Answer:
sodium
Explanation:
(Na) atom is paramagnetic and sodium is a na atom.
Limiting reagent problem. How many grams of H2O is produced from 40.0 g N2O4 and 25.0 g N2H4. N2O4 (l) + 2 N2H4 (l) → 3 N2 (g) + 4 H2O(g)
Answer:
28.13 g of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2O4(l) + 2N2H4 (l) → 3N2(g) + 4H2O(g)
Next, we shall determine the masses of N2O4 and N2H4 that reacted and the mass of H2O produced from the balanced equation.
This is illustrated below:
Molar mass of N2O4 = (14x2) + (16x4) = 92 g/mol
Mass of N2O4 from the balanced equation = 1 x 92 = 92g
Molar mass of N2H4 = (14x2) + (4x1) = 32 g/mol
Mass of N2H4 from the balanced equation = 2 x 32 = 64 g
Molar mass of H2O = (2x1) + 16 = 18 g/mol
Mass of H2O from the balanced equation = 4 x 18 = 72 g
Summary:
From the balanced equation above,
92 g of N2O4 reacted with 64 g of N2H4 to produce 72 g of H2O.
Next, we shall determine the limiting reactant.
This can be obtained as follow:
From the balanced equation above,
92 g of N2O4 reacted with 64 g of N2H4.
Therefore, 40 g of N2O4 will react with = (40 x 64)/92 = 27.83 g of N2H4.
From the calculations made above, we can see that it will take a higher mass i.e 27.83 g than what was given i.e 25 g of N2H4 to react completely with 40 g of N2O4.
Therefore, N2H4 is the limiting reactant and N2O4 is the excess reactant.
Finally, we shall determine the mass of H2O produced from the reaction of 40.0 g of N2O4 and 25.0 g of N2H4.
In this case the limiting reactant will be used because it will produce the maximum amount of H2O as all of it is consumed in the reaction.
The limiting reactant is N2H4 and the mass of H2O produced can be obtained as follow:
From the balanced equation above,
64 g of N2H4 reacted to produce 72 g of H2O.
Therefore, 25 g of N2H4 will react to produce = (25 x 72)/64 = 28.13 g of H2O.
Therefore, 28.13 g of H2O were obtained from the reaction.
Help please.☺️☺️☺️☺️☺️
Answer:
A.∆s>0contribute to spontaneity.
Arrange the following oxides in order of increasing acidity.
Rank from least acidic to most acidic. To rank items as equivalent,overlap them.
CaO
P2O5
SO3
SiO2
Al2O3
CO2
Answer:
Based on the Modern Periodic table, there is an increase in the electropositivity of the atom down the group as well as increases across a period. On comparing the electropositivities of the mentioned oxides central atom, it is seen that Ca is most electropositive followed by Al, Si, C, P, and S is the least electropositive.
With the decrease in the electropositivity, there is an increase in the acidity of the oxides. Thus, the increasing order of the oxides from the least acidic to the most acidic is:
CaO > Al2O3 > SiO2 > CO2 > P2O5 > SO3. Hence, CaO is the least acidic and SO3 is the most acidic.
Since acidity increases across a period from left to right, and decreases down a group, the oxides can be ranked from the least acidic to the most acidic as follows:
[tex]\mathbf{CaO < Al_2O_3 < SiO_2 < CO_2 < P_2O_5 <SO_3}[/tex]
The least acidic is CaOThe most acidic is [tex]SO_3[/tex]Note the following:
Acidity of an oxide depends on its electronegativity.Non-metals are more electronegative, while metals are less electronegative.Acidity of oxides increases across a period as you move from left to the right side of a periodic table.Acidity of oxides decreases down a group (column) in a periodic table.Using the periodic table diagram given in the attachment below, we can rank the given oxides according to their increasing acidity.
CaO, is the least, because it is an oxide of the metal, Calcium, which is at the far left in group 2 in the periodic table.The next is, [tex]Al_2O_3[/tex]. Aluminum is a metal from group 3.[tex]SiO_2[/tex] is an oxide of Silicon, also in group 4 but below Carbon.[tex]CO_2[/tex] is an oxide of Carbon, from group 4.
[tex]P_2O_5[/tex] is an oxide of the non-metal, Phosphorus, a group 5 element
[tex]SO_3[/tex] is an oxide of the non-metal, Sulphur, a group 6 element.
Therefore, since acidity increases across a period from left to right, and decreases down a group, the oxides can be ranked from the least acidic to the most acidic as follows:
[tex]\mathbf{CaO < Al_2O_3 < SiO_2 < CO_2 < P_2O_5 <SO_3}[/tex]
The least acidic is CaOThe most acidic is [tex]SO_3[/tex]Learn more here:
https://brainly.com/question/12200588
How to do this
Q1 and Q2
Only want to know how to find molecular formula
Answer:
Question 1
A. Empirical formula is C8H8O3
B. Molecular formula is C8H8O3
Question 2.
A. Empirical formula is CH2
B. Molecular formula is C4H8
Explanation:
Question 1:
A. Determination of the empirical formula:
Carbon (C) = 63.2%
Hydrogen (H) = 5.26%
Oxygen (O) = 31.6%
Divide by their molar mass
C = 63.2/12 = 5.27
H = 5.26/1 = 5.26
O = 31.6/16 = 1.975
Divide by the smallest
C = 5.27/1.975 = 2.7
H = 5.26/1.975 = 2.7
O = 1.975/1.975 = 1
Multiply through by 3 to express in whole number
C = 2.7 x 3 = 8
H = 2.7 x 3 = 8
O = 1 x 3 = 3
Therefore, the empirical formula for the compound is C8H8O3
B. Determination of the molecular formula of the compound.
From Avogadro's hypothesis, 1 mole of any substance contains 6.02×10²³ molecules.
Now from the question given, we were told that 1 molecule of the compound has a mass of 2.53×10¯²² g.
Therefore, 6.02×10²³ molecules will have a mass of = 6.02×10²³ x 2.53×10¯²² = 152.306 g
Therefore, 1 mole of the compound = 152.306 g
The molecular formula of the compound can be obtained as follow:
[C8H8O3]n = 152.306
[(12x8) + (1x8) + (16x3)]n = 152.306
[(96 + 8 + 48 ]n = 152.306
152n = 152.306
Divide both side by 152
n = 152.306/152
n = 1
The molecular formula => [C8H8O3]n
=> [C8H8O3]1
=> C8H8O3
Question 2:
A. Determination of the empirical formula of the compound.
Mass sample of compound = 0.648 g
Carbon (C) = 0.556 g
Mass of Hydrogen (H) = mass sample of compound – mass of carbon
Mass of Hydrogen (H) = 0.648 – 0.556
Mass of Hydrogen (H) = 0.092 g
Thus, the empirical formula can be obtained as follow:
C = 0.556 g
H = 0.092 g
Divide by their molar mass
C = 0.556/12 = 0.046
H = 0.092/1 = 0.092
Divide by the smallest
C = 0.046/0.046 = 1
H = 0.092/0.046 = 2
Therefore, the empirical formula of the compound is CH2.
B. Determination of the molecular formula of the compound.
Mole of compound = 0.5 mole
Mass of compound = 28.5 g
Molar mass of compound =.?
Mole = mass /Molar mass
0.5 = 28.5/ Molar mass
Cross multiply
0.5 x molar mass = 28.5
Divide both side by 0.5
Molar mass = 28.5/0.5 = 57 g/mol
Thus, the molecular formula of compound can be obtained as follow:
[CH2]n = 57
[12 + (1x2)]n = 57
14n = 57
Divide both side by 14
n = 57/14
n = 4
Molecular formula => [CH2]n
=> [CH2]4
=> C4H8.
What is the name of the molecule below?
A) 2-pentene
B) pentane
C) 2-pentyne
D) 2-pentane
The name of the molecule which is given below is 2-pentene.
What are alkene?Alkenes are the organic compounds which are composed of carbon and hydrogen atoms, in which double bond is present.
In the given diagram:
Each corner and joints shows the carbon atoms and number of carbon atoms in it is 5.One double bond is present in the 2nd position.So the compound is 2 pentene.
Hence, 2 pentene is the name of the compound.
To know more about alkene, visit the below link:
https://brainly.com/question/6041165
#SPJ2
Drag each image to the correct location on the model. Each image can be used more than once. Apply the rules and principles of electron configuration to draw the orbital diagram of aluminum. Use the periodic table to help you.
Answer:
The answer to your question is given below.
Explanation:
Aluminium has atomic number of 13. Thus, the electronic configuration of aluminium can be written as:
Al (13) —› 1s² 2s²2p⁶ 3s²3p¹
The orbital diagram is shown on the attached photo.
Answer: screen shot
Explanation:
Carbon-14 has a half-life of 5720 years and this is a fast-order reaction. If a piece of wood has converted 75 % of the carbon-14, then how old is it?
Answer:
11445.8years
Explanation:
Half-life of carbon-14 = 5720 years
First we have to calculate the rate constant, we use the formula :
Which one of the following reactions must be carried out in an electrolytic cell rather than in an electrochemical cell?
a. Zn2+ + Ca → Zn + Ca2+
b. Al3+ + 3Br– → Al + (3/2)Br2
c. 2Al + 3Fe2+ → 2Al3+ + 3Fe
d. H2 + I2(s) → 2H+ + 2I–
Answer:
b. Al3+ + 3Br– → Al + (3/2)Br2
Explanation:
If we look at this reaction closely, aluminum was reduced while bromine was oxidized. The reduction potential of aluminum is -1.66 V while that of bromine is + 1.087. Recall that the more negative the redox potential of a chemical specie, the greater its tendency to function as a reducing agent donating electrons in an electrochemical reaction.
However, in this reaction, aluminium is found to accept rather than donate electrons. Therefore, the process is non spontaneous and can only occur in an electrolytic cell, hence the answer.
b. [tex]Al^{3+} + 3 Br^{-}[/tex] → [tex]Al + \frac{3}{2} Br_{2}[/tex]
Electrolytic Cell v/s Electrochemical Cell:
Electrochemical cells convert chemical energy into electrical energy or vice versa while an electrolytic cell is a type of electrochemical cell in which electrical energy is converted into chemical energy.Electrochemical cells consist of a cathode (+) and an anode(-) while Electrolytic cells consist of a positively charged anode and a negatively charged cathode.Out of the given reactions, [tex]Al^{3+} + 3 Br^{-}[/tex] → [tex]Al + \frac{3}{2} Br_{2}[/tex] is carried out in an electrolytic cell rather than in an electrochemical cell.
As we know, In electrolytic cells, like galvanic cells, are composed of two half-cells
one is a reduction half-cell, the other is an oxidation half-cell.In the given reaction, aluminum is being reduced while bromine gets oxidized and the value of reduction potential of aluminum is -1.66 V while that of bromine is + 1.087. Therefore, the process is non spontaneous and can only occur in an electrolytic cell.
Learn more:
https://brainly.com/question/21722989
1. The following thermochemical equation is for the reaction of water(l) to form hydrogen(g) and oxygen(g). 2H2O(l)2H2(g) + O2(g) H = 572 kJ How many grams of H2O(l) would be made to react if 110 kJ of energy were provided? _____ grams
2. The following thermochemical equation is for the reaction of carbon monoxide(g) with hydrogen(g) to form methane(g) and water(g). CO(g) + 3H2(g) CH4(g) + H2O(g) H = -206 kJ When 6.27 grams of carbon monoxide(g) react with excess hydrogen(g),_____ kJ of energy are ____ a.evolved b.absorbed
Answer:
1. 6.92 g of H2O
2i. - 46 KJ of energy.
ii. Option A. Evolved.
Explanation:
1. Determination of the mass of H2O that would be made to react if 110 kJ of energy were provided.
This can be obtained as follow:
The equation for the reaction is given below
2H2O(l) —> 2H2(g) + O2(g) H = 572 kJ
Next, we shall determine the mass of H2O required to produce 572 kJ from the balanced equation.
Molar mass of H2O = (2x1) + 16 = 18 g/mol
Mass of H2O from the balanced equation = 2 x 18 = 36 g
From the balanced equation above, 36 g of H2O reacted to produce 572 kJ of energy.
Finally, we shall determine the mass of water (H2O) needed to produce 110 kJ of energy.
This is illustrated below:
From the balanced equation above, 36 g of H2O reacted to produce 572 kJ of energy.
Therefore, Xg of H2O will react to 110 kJ of energy i.e
Xg of H2O = (36 x 110)/572
Xg of H2O = 6.92 g
Therefore, 6.92 g of H2O is needed to react in order to produce 110 KJ of energy.
2i. Determination of the energy.
The balanced equation for the reaction is given below:
CO(g) + 3H2(g) —> CH4(g) + H2O(g) H = -206 kJ
Next, we shall determine the mass of CO that reacted to produce -206 kJ of energy from the balanced equation.
This is illustrated below:
Molar mass of CO = 12 + 16 = 28 g/mol
Mass of CO from the balanced equation = 1 x 28 = 28 g
From the balanced equation above,
28 g of CO reacted to produce -206 kJ of energy.
Finally, we shall determine the amount of energy produced by reacting 6.27 g of CO. This is illustrated below:
From the balanced equation above,
28 g of CO reacted to produce -206 kJ of energy.
Therefore, 6.27 g of CO will react to produce = (6.27 x -206)/28 = - 46 KJ of energy.
Therefore, - 46 KJ of energy were produced from the reaction.
2ii. Since the energy obtained is negative, it means heat has been given off to the surroundings.
Therefore, the heat is evolved.
Night vision glasses detect
energy emitted from cooling objects?
ultraviolet
infrared
X-ray
Answer:
I think the answer is " Night vision glasses detect Infrared" energy emitted from cooling objects.
Explanation:
Predict the order of acid strengths in the following series of cationic
species: CH3CH2NH3
+, CH3CH=NH2
Answer:
CH3CH=NH2+>CH3CH2NH3+
Explanation:
If we look at the both species under review, we will realize that they are both amines hence they possess the polar N-H bond.
Electrons are ordinarily attracted towards the nitrogen atom hence making both compounds acidic. It is worthy of note that certain features of a compound may make it more acidic than another of close structural proximity. 'More acidic' simply means that the proton is more easily lost.
CH3CH=NH2+ contains an sp2 hybridized carbon atom which is highly electronegative and further withdraws electron density from the N-H bond thereby leading to a greater acidity of CH3CH=NH2+ compared to CH3CH2NH3+
A chemistry student weighs out of formic acid into a volumetric flask and dilutes to the mark with distilled water. He plans to titrate the acid with solution. Calculate the volume of solution the student will need to add to reach the equivalence point. Round your answer to significant digits.
The given question is incomplete, the complete question is:
A chemistry student weighs out 0.0349g of formic acid HCHO2 into a 250.mL volumetric flask and dilutes to the mark with distilled water. He plans to titrate the acid with 0.1500M NaOH solution. Calculate the volume of NaOH solution the student will need to add to reach the equivalence point. Round your answer to 3 significant digits.
Answer:
The correct answer is 5.06 ml.
Explanation:
Based on the given information, the weight of formic acid given is 0.0349 grams. The volume of formic acid of V1 given is 250 ml. The molecular mass of formic acid is 46 grams per mole. Now the molarity of formic acid will be,
[HCOOH] = weight * 1000 / molecular mass * volume (ml)
= 0.0349 * 1000 / 46 * 250
= 0.003035 M or M1
The molarity of NaOH given is 0.1500 M or M2
Let us assume that the volume needed to attain equivalence point is V2 ml. The volume V2 can be determined by using the dilution equation,
M1V1 = M2V2
V2 = M1V1/M2
V2 = 0.003035 * 250 / 0.1500
V2 = 5.06 ml.
Hence, the volume of NaOH needed is 5.06 ml.
When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coefficients are:
P2O5 (s) + H2O (l) =H3PO4 (aq)
The balanced chemical equation for the reaction between hydrogen sulfide and oxygen is:
2H2S(g) + 3O2(g) =2H2O(l) + 2SO2(g)
We can interpret this to mean:
3moles of oxygen and_______moles of hydrogen sulfide react to produce______moles of water and_______ moles of sulfur dioxide.
Answer:
1. The coefficients are: 1, 3, 2
2. From the balanced equation, we obtained the following:
3 moles oxygen, O2 reacted.
2 moles of Hydrogen sulfide, H2S reacted.
2 moles of water were produced.
2 moles of sulphur dioxide, SO2 were produced.
Explanation:
1. Determination of the coefficients of the equation.
This is illustrated below:
P2O5(s) + H2O(l) <==> H3PO4(aq)
There are 2 atoms of P on the left side and 1 atom on the right side. It can be balance by putting 2 in front of H3PO4 as shown below:
P2O5(s) + H2O(l) <==> 2H3PO4(aq)
There are 2 atoms of H on the left side and 6 atoms on the right side. It can be balance by putting 3 in front of H2O as shown below:
P2O5(s) + 3H2O(l) <==> 2H3PO4(aq)
Now the equation is balanced.
The coefficients are: 1, 3, 2.
2. We'll begin by writing the balanced equation for the reaction. This is given below:
2H2S(g) + 3O2(g) => 2H2O(l) + 2SO2(g)
From the balanced equation above,
3 moles of oxygen, O2 reacted with 2 moles of Hydrogen sulfide, H2S to produce 2 moles of water, H2O and 2 moles of sulphur dioxide, SO2.
A compound X has a molecular ion peak in its mass spectrum at m/z 136. What information does this tell us about X
Explanation:
The mass to charge ratio =136
Determine the cell notation for the redox reaction given below.
Sn(s) + 2H+(aq) ⟶ Sn2+(aq) + H2(g)
a. H+(aq) | H2(g) | Pt ∥ Sn(s) | Sn2+(aq)
b. H2(g) | H+(aq) | Pt ∥ Sn2+(aq) | Sn(s)
c. Sn2+(aq) | Sn(s) ∥ H2(g) | H+(aq) | Pt
d. Sn(s) | Sn2+(aq) ∥ H+(aq) | H2(g) | Pt
e. Sn(s) | H2(g) ∥ Sn2+(aq) | H+(aq) | Pt
Answer:
The correct answer is d. Sn(s) | Sn²⁺(aq) ∥ H⁺(aq) | H₂(g) | Pt
Explanation:
The half reactions are:
2H⁺(aq) + 2 e- ⟶ H₂(g) (reduction)
Sn(s) ⟶ Sn²⁺(aq) + 2 e- (oxidation)
In the cell notation, there are two electrodes in which are separated the reduction reaction from the oxidation reaction. In the left electrode occurs the oxidation reaction (anode) while in the right electrode occurs the reduction reaction (cathode). The general form of the cell notation is the following:
anode reaction∥ cathode reaction
where the two bars ( ∥ ) represent the physical barrier between the electrodes. A single bar ( | ) is used to represent a phase separation.
In this redox reaction, the half reaction of the anode is Sn(s) ⟶ Sn²⁺(aq) + 2 e-; whereas the half reaction of the cathode is 2H⁺(aq) + 2 e- ⟶ H₂(g).
The componens are written in order according to the half reaction. Since Sn²⁺ and H⁺ ions are in solution, a platinum electrode is used and represented as Pt. Thus, the cell notation is:
Sn(s) | Sn²⁺(aq) ∥ H⁺(aq) | H₂(g) | Pt
Which resulted from the study of chemistry?
A) Alchemy to turn base metals into noble metals
B) The understanding of earth, air, fire, and water as the basic components of matter.
C) A supernatural, mystical view of the world.
D) Discovering the role of oxygen in combustion
Identify a homogeneous catalyst:
a. SO2 over vanadium (V) oxide
b. H2SO4 with concentrated HCl
c. Pd in H2 gas
d. N2 and H2 catalyzed by Fe
e. Pt with methane
Answer:
b, H2SO4 with HCl, as they are both liquid acids
Calculate the pH of a buffer solution obtained by dissolving 18.0 g of KH2PO4(s) and 35.0 g of Na2HPO4(s) in water and then diluting to 1.00 L.
Answer:
pH of the buffer is 7.48
Explanation:
The H₂PO₄⁻/HPO₄²⁻ buffer has a pKa of 7.21. You can find pH of this buffer following H-H equation:
pH = pKa + log [A⁻] / [HA]
pH = 7.21 + log [HPO₄²⁻] / [ H₂PO₄⁻]
Where [] represents molarity of each specie of the buffer and, as volume is 1.00L, also represents its moles.
Thus, to find pH of the buffer we need to calculate moles of each specie, thus
Moles of 18.0g of KH₂PO₄(Molar mass: 136.086g/mol) = moles of H₂PO₄⁻ are:
18.0g KH₂PO₄ ₓ (1mol / 136.086g) = 0.132 moles of KH₂PO₄= H₂PO₄⁻
Moles of 35.0g of Na₂HPO₄(Molar mass: 141.96g/mol) = moles of HPO₄²⁻ are:
35.0g Na₂HPO₄ ₓ (1mol / 141.96g) = 0.2465 moles of Na₂HPO₄= HPO₄²⁻
Replacing in H-H equation:
pH = 7.21 + log [HPO₄²⁻] / [ H₂PO₄⁻]
pH = 7.21 + log [0.2465] / [0.132]
pH = 7.48
pH of the buffer is 7.48
Suppose you titrate 25.00 mL of 0.200 M KOBr with 0.200M H2SO4. The pH at half-equivalence point is 7.75 a). What is the initial pH of the 25.00mL of 0.200M KOBr mentioned above
Answer:
Approximately [tex]10.88[/tex].
Explanation:
Equilibrium constant[tex]\rm OBr^{-}[/tex] can act as a weak Bronsted-Lowry base:
[tex]\rm OBr^{-}\; (aq) + H_2O\; (l) \rightleftharpoons HOBr\; (l) + OH^{-}\; (aq)[/tex].
(Side note: the state symbol of [tex]\rm HOBr[/tex] in this equation is [tex]\rm (l)[/tex] (meaning liquid) because [tex]\rm HOBr[/tex] is a weak acid.)
However, the equilibrium constant of this reaction, [tex]K_\text{eq}[/tex], isn't directly given. The idea is to find [tex]K_\text{eq}[/tex] using the [tex]\rm pH[/tex] value at the half-equivalence point. Keep in mind that this system is at equilibrium all the time during the titration. If temperature stays the same, then the same [tex]K_\text{eq}[/tex] value could also be used to find the [tex]\rm pH[/tex] of the solution before the acid was added.
At equilibrium:
[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].
At the half-equivalence point of this titration, exactly half of the base, [tex]\rm OBr^{-}[/tex], has been converted to its conjugate acid, [tex]\rm HOBr[/tex]. Therefore, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should both be equal to one-half the initial concentration of [tex]\rm OBr^{-}[/tex].
As a result, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should be the same. The expression for [tex]K_\text{eq}[/tex] can thus be simplified:
[tex]\begin{aligned}& K_\text{eq} \\&= \frac{\left(\text{half-equivalence $[\rm HOBr\; (l)]$}\right)\cdot \left(\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\right)}{\text{half-equivalence $[\rm OBr^{-}\; (l)]$}}\\ &=\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\end{aligned}[/tex].
In other words, the [tex]K_\text{eq}[/tex] of this system is equal to the [tex]\rm OH^{-}[/tex] concentration at the half-equivalence point. Assume that [tex]\rm p\mathnormal{K}_\text{w}[/tex] the self-ionization constant of water, is [tex]14[/tex]. The concentration of [tex]\rm OH^{-}[/tex] can be found from the [tex]\rm pH[/tex] value:
[tex]\begin{aligned}& \text{half-equivalence $[\rm OH^{-}\; (aq)]$} \\ &= 10^{\rm pH - p\mathnormal{K}_\text{w}}\;\rm mol \cdot L^{-1} \\ &= 10^{7.75 - 14}\; \rm mol \cdot L^{-1}\\ &= 10^{-6.25}\; \rm mol \cdot L^{-1}\end{aligned}[/tex].
Therefore, [tex]\begin{aligned} K_\text{eq} &= 10^{-6.25}\end{aligned}[/tex].
Initial pH of the solutionAgain, since [tex]\rm KOBr[/tex] is a soluble salt, all that [tex]0.200\; \rm M[/tex] of [tex]\rm KOBr[/tex] in this solution will be in the form of [tex]\rm K^{+}[/tex] and [tex]\rm OBr^{-}[/tex] ions. Before any hydrolysis takes place, the concentration of [tex]\rm OBr^{-}[/tex] should be equal to that of [tex]\rm KOBr[/tex]. Therefore:
[tex]\text{$[\rm OBr^{-}\; (aq)]$ before hydrolysis} = 0.200\; \rm M[/tex].
Let the equilibrium concentration of [tex][\rm OH^{-}\; (aq)][/tex] be [tex]x\; \rm M[/tex]. Create a RICE table for this reversible reaction:
[tex]\begin{array}{c|ccccccc} & \rm OBr^{-}\; (aq) &+&\rm H_2O\; (l)& \rightleftharpoons & \rm HOBr\; (l)& + & \rm OH^{-}\; (aq) \\ \textbf{I}& 0.200\; \rm M & & & & 0 \; \rm M & & 0\; \rm M \\ \textbf{C} & -x\; \rm M & & & & +x \; \rm M & & +x\; \rm M \\ \textbf{E}& (0.200 + x)\; \rm M & & & & x \; \rm M & & x\; \rm M \end{array}[/tex].
Assume that external factors (such as temperature) stays the same. The [tex]K_\text{eq}[/tex] found at the half-equivalence point should apply here, as well.
[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].
At equilibrium:
[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x}[/tex].
Assume that [tex]x[/tex] is much smaller than [tex]0.200[/tex], such that the denominator is approximately the same as [tex]0.200[/tex]:
[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x} \approx \frac{x^2}{0.200}[/tex].
That should be equal to the equilibrium constant, [tex]K_\text{eq}[/tex]. In other words:
[tex]\displaystyle \frac{x^2}{0.200} \approx K_\text{eq} = 10^{-6.25}[/tex].
Solve for [tex]x[/tex]:
[tex]x \approx 3.35\times 10^{-4}[/tex].
In other words, the [tex]\rm OH^{-}[/tex] before acid was added was approximately [tex]3.35\times 10^{-4}\; \rm M[/tex], which is the same as [tex]3.35\times 10^{-4}\; \rm mol \cdot L^{-1}[/tex]. Again, assume that [tex]\rm p\mathnormal{K}_\text{w} = 14[/tex]. Calculate the [tex]\rm pH[/tex] of that solution:
[tex]\begin{aligned}\rm pH &= \rm p\mathnormal{K}_\text{w} + \log [\mathrm{OH^{-}}] \approx 10.88\end{aligned}[/tex].
(Rounded to two decimal places.)
Which, if any, of the two molecular geometries is likely to be polar if the outer atoms are identical and there is a difference in electronegativity between the central atom and the outer atoms
Answer:
Polar molecules are not symmetrical
Explanation:
Even though the structures of the molecules involved were not shown in the question, but I will proceed to give a general explanation of the conditions that describe a polar molecule.
First of all, symmetrical molecules are non-polar and asymmetrical molecules are polar. This is the reason why CF4 will be a nonpolar molecule but H2O will be a polar molecule. Some symmetrical molecules may may posses polar bonds or dipoles but these dipoles eventually cancel out since the molecule is symmetrical in nature.
Summarily, if a molecule possess the same type of atoms attached to the central atom with some symmetry axes, like C3, C4 etc., we will end up with a non polar molecule but if we have a nonplanar molecule, then we will end up finding it to be polar.
how salt solution can be determined by using hydrometer
Answer:
Salt solution may be calculated by measuring the specific gravity of a sample of water using a hydrometer.
Hope this answer correct (^^)....
An aqueous solution containing 5.06 g of lead(II) nitrate is added to an aqueous solution containing 6.03 g of potassium chloride.Enter the balanced chemical equation for this reaction. Be sure to include all physical states.balanced chemical equation:What is the limiting reactant?lead(II) nitratepotassium chlorideThe percent yield for the reaction is 82.9% . How many grams of the precipitate are formed?precipitate formed:gHow many grams of the excess reactant remain?excess reactant remaining:
Answer:
Pb(NO3)2(aq) + 2KCl(aq) ------> 2KNO3(aq) + PbCl2(s)
3.52 g of PbCl2
3.76 g of KCl
Explanation:
The equation of the reaction is;
Pb(NO3)2(aq) + 2KCl(aq) ------> 2KNO3(aq) + PbCl2(s)
Number of moles of Pb(NO3)2 =mass/molar mass 5.06g/331.2 g/mol = 0.0153 moles
Number of moles of KCl= mass/ molar mass= 6.03g/74.5513 g/mol= 0.081 moles
Next we obtain the limiting reactant; the limiting reactant yields the least number of moles of products.
For Pb(NO3)2;
1 mole of Pb(NO3)2 yields 1 mole of PbCl2
Therefore 0.0153 moles of Pb(NO3)2 yields 0.0153 moles of PbCl2
For KCl;
2 moles of KCl yields 1 mole of PbCl2
0.081 moles of KCl yields 0.081 moles ×1/2 = 0.041 moles of PbCl2
Therefore Pb(NO3)2 is the limiting reactant.
Theoretical Mass of precipitate obtained = 0.0153 moles of PbCl2 × 278.1 g/mol = 4.25 g of PbCl2
% yield = actual yield/theoretical yield ×100
Actual yield = % yield × theoretical yield /100
Actual yield= 82.9 ×4.25/100
Actual yield = 3.52 g of PbCl2
If 1 mole of Pb(NO3) reacts with 2 moles of KCl
0.0153 moles of Pb(NO3)2 reacts with 0.0153 moles × 2 = 0.0306 moles of KCl
Amount of excess KCl= 0.081 moles - 0.0306 moles = 0.0504 moles of KCl
Mass of excess KCl = 0.0504 moles of KCl × 74.5513 g/mol = 3.76 g of KCl
Air contains nitrogen, oxygen, argon, and trace gases. Ifthe partial pressure of nitrogen is 592 mm Hg, oxygen is160 mm Hg, argon is 7 mm Hg, and trace gas is 1 mm Hg,what is the atmospheric pressure
Answer:
760 mmHg
Explanation:
Step 1: Given data
Partial pressure of nitrogen (pN₂): 592 mmHgPartial pressure of oxygen (pO₂): 160 mmHgPartial pressure of argon (pAr): 7 mmHgPartial pressure of the trace gas (pt): 1 mmHgStep 2: Calculate the atmospheric pressure
Since air is a gaseous mixture, the atmospheric pressure is equal to the sum of the gases that compose it.
P = pN₂ + pO₂ + pAr + pt = 592 mmHg + 160 mmHg + 7 mmHg + 1 mmHg = 760 mmHg
1. Suppose 1.00 g of NaOH is used to prepare 250 mL of an NaOH solution. Compare the expected molarity of this solution to the actual average molarity you measured in the standardization. What do you notice? 2. Do you think the results would have been more accurate if a different type of acid or base were used in the standardization? Why, or why not? 3. There are many different primary standards that could be used in a standardization titration. What are the criteria for a primary standard?
Answer:
See explanation
Explanation:
The calculated concentration of the sodium hydroxide is;
Number of moles= mass/molar mass = 1g/40gmol-1 = 0.025 moles
Concentration= number of moles/volume= 0.025×1000/250 = 0.1 M
This calculated concentration will be different from the molarity of NaOH obtained by standardization with acid. The result will not be more accurate if a different acid is used for the standardization this is because sodium hydroxide is deliquescent and absorbs moisture thereby leading to inaccuracy in the calculated molarity.
Any substance that must be used as a primary standard must not absorb moisture, it must be stable and it must be a substance in its pure form.
A student mixes wants to prepare 24.1 mmol of benzamide from benzoyl chloride and NH4OH. If the student uses excess 15 M NH4OH, how many mL of Benzoyl chloride must be used
Answer:
2.81mL
Explanation:
Based on the reaction:
C₆H₃COCl + 2NH₃ → C₆H₅CONH₂ + NH₄Cl
Benzoyl chloride + ammonia → Benzamide
1 mole of benzoyl chloride in excess of ammonia produce 1 mole of Benzamide.
Thus, assuming a theoretical yield, to produce 24.1mmoles of benzamide you require 24.1mmoles of benzoyl chloride.
As molar mass of benzoyl chloride is 141g/mol, mg you require are:
mg Benzoyl chloride: 24.1mmol × (141mg / 1mmol) = 3398.1mg = 3.3981g of benzoyl chloride.
to convert this mass to mL, you require density of Benzoyl chloride (1.21g/mL). Thus, mL you need are:
3.3981g × (1mL / 1.21g) =
2.81mLWhen a solution is diluted with water, the ratio of the initial to final
volumes of solution is equal to the ratio of final to initial molarities
Select one:
True
-
When a solution is diluted with water, the ratio of the initial to final volumes of solution is equal to the ratio of final to initial molarities. The statement is True.
Concentration refers to the amount of a substance in a defined space. Another definition is that concentration is the ratio of solute in a solution to either solvent or total solution.
There are various methods of expressing the concentration of a solution.
Concentrations are usually expressed in terms of molarity, defined as the number of moles of solute in 1 L of solution.
Solutions of known concentration can be prepared either by dissolving a known mass of solute in a solvent and diluting to a desired final volume or by diluting the appropriate volume of a more concentrated solution (a stock solution) to the desired final volume.
Learn more about Concentrations, here:
https://brainly.com/question/10725862
#SPJ3
cetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of oxygen needed to produce of water.
Answer:
0.60 mol
Explanation:
There is some info missing. I think this is the original question.
Acetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of oxygen needed to produce 1.5 mol of water.
Step 1: Given data
Moles of water required: 1.5 mol
Step 2: Write the balanced equation
C₂H₂(g) + 2.5 O₂(g) ⇒ 2 CO₂(g) + H₂O(g)
Step 3: Calculate the moles of oxygen needed to produce 1.5 mol of water
The molar ratio of O₂ to H₂O is 2.5:1. The moles of oxygen needed to produce 1.5 mol of water are (1/2.5) × 1.5 mol = 0.60 mol
Cyclohexane (C6H12) undergoes a molecular rearrangement in the presence of AlCl3 to form methylcyclopentane (CH3C5H9) according to the equation: C6H12 ⇌ CH3C5H9 If Kc = 0.143 at 25°C for this reaction predict the direction in which the system
Answer:
The reaction will shift leftwards, towards the formation of more cyclohexane at 25 °C
Explanation:
Hello,
In this case, for the given chemical reaction, we can write the law of mass action (equilibrium expression) as shown below:
[tex]Kc=\frac{[CH_3C_5H_9]}{[C_6H_{12} ]}[/tex]
Thus, since Kc < 1, we can conclude there are more moles of cyclohexane at equilibrium (denominator is greater than numerator), therefore, the reaction will shift leftwards, towards the formation of more cyclohexane at 25 °C.
Best regards.
How many grams are in 5.87 x 10^21 molecules of sulfur?
Answer:
0.312g
Explanation:
From Avogadro's hypothesis, 1mole of any substance contains 6.02x10^23 molecules. This means that 1mole of sulphur also contains 6.02x10^23 molecules
1mole of sulphur = 32g
If 1 mole(i.e 32g) of sulphur contains 6.02x10^23 molecules
Then, Xg of sulphur will contain 5.87x10^21 molecules i.e
Xg of sulphur = (32x5.87x10^21)/6.02x10^23 = 0.312g
just saying this is not my work, thank Eduard22sly
he answered it on a different page
so give him credit
here is the link
https://brainly.com/question/14966520
Why do you think sodium bicarbonate is included to neutralize an acidic spill rather than sodium hydroxide?
Imagine a hypothetical situation in which 250 mL of diethyl ether (SDS) has spilled inside of a chemical fume hood onto a stir plate that is plugged in and stirring. Discuss the risks associated with this situation (location, size, compound spilled, and external hazards), and then explain how this spill should be managed.
Answer:
Acid spills should be neutralized with sodium bicarbonate and then cleaned up with a paper towel or sponge.
Explanation: