/2(-3)
=-6/-6=1
Now, plug 1 back into the original function:
-3x^2+6x
-3(1)^2+6(1)
=-3(1)+6
=-3+6
=3
Drag a statement or reason to each box to complete this proof.
If -5(x + 8) = -25, then x =
-3
What is the approximate angle between two position vectors if their terminal points are (5, -2) and (7, 3)?
Hi,
Answer:
[tex]Angle=\frac{pi}{4}[/tex] = π/4 = 45°
Have a good day.
What is 5,000 - 245( 30/2))?
Answer:
1,325
Step-by-step explanation:
30 /2
= 155,000 - 245(15)
= 5,000 - 3,675
= 1,325
Answer:
1,325
Step-by-step explanation:
Drew likes to take the long way to school each morning. He walks 3 blocks west and then 3 blocks north to arrive at the school. Today he is running late and decides go directly to school to save time. (Assume there is nothing obstructing his path.) If one block is 310 feet, how many feet will he travel if he goes directly to school? Round to the nearest tenth of a foot.
Answer:
Distance travel by Drew = 1,315.21 feet (Approx)
Step-by-step explanation:
Given:
Total block in north = 3
Total block in west = 3
1 block = 310 feet
Find:
Distance travel by Drew
Computation:
Total distance in north = 3 × 310 = 930 feet
Total distance in west = 3 × 310 = 930 feet
Distance travel by Drew = √Total distance in north² + Total distance in west²
Distance travel by Drew = √930² + 930²
Distance travel by Drew = √864,900 + 864,900
Distance travel by Drew = √1,729,800
Distance travel by Drew = 1,315.21 feet (Approx)
In a school, half of the 300 students saw Zootopia, 180 students saw Finding Dory, and 45 students did not see either movie. How many students saw both movies?
Answer:
150
Step-by-step explanation:
Answer:
150 = half of 300
± 180
230
soooo 230 students
Step-by-step explanation:
2.) Evaluate 6a² if a = 4
Answer:
96
Step-by-step explanation:
We simply need to plug in a = 4 so 6a² = 6 * 4² = 6 * 16 = 96.
In a local ice sculpture contest, one group sculpted a block into a rectangular based pyramid. The dimensions of the base were 3 m by 5 m, and the pyramid was 3.6 m high. Calculate the amount of ice needed for this sculpture.
Answer:
18m square
Step-by-step explanation:
Formula for rectangular- based pyramid is L x W x H divided by 3
= 3 x 5 x 3.6 divided by 3 = 18
So you would need 18 m square for the sculpture
Which equation represents a line that is perpendicular to line FG? A. y=-1/2x+5 B. y=1/2x+2 C. y=-2x-3 D. y=2x-6
The equation of line which is perpendicular to the line FG is
y = -2x -3.
What is equation of line?
The equation of line is an algebraic form of representing the set of points, which together form a line in a coordinate system.
Formula for finding the equation of line from two points [tex](x_{1} ,y_{1} ) and (x_{2}, y_{2} )[/tex][tex](y -y_{1}) = \frac{y_{2}-y_{1} }{x_{2} -x_{1} } (x-x_{1} )[/tex]
What is the slope of two perpendicular lines?If [tex]m_{1}[/tex] be the slope of one line, then the slope of the perpendicular line is [tex]\frac{-1}{m_{1} }[/tex].
What is the slope intercept form of a line ?The slope intercept form of the line is given by y = mx + b
Where, m is the slope of a line.
According to the given question
We have a line FG and the coordinates of points F and G are (-5,1) and (9,8) respectively.
Therefore, the slope of the line FG = [tex]\frac{8-1}{9+5}=\frac{7}{14} =\frac{1}{2}[/tex]
⇒ The slope of the line which is parallel to line FG is -2
Now, from the given option of the equation of line , y = -2x -3 has a slope of -2 .
Hence, the equation of line which is perpendicular to the line FG is
y = -2x -3.
Learn more about the equation of a perpendicular line here:
https://brainly.com/question/20712656
#SPJ2
The principal feature of the redesigned checks is a series of printed instructions that the company hopes will help merchants confirm a check’s authenticity, which includes reminders to watch the endorsement, compare signatures, and view the watermark while holding the check to the light.
(A) which includes reminders to watch the endorsement, compare signatures, and view
(B) which include reminders for watching the endorsement, to compare signatures and view
(C) by including reminders for watching the endorsement, comparing signatures, and viewing
(D) including reminders to watch the endorsement, comparing signatures and viewing
(E) including reminders to watch the endorsement, compare signatures, and view
Answer:
(E) including reminders to watch the endorsement, compare signatures, and view
Step-by-step explanation:
The principle features that will help the company to confirms checks authenticity. It include endorsements and compare the signatures with the designated signatories. If the signatures are matched correctly with the assigned signatories the check is hold in light to view the watermark on it.
Help me please
I’m having so much trouble
Answer:
Step-by-step explanation:
5 * 45 = 225
225+75=300
300/500=0.6
The tank will be 60% full.
If this helped, make sure to mark it as brainliest :D
Answer:
C.60%
Step-by-step explanation:
45 x 5 = 225 225 + 75 = 300
300 / 500 = 0.6 = 60%
3. In the diagram, PRST and PQWV are rectangles. Q, V
and U are midpoints of PR, PU and PT respectively.
Find the area of the shaded region.
======================================================
Work Shown:
A = area of trapezoid RSTU
A = height*(base1+base2)/2
A = ST*(UT+RS)/2
A = 14*(5+10)/2
A = 105 square cm
-----------------------
B = area of rectangle PQWV
B = length*width
B = WV*PV
B = 7*2.5
B = 17.5 square cm
If you're curious how I got PV = 2.5, you basically cut PT = 10 in half twice. So you go from 10 to 5, then from 5 to 2.5; which works because we have a bunch of midpoints.
-----------------------
C = total shaded area
C = A + B
C = 105 + 17.5
C = 122.5