Answer:On these combined scales of pH and pH it can be shown that because for water when pH = pH = 7 that pH + pH = 14. This relationship is useful in the inter conversion of values. For example, the pH at a 0.01 M solution of sodium hydroxide is 2, the pH of the same solution must be 14-2 = 12.
Explanation:
The 0.10M HCI, pH = 1 solution has the highest pOH. Therefore, option (1) is correct.
What is the pOH?pOH of a solution can be determined from the negative logarithm of the hydroxide ions concentration in the solution.
The mathematically pOH of the solution can be expressed as:
pOH = -log [OH⁻] ..............(1)
Where [OH⁻] represents the concentration of hydroxide ions in an aqueous solution.
Given, the pH = 1 of HCl
pH + pOH = 14
1 + pOH = 14
pOH = 14 - 1
pOH = 13
Given, the pH = 3 of HNO₃
pH + pOH = 14
3 + pOH = 14
pOH = 14 - 3
pOH = 11
Given, the pH = 12 of NaOH = 0.01 M
pH + pOH = 14
12 + pOH = 14
pOH = 14 - 12
pOH = 2
Learn more about pOH, here:
brainly.com/question/17144456
#SPJ2
What is the name of this molecule?
Answer:
[tex]\boxed{Butyne}[/tex]
Explanation:
Triple Bonds => So it is an alkyne
The suffix used will be "-yne"
4 Carbons => The prefix used will be "But-"
Combining the prefix and suffix, we get:
=> Butyne
Answer:
[tex]\boxed{\mathrm{Butyne}}[/tex]
Explanation:
Alkynes have triple bonds ≡. The molecule has one triple bond.
Suffix ⇒ yne
The molecule has 4 carbon atoms and 6 hydrogen atoms.
Prefix ⇒ But (4 carbons)
The molecule is Butyne.
[tex]\mathrm{C_4H_6}[/tex]
Diluting sulfuric acid with water is highly exothermic:
(Use data from the Appendix to find for diluting 1.00 mol of H2SO4(l) (d = 1.83 g/mL) to 1 L of 1.00 MH2SO4(aq) (d = 1.060 g/mL). )
Suppose you carry out the dilution in a calorimeter. The initial T is 25.2°C, and the specific heat capacity of the final solution is 3.458 J/gK. What is the final T in °C ?
Answer:
The correct answer is 51.2 degree C.
Explanation:
The standard enthalpy for H₂SO₄ (l) is -814 kJ/mole and the standard enthalpy for H₂SO₄ (aq) is -909.3 kJ/mole.
Now the dHreaction = dHf (product) - dHf (reactant)
= -909.3 - (-814)
dHreaction or q = -95.3 kJ of energy will be used for dissociating one mole of H₂SO₄.
The heat change in calorimetry can be determined by using the formula,
q = mass * specific heat capacity * change in temperature -----------(i)
Based on the given information, the density of H₂SO₄ is 1.060 g/ml
The volume of H₂SO₄ is 1 Liter
Therefore, the mass of H₂SO₄ will be, density/Volume = 1.060 g/ml / 1 × 10⁻³ ml = 1060 grams
The initial temperature given is 25.2 degrees C, or 273+25.2 = 298.2 K, let us consider the final temperature to be T₂.
ΔT = T₂ -T₁ = T₂ - 298.2 K
Now putting the values in equation (i) we get,
95.3 kJ = 1060 grams × 3.458 j/gK (T₂ - 298.2 K) (the specific heat capacity of the final solution is 3.458 J/gK)
(T₂ - 298.2 K) = 95300 J / 1060 × 3.458 = 26 K
T₂ = 298.2 K + 26 K
T₂ = 324.2 K or 324.2 - 273 = 51.2 degree C.
Which molecule or ion has a trigonal planar shape?
Answer:B
Explanation: A P E X
Which of the following elements is in the same family as fluorine?
a. silicon
b. antimony
O c. iodine
O d. arsenic
e. None of these.
Answer:
c iodine
Explanation:
fluorine is a halogen group element like Bromine, Iodine,Astatine,Chloride
How many moles of aqueous magnesium ions and chloride ions are formed when 0.250 mol of magnesium chloride dissolves in water
Answer:
0.250 mol Mg²⁺
0.500 mol Cl⁻
Explanation:
Magnesium chloride (MgCl₂) dissociates into ions according to the following equilibrium:
MgCl₂ ⇒ Mg²⁺ + 2 Cl⁻
1 mol 1 mol 2 mol
1 mol of Mg²⁺ and 2 moles of Cl⁻ are formed per mole of MgCl₂. If we have 0.250 mol of MgCl₂, the following amounts of ions will be formed:
0.250 mol MgCl₂ x 1 mol Mg²⁺/mol MgCl₂= 0.250 mol Mg²⁺
0.250 mol MgCl₂ x 2 mol Cl⁻/mol MgCl₂= 0.500 mol Cl⁻
Answer:
HEY THE ANSWER ABOVE ME IS RIGHT!! i defientely misclicked my rating :/
5/5 all the way.
Explanation:
Which is the electron configuration for bromine?
Answer:
The answer below would be written in a straight line from left to right but I wrote it as a list to make it easier to read.
Explanation:
1s^2
2s^2
2p^6
3s^2
3p^6
4s^2
3d^10
4p^5
Aluminum and oxygen react according to the following equation: 4Al + 3O2 -> 2Al2O3 In a certain experiment, 4.6g Al was reacted with excess oxygen and 6.8g of product was obtained. What was the percent yield of the reaction?
Answer:
Percent yield: 78.2%
Explanation:
Based on the reaction:
4Al + 3O₂ → 2Al₂O₃
4 moles of Al produce 2 moles of Al₂O₃
To find percent yield we need to find theoretical yield (Assuming a yield of 100%) and using:
(Actual yield (6.8g) / Theoretical yield) × 100
Moles of 4.6g of Al (Molar mass: 26.98g/mol) are:
4.6g Al × (1mol / 26.98g) = 0.1705 moles of Al.
As 4 moles of Al produce 2 moles of Al₂O₃, theoretical moles of Al₂O₃ obtained from 0.1705 moles of Al are:
0.17505 moles Al × (2 moles Al₂O₃ / 4 moles Al) = 0.0852 moles of Al₂O₃,
In grams (Molar mass Al₂O₃ = 101.96g/mol):
0.0852 moles of Al₂O₃ × (101.96g / mol) =
8.7g of Al₂O₃ can be produced (Theoretical yield)Thus, Percent yield is:
(6.8g / 8.7g) × 100 =
78.2%Calculate the heat absorbed by a sample of water that has a mass of 45.00 g when the temperature increases from 21.0oC to 38.5 oC. (s=4.184 J/g.o C)
Answer:
The heat absorbed by the sample of water is 3,294.9 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The sensible heat of a body is the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous). Its mathematical expression is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
Q=?m= 45 gc= 4.184 [tex]\frac{J}{g*C}[/tex]ΔT= Tfinal - Tinitial= 38.5 C - 21 C= 17.5 CReplacing:
Q= 4.184 [tex]\frac{J}{g*C}[/tex] * 45 g* 17.5 C
Solving:
Q=3,294.9 J
The heat absorbed by the sample of water is 3,294.9 J
Which of the following solutions would have the highest pH? Assume that they are all 0.10 M in acid at 25°C. The acid is followed by its Ka value.
a. HCHO2, 1.8 x 10-4
b. HF, 3.5 x 10-4
c. HClO2, 1.1 x 10-2
d. HCN, 4.9 x 10-10
e. HNO2, 4.6 x 10-4
Answer:
[tex]HCN~~Ka=4.9x10^-^1^0[/tex]
Explanation:
In this case, we have to remember the relationship between the Ka value and the pH. We can use the general reaction for any acid with his Ka value expression:
[tex]HA~->~H^+~+~A^-[/tex] [tex]Ka=\frac{[H^+][A^-]}{[HA]}[/tex]
In the Ka expression, we have a proportional relationship between Ka and the concentration of [tex]H^+[/tex]. Therefore, if we have a higher Ka value we will have a smaller pH (lets keep in mind that with a higher
So, if we have to find the higher pH value we need to search the smaller Ka value in this case [tex]HCN~~Ka=4.9x10^-^1^0[/tex].
I hope helps!
HCN has the highest pH among all the acids listed in the question.
The Ka is called the acid dissociation constant. It shows the extent to which an acid is ionized in water. The pH shows the hydrogen ion concentration of water. The higher the Ka, the higher the hydrogen ion concentration and the lower the pH.
Hence, HCN has the lowest Ka and the lowest hydrogen ion concentration. Therefore, HCN has the highest pH among all the acids listed in the question.
Learn more: https://brainly.com/question/6505878
The equilibrium between carbon dioxide gas and carbonic acid is very important in biology and environmental science. CO2 ( aq) + H2O ( l) H2CO3 ( aq) Which one of the following is the correct equilibrium constant expression (K c) for this reaction?
a) K =[H2CO3]/ [CO2]
b) K=[CO2]/ [H2CO3]
c) K=[H2CO3]/ [CO2][H2O]
d) K=[CO2][H2O]/ [H2CO3]
e) K=1/[H2CO3]
Answer:
Kc = [H₂CO₃] / [CO₂]
Explanation:
Equilibrium constant expression (Kc) of any reaction is defined as the ratio between molar concentrations in equilibrium of products over reactants.
Pure solids and liquids don't affect the equilibrium and you don't have to take its concentrations in the equilibrium.
Also, each specie must be powered to its reactant coefficient.
For example, for the reaction:
aA(s) + bB(aq) ⇄ cC(l) + nD(g) + xE(aq)
The equilibrium constant, kc is:
Kc = [D]ⁿ / [B]ᵇ[E]ˣ
You don't take A nor C species because are pure solids and liquids. b, n and x are the reactant coefficients of each substance. Ratio of products over reactants
Thus, for the reaction:
CO₂(aq) + H₂O(l) ⇄ H₂CO₃(aq)
The Kc is:
Kc = [H₂CO₃] / [CO₂]
If the average rate of the reaction A --->2B C is 1M/s, what is the average rate of formation (in M/s) of B over that same period of time
Answer:
[tex]r_B=2M/s[/tex]
Explanation:
Hello,
In this case, since the average rate of reaction is related with the consumption of A which has an stoichiometric coefficient of 1, the rate of formation of B will be:
[tex]r_B=2*1M/s\\\\r_B=2M/s[/tex]
By cause of the stoichiometric coefficient of B which doubles the average rate.
Best regards.
A hot lump of 27.4 g of aluminum at an initial temperature of 69.5 °C is placed in 50.0 mL H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water, given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings.
Answer:
[tex]\large \boxed{29.7 \,^{\circ}\text{C}}[/tex]
Explanation:
There are two heat transfers involved: the heat lost by the aluminium and the heat gained by the water.
According to the Law of Conservation of Energy, energy can neither be destroyed nor created, so the sum of these terms must be zero.
Let the Al be Component 1 and the H₂O be Component 2.
Data:
For the Al:
[tex]m_{1} =\text{27.4 g; }T_{i} = 69.5 ^{\circ}\text{C; }\\C_{1} = 0.903 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}[/tex]
For the water:
[tex]m_{2} =\text{50.0 g; }T_{i} = 25.0 ^{\circ}\text{C; }\\C_{2} = 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}[/tex]
Calculations
(a) The relative temperature changes
[tex]\begin{array}{rcl}\text{Heat lost by Al + heat gained by water} & = & 0\\m_{1}C_{1}\Delta T_{1} + m_{2}C_{2}\Delta T_{2} & = & 0\\\text{27.4 g}\times 0.903 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$} \times\Delta T_{1} + \text{50.0 g} \times 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}\Delta \times T_{2} & = & 0\\24.74\Delta T_{1} + 209.2\Delta T_{2} & = & 0\\\end{array}[/tex]
(b) Final temperature
[tex]\Delta T_{1} = T_{\text{f}} - 69.5 ^{\circ}\text{C}\\\Delta T_{2} = T_{\text{f}} - 25.0 ^{\circ}\text{C}[/tex]
[tex]\begin{array}{rcl}24.74(T_{\text{f}} - 69.5 \, ^{\circ}\text{C}) + 209.2(T_{\text{f}} - 25.0 \, ^{\circ}\text{C}) & = & 0\\24.74T_{\text{f}} - 1719 \, ^{\circ}\text{C} + 209.2T_{\text{f}} -5230 \, ^{\circ}\text{C} & = & 0\\233.9T_{\text{f}} - 6949\, ^{\circ}\text{C} & = & 0\\233.9T_{\text{f}} & = & 6949 \, ^{\circ}\text{C}\\T_{\text{f}}& = & \mathbf{29.7 \, ^{\circ}}\textbf{C}\\\end{array}\\\text{The final temperature is $\large \boxed{\mathbf{29.7 \,^{\circ}}\textbf{C}}$}[/tex]
Check:
[tex]\begin{array}{rcl}27.4 \times 0.903 \times (29.7 - 69.5) + 50.0 \times 4.184 (29.7 - 25.0)& = & 0\\24.74(-39.8) +209.2(4.7) & = & 0\\-984.6 +983.2 & = & 0\\-985 +983 & = & 0\\0&=&0\end{array}[/tex]
The second term has only two significant figures because ΔT₂ has only two.
It agrees to two significant figures
Q1. Calculate the amount of copper produced in 1.0 hour when aqueous CuBr2 solution was electrolyzed by using a current of 4.50 A. Q2. In another electroplating experiment, if electric current was passed for 3 hours and 2.00 g of silver was deposited from a AgNO3 solution, what was the current used in amperes
Answer:
[tex]\boxed{\text{Q1. 3.6 g; Q2. 0.2 A}}[/tex]
Explanation:
Q1. Mass of Cu
(a) Write the equation for the half-reaction.
Cu²⁺ + 2e⁻ ⟶ Cu
The number of electrons transferred (z) is 2 mol per mole of Cu.
(b) Calculate the number of coulombs
q = It
[tex]\text{t} = \text{1.0 h} \times \dfrac{\text{3600 s}}{\text{1 h}} = \text{3600 s}\\\\q = \text{3 C/s} \times \text{ 3600 s} = \textbf{10 800 C}[/tex]
(c) Mass of Cu
We can summarize Faraday's laws of electrolysis as
[tex]\begin{array}{rcl}m &=& \dfrac{qM}{zF}\\\\& = &\dfrac{10 800 \times 63.55}{2 \times 96 485}\\\\& = & \textbf{3.6 g}\\\end{array}\\\text{The mass of Cu produced is $\boxed{\textbf{3.6 g}}$}[/tex]
Note: The answer can have only two significant figures because that is all you gave for the time.
Q2. Current used
(a) Write the equation for the half-reaction.
Ag⁺ + e⁻ ⟶ Ag
The number of electrons transferred (z) is 1 mol per mole of Ag.
(a) Calculate q
[tex]\begin{array}{rcl}m &=& \dfrac{qM}{zF}\\\\2.00& = &\dfrac{q \times 107.87}{1 \times 96 485}\\\\q &=& \dfrac{2.00 \times 96485}{107.87}\\\\& = & \textbf{1789 C}\\\end{array}[/tex]
(b) Calculate the current
t = 3 h = 3 × 3600 s = 10 800 s
[tex]\begin{array}{rcl}q&=& It\\1789 & = & I \times 10800\\I & = & \dfrac{1789}{10800}\\\\& = & \textbf{0.2 A}\\\end{array}\\\text{The current used was $\large \boxed{\textbf{0.2 A}}$}[/tex]
Note: The answer can have only one significant figure because that is all you gave for the time.
A 400 mL sample of hydrogen gas is collected over water at 20°C and 760 torr the vapor pressure of water at 20°C is 17.5 torr. what volume will the dry hydrogen gas occupy at 20°C and 760 torr?
Answer:
V2 = 17371.43ml
Explanation:
We use Boyles laws
since temperature is constant
P1V1=P2V2
760 x 400 = 17.5 x V2
304000 = 17.5 x V2
V2 = 304000/17.5
V2 = 17371.43ml
The volume will the dry hydrogen gas occupy at the temperature of 20°C and vapor pressure at 760 torrs will be 18 ml.
What is vapor pressure?
The vapor pressure of a liquid is independent of the volume of liquid in the container, whether one liter or thirty liters; both samples will have the same vapor pressure at the same temperature.
The temperature has an exponential connection with vapor pressure, which means that as the temperature rises, the vapor pressure rises as well the equation is -
P1 V1 / T1 = P2 V2 / T1
here, P = pressure
T = temperature
V = volume
substituting the value in the equation,
400 ×760 / 20 = 17.5× V / 20
V = 400× 760 / 20 × 17.5 / 20
V = 18 ml
Therefore the volume of the hydrogen gas remaining at this temperature will be 18 ml.
learn more about vapor pressure, here :
https://brainly.com/question/27682495
#SPJ5
what is chemical equation of Braium chloride?
Answer:
BaCl2
Explanation:
Barium = Ba
Chloride => Cl-
Chemical Equation:
Ba + Cl => BaCl2
Note:
The valency of barium is 2 and valency of chloride is 1 (i.e. chlorine). The formula formed by the combination of these elements is BaCl2 (there's exchange of valencies when these two elements combine).
The volume of a sample of oxygen is 300mL when the pressure is 1 atm and the temperature is 27 C . At what temperature is the volume 1.00 L and the pressure.500 atm?
Answer:
T2 = 500K
Explanation:
Given data:
P1 = 1atm
V1 = 300ml
T1= 27 + 273 = 300K
T2 = ?
V2 = 1.00ml
P2 = 500atm
Apply combined law:
P1xV1//T1 = P2xV2/T2 ...eq1
Substituting values into eq1:
1 x 300/300 = 500 x 1/T2
Solve for T2:
300T2 = 500 x 300
300T2 = 150000
Divide both sides by the coefficient of T2:
300T2/300 = 150000/300
T2 = 500K
Interpret the following equation for a chemical reaction using the coefficients given:
Cl2(g) + F2(g) 2ClF(g)
On the particulate level:
________ of Cl2(g) reacts with ______ of F2(g) to form______ of ClF(g).
On the molar level:
______ of Cl2(g) reacts with______ of F2(g) to form______ of ClF(g).
Answer and Explanation:
Given the following chemical equation:
Cl₂(g) + F₂(g) ⇒ 2ClF(g)
The coefficients are: 1 for Cl₂, 1 for F₂ and 2 for ClF. The coefficients indicate the number of units of each ompound that participates in the reaction. It gives the proportion of reactants and products in the reaction. These units can be molecules or moles. In this reaction, we can say:
On the particulate level: 1 molecule of Cl₂(g) reacts with 1 molecule of F₂(g) to form 2 molecules of ClF(g).
On the molar level: 1 mol of Cl₂(g) reacts with 1 mol of F₂(g) to form 2 mol of ClF(g).
Which of the following statements about water is not true?
Answer:
Water has a low specific heat capacity and so large bodies of water moderate temperatures on Earth.
Explanation:
Water has a very high specific heat capacity, meaning that it has to absorb a lot of energy to raise the temperature by one degree. Because water has a high specific heat capacity, large bodies of water can moderate the temperature of nearby land.
Hope this helps.
plez hurry Which is an important safety precaution that should be taken during a tornado? Stay away from doors and windows. Move to high ground to avoid flood waters. Try to avoid the storm by driving or running. Stay outside to avoid being trapped in a building.
Answer: stay away from doors and windows.
Explanation:
to aviod geting hit by glass
Answer:
Stay away from doors and windows.
Explanation:
Always stay in the center of the room during a tornado storm. Avoid windows, doors, and corners. If you’re near a window, the glass can shatter and hurt you.
Based on their molecular structure, identify the stronger acid from each pair of oxyacids. Match the words in the left column to the appropriate blanks in the sentences on the right.
1) HI is a stronger acid than H2Te because iodine____than tellurium.
2) H2Te is a stronger acid than H2S because the H-Te bond is_____.
3) NaH is not acidic because hydrogen____than sodium.
a. has a more negative electron afflity
b. is more electronegative
c. has a larger atomic radius
d. stronger
e. is harder to ionize
Answer:
1)is more electronegative
2)
3) is more electronegative
Explanation:
1) for the first question, iodine is more electronegative than tellurium hence we naturally expect that HI should be more acidic than H2Te since electronegativities play a role in the acidity of chemical species.
2) the correct option is not listed because the H2Te bond is weaker than the H2S bond. This makes it easier for H2Te to dissociate releasing H^+ , thereby being more acidic than H2S.
3) Hydrogen is more electronegative than sodium hence it cannot be ionized thus NaH is not acidic.
identify the correct acid/conjugate base pair in this equation:
NaHCO3 + H20 = + H2CO3 + OH
+ Na
H20 is an acid and H2CO3 is its conjugate base.
HCO3 is an acid and OH is its conjugate base.
H20 is an acid and HCO3 is its conjugate base.
H20 is an acid and OH is its conjugate base.
Answer:
H20 is an acid and OH is its conjugate base.
Explanation:
Chemical reactions involving acids and bases occur. An acid is a substance that dissociates in water i.e. lose an hydrogen ion/proton. According to the Bronsted-Lowry acid-base theory, when an acid dissociates in water and loses its hydrogen ion, the resulting substance that forms is the CONJUGATE BASE. A conjugate base is the compound formed as a result of the removal of an H+ ion from an acid.
Based on the chemical reaction in the question, NaHCO3 + H20 = H2CO3 + OH- + Na+
The H20 loses its hydrogen ion (H+) to form an anion OH-. This anion formed is the conjugate base while H20 is its acid.
Assume that a nickel weighs exactly 5.038650 g for the sets of weights listed below obtained by a single weighing on the balance below
Answer:
afshkkyfugutuiryfyi
Nitrogen has different oxidation states in the following compounds: nitrite ion, nitrous oxide, nitrate ion, ammonia, and nitrogen gas. Arrange these species in order of increasing nitrogen oxidation state. Select the correct answer below: A. ammonia, nitrogen gas, nitrite, nitrous oxide, nitrate B. nitrogen gas, ammonia, nitrous oxide, nitrite, nitrate C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate D. ammonia, nitrogen gas, nitrate, nitrite, nitrous oxide
Answer:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
Explanation:
To establish the oxidation number of nitrogen in each compound, we know that the sum of the oxidation numbers of the elements is equal to the charge of the species.
Nitrite ion (NO₂⁻)
1 × N + 2 × O = -1
1 × N + 2 × (-2) = -1
N = +3
Nitrous oxide (NO)
1 × N + 1 × O = 0
1 × N + 1 × (-2) = 0
N = +2
Nitrate ion (NO₃⁻)
1 × N + 3 × O = -1
1 × N + 3 × (-2) = -1
N = +5
Ammonia (NH₃)
1 × N + 3 × H = 0
1 × N + 3 × (+1) = 0
N = -3
Nitrogen gas (N₂)
2 × N = 0
N = 0
The order of increasing nitrogen oxidation state is:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
Identify the Lewis acid and Lewis base from among the reactants in each of the following equations. Match the words in the left column to the appropriate blanks in the sentences on the right.
1. Fe3+ (aq)+6CN (aq) Fe(CN) (aq)______is the Lewis acid and_____is the Lewis base. is the Lewis
2. CI- (aq) + AlCl3 (aq) AlCl4-____is the Lewis acid and______is the Lewis base.
3. AlBr3 + NH3 H3NAlBr3______is the Lewis acid and______is the Lewis base.
A. AlCl3
B. CN-
C. AlBr3
D. Cl-
E. NH3
F. Fe3+
Answer:
1. Lewis acid: F. Fe₃⁺, Lewis base: B. CN⁻
2. Lewis acid: A. AlCl₃, Lewis base: D. Cl⁻
3. Lewis acid: C. AlBr₃, Lewis base: E. NH₃
Hope this helps.
The Lewis acid is chemical substance which possesses an empty orbital and accepts an electron pair from a Lewis base ( donor ), in order to create a Lewis adduct ( molecule created from the bonding of Lewis base and acid ).
The Lewis acid from reaction 1 is Fe₃⁺ while the Lewis base is CN⁻ also the Lewis acid from reaction 2 is AICI₃ while the Lewis base is CI⁻
Hence we can conclude that the Lewis acids and Lewis bases of the reactions in the question are as listed above.
Learn more: https://brainly.com/question/16108775
Un globo lleno de helio tenia un volumen de 8.5 L en el suelo a 20°C y a una presión de 750 torr. Cuando se le soltó, el globo se elevo a una altitud donde la temperatura era de -20°C y la presión de 425 torr, ¿Cuál era el volumen del gas del globo en estas condiciones?
Answer:
El volumen del gas era 12.95 L
Explanation:
Se relaciona la presión y el volumen mediante la ley de Boyle, que dice:
“El volumen ocupado por una determinada masa gaseosa a temperatura constante, es inversamente proporcional a la presión”
La ley de Boyle se expresa matemáticamente como: P*V=k
Por otro lado, la Ley de Charles consiste en la relación que existe entre el volumen y la temperatura absoluta de una cierta cantidad de gas ideal, el cual se mantiene a una presión constante. Esta ley dice que cuando la cantidad de gas y de presión se mantienen constantes, el cociente que existe entre el volumen y la temperatura siempre tendrán el mismo valor:
[tex]\frac{V}{T}=k[/tex]
Por último, la Ley de Gay Lussac dice que la temperatura absoluta y la presión son directamente proporcionales. Es decir, cuando se mantiene todo lo demás constante, mientras suba la temperatura de un gas subirá también su presión. Y mientras la temperatura del gas baje, lo mismo ocurrirá con la presión:
[tex]\frac{P}{T}=k[/tex]
Combinado las mencionadas tres leyes se obtiene:
[tex]\frac{P*V}{T} =k[/tex]
Cuando se desean estudiar dos diferentes estados, uno inicial y una final de un gas, se puede aplicar:
[tex]\frac{P1*V1}{T1} =\frac{P2*V2}{T2}[/tex]
Recordando que la temperatura debe usarse en grados Kelvin, conoces los siguientes datos:
P1: 750 torrV1: 8.5 LT1: 20°C= 293°K (siendo 0°C=273°K)P2: 425 torrV2: ?T2: -20°C= 253 °KReemplazando:
[tex]\frac{750 torr*8.5 L}{293K} =\frac{425 torr*V2}{253 K}[/tex]
Resolviendo:
[tex]V2=\frac{750 torr*8.5 L}{293K} *\frac{253 K}{425 torr}[/tex]
V2= 12.95 L
El volumen del gas era 12.95 L
Choose the substance with the lowest boiling point.
A. NBr3.
B. CI2H2.
C. H2O2.
D. H2S.
E. O2.
Answer:
E. O2
Explanation:
All substances has a simple molecular structure, where between their molecules are held by van der Waals' forces. But C must be incorrect because between the H2O2 molecules, they are mainly held by hydrogen bonds on top of van der Waals' forces. Hydrogen bonds are stronger than van der Waals' forces, so more energy is required to separate the H2O2 molecules.
In structures A and D, the molecules are polar. Their van der Waals' forces are stronger than Cl2H2 and O2, which are non-polar.
Between the Cl2H2 and O2, O2 has a smaller molecular size. The van der Waals' forces between the O2 molecules are hence the weakest. Least amount of energy is required to break the intermolecular forces between the O2 molecules therefore it has the lowest boiling point.
A 40.80 gram sample of copper is heated in the presence of excess sulfur. A metal sulfide is formed with a mass of 51.09 g. Determine the empirical formula of the metal sulfide.
Answer:
Cu₂S
Explanation:
From the question,
Cu S
Mass: 40.80 g 51.09-40.80 = 10.29 g
Mole ratio: 40.80/63.5 10.29/32.1
0.64 : 0.32
Divide by the smallest,
0.64/0.32 : 0.32/0.32
2 : 1
Therefore,
Empirical formula = Cu₂S.
Which correctly lists the three land uses that the Bureau of Land Management was originally created to manage? mining, recreation, wildlife refuges recreation, developing oil and gas, battlefields grazing, mining, developing oil and gas developing oil and gas, battlefields, wildlife refuges
Answer: C
Explanation:
Right on edge 2020
The Bureau of Land Management was originally created to manage land for grazing, mining, developing oil and gas.
What is land management?Land management refers to the activities which are done in order to protect and preserve the land as well the resources found on land.
The Bureau of Land Management was created to manage land in the US.
The Bureau of Land Management was originally created to manage land for grazing, mining, developing oil and gas.
Learn more about land management at: https://brainly.com/question/784519
What states can electrons exist in? A. Electron clouds or energy levels B. Positive and negative C. Up and down spin D. In phase and out of phase
Answer:
A. Electron clouds or energy levels
Explanation:
Electrons can exist in two states:
Stablized in electronic orbitalsFreely movingElectrons can exist in an electron cloud or energy level. Electron in an atoms have ability to change energy levels either by emitting or absorbing a photon that form the energy equal to the energy difference between the two levels.
Hence, the correct answer is A.
Answer:
Up and DOWN spin
Explanation:
Write electron configurations for the following ion: Cd2 Cd2 . Express your answer in order of increasing orbital energy. For example, the electron configuration of LiLi would be entered in complete form as 1s^22s^1 or in condensed form as [He]2s^1.
Answer:
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰
Explanation:
Before proceeding to write out the electron configuration of Cd2+, we have to obtain the electron configuration of Cadmium (Cd),
Cadmium has an atomic number of 48, this means that a neutral cadmium atom will have a total of 48 electrons surrounding its nucleus.
The electronic configuration of Cadmium is;
Cd: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10
The shorthand notation is given as;
Cd: [Kr] 4d¹⁰5s²
Cd2+ means that it has two less electrons, hence it's electron configuration is given as;
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰