Answer:
3 PM
350 miles
Step-by-step explanation:
Let's say t is the number of hours since 8 AM.
The distance traveled by Winston is:
w = 50t
The distance traveled by Alice is:
a = 70(t−2)
When w = a:
50t = 70(t−2)
50t = 70t − 140
140 = 20t
t = 7
Winston and Alice will be at the same place 7 hours after 8 AM, or 3 PM.
The distance they travel is 350 miles.
Find the circumference of a circular field with a diameter of 16 yards.
(Let it = 3.14)
Answer:
Hey there!
The circumference of a circle is [tex]\pi(d)[/tex], where d is the diameter, and [tex]\\\pi[/tex] is a constant roughly equal to 3.14.
The diameter is 16, so plugging this into the equation, we get 3.14(16)=50.24.
The circumference of the circle is 50.24 yards.
Hope this helps :)
Evaluate f(x) when x= 9
f(x) = {6x² +2 if 6
112 if 9
No solution
O 110
O 12
56
Answer:
[tex] f(x) = 6x^2 +2 , -6 <x<9[/tex]
[tex] f(x) = 12 , 9 \leq x <13[/tex]
And we want to evaluate f(x=9)
And for this case the answer would be:
[tex] f(9)= 12[/tex]
Best answer:
O 12
Step-by-step explanation:
For this problem we have the following function given:
[tex] f(x) = 6x^2 +2 , -6 <x<9[/tex]
[tex] f(x) = 12 , 9 \leq x <13[/tex]
And we want to evaluate f(x=9)
And for this case the answer would be:
[tex] f(9)= 12[/tex]
Best answer:
O 12
What is the slope of the line graphed below?
(3, 3) (0,-6)
Answer:
3
Step-by-step explanation:
Use this equation
[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex] substitute
-6-3/0-3 subtract
-9/-3 simplify
-3/-1 two negitives cansle out
3/1=3
Hope this helpes, if it did, please consider giving me brainliest, it will help me a lot. If you have any questions, feel free to ask.
Have a good day! :)
Answer:
3
Step-by-step explanation:
To find the slope, we use the slope formula
m= ( y2-y1)/(x2-x1)
= ( -6 -3)/(0 -3)
= -9/-3
= 3
Which interval contains a local minimum for the graphed
function?
Answer:
[2.5 ,4]
Step-by-step explanation:
The graph in this interval has a vertex while opening up wich means it's a minimum
Square root of 5 + square root of 3 the whole divided by sqaure root of 5 - square root of 3
Answer:
The answer is 4 + √15 .
Step-by-step explanation:
You have to get rid of surds in the denorminator by multiplying it with the opposite sign :
[tex] \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } [/tex]
[tex] = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } [/tex]
[tex] = \frac{ {( \sqrt{5} + \sqrt{3} ) }^{2} }{( \sqrt{5} - \sqrt{3} )( \sqrt{5} + \sqrt{3}) } [/tex]
[tex] = \frac{ {( \sqrt{5} )}^{2} + 2( \sqrt{5} )( \sqrt{3}) + {( \sqrt{3}) }^{2} }{ {( \sqrt{5}) }^{2} - { (\sqrt{3} )}^{2} } [/tex]
[tex] = \frac{5 + 2 \sqrt{15} + 3 }{5 - 3} [/tex]
[tex] = \frac{8 + 2 \sqrt{15} }{2} [/tex]
[tex] = 4 + \sqrt{15} [/tex]
in the number 23.45 the digit 5 is in ?
Answer: hundredths place
Step-by-step explanation:
Connor has a collection of dimes and quarters with a total value of $6.30. The number of dimes is 14 more than the number of quarters. How many of each coin does he have?
Answer:
14 Quarters and 28 dimes
Step-by-step explanation: 14 quarters $3.50
28 dimes is $2.80 total is $6.30
1
?
x + 5and
Which line is parallel to the line y =
passes through the point (-2, 1)?
x+
O y=x+3
1
y =
+2
1
y =
4
*-
oy-
1
-X
y=-2
Answer:
second option
Step-by-step explanation:
Parallel lines have the same slope, and since the slope of the given line is 1/2, we know the slope of the answer will be 1/2, which eliminates the first and last options. We know the slope and a point that belongs to the line, (-2, 1), so we can use point-slope formula to derive the equation of the line.
y - 1 = 1/2(x + 2)
y - 1 = 1/2x + 1
y = 1/2x + 2
PLZ HURRY WILL MARK BRAINLIEST The stem and leaf plot shows the number of points a basketball team scored each game during its 15-game season. In how many games did the team score at least 70 points? 4 5 8 10
Answer:
5 games
Step-by-step explanation:
To find how many games the team scored at least 70 points, we need to look at the 7 on the stem side. The 7 means 70, and we add the digits on the leaf side. For example, 7 | 2 is 72. The numbers on the leaf side are: 1, 1, 2, and 3.
There are no points for the 8 on the stem side, but on 90, there is one digit on the leaf side: 1. So, the points they scored over 70 are 71, 71, 72, 73, and 91, which equals to five games.
Answer:
[tex]\boxed{\mathrm{5 \ games}}[/tex]
Step-by-step explanation:
At least 70 points makes it 70 and more. It should be at least 70 and at most anything above then 70.
So, In 5 games, the team scored at least 70. (71,71,72,73 and 91)
Mariam went to a shop and bought 8 snickers, 3 galaxy and 3 kitkat. She payed 8 BD
totally. Her friend Zainab bought 4 snicker, 9 galaxy and 4 kitkat. She payed 10.9BD.
Is it possible to know the cost of each chocolate mathematically?
If yes how. If not why?
Answer:
Yes
Step-by-step explanation:
Let s be the price of snickers, g the price of galaxy and k the price of kitkat.
●For Mariam the equation will be:
8 s + 3 g + 3k = 8
●For Zainab the equation will be:
4 s + 9 g + 4 k = 10.9
Take the first equation and divide both sides by 4 to make it easier.
You get:
● 2s + 0.75 g + 0.75k = 2
Take the second equation and divide both sides by 2 to make easier.
You get:
● 2s + 4.5g + 2k = 5.45
The new system of equation is:
● 2s +0.75g + 0.75k = 2
● 2s + 4.5g + 2k = 5.45
Express s in the first equation using the other variables.
● 2s +0.75g +0.75k = 2
● 2s + 0.75(g+k) = 2
● 2s = 2-0.75(g+k)
● s = 1- 0.325 (g+k)
Replace s by the new expression in the second equation:
●2 [1-0.325(g+k)] +4.5 g +2k = 5.45
●2-0.75(g+k) +4.5g + 2k = 5.45
●2- 0.75g -0.75k +4.5 g +2k = 5.45
●2+ 3.75g + 1.25k = 5.45
● 3.75g +1.25k = 3.45
We have eliminated one variable (s)
We will keep (3.75g+1.25k=3.45) and use it.
Now that we eliminated in the second equation do it again in the first one.
You will get a system of equations with two variables.
Solve it and replace g and k with the solutions.
Finally solve the equation and find s.
On August 21, 2009, the World Health Organization announced its prediction that the number of new cases of H1N1 (swine flu) virus would double every 4 days for several months. As of July 27, 2009, the number of new cases was 15,784. Determine the instantaneous growth rate for the virus (rounded to the nearest ten-thousandths).
Answer:
growth rate = 0.1733 per day, or 17.33% per day
Step-by-step explanation:
Since the doubling time is 4 days, the growth factor over a period of t days is ...
2^(t/4)
Then the growth factor for 1 day is
2^(1/4) ≈ 1.189207
The instantaneous growth rate is the natural log of this:
ln(1.189207) ≈ 0.1733 . . . per day
if the focus of an ellipse are (-4,4) and (6,4), then the coordinates of the enter of the ellipsis are
Answer:
The center is (1,4)
Step-by-step explanation:
The coordinates of the center of an ellipse are the coordinates that are in the middle of the two focus.
Then if we have a focus on [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], we can say that the coordinates for x and y can be calculated as:
[tex]x=\frac{x_1+x_2}{2}\\ y=\frac{y_1+y_2}{2}[/tex]
So, replacing [tex](x_1,y_1)[/tex] by (-4,4) and [tex](x_2,y_2)[/tex] by (6,4), we get that the center is:
[tex]x=\frac{-4+6}{2}=1\\ y=\frac{4+4}{2}=4[/tex]
Which inequality is equivalent to this one y-8_<-2
Answer:
[tex]\boxed{y\leq 6}[/tex]
Step-by-step explanation:
[tex]y-8 \leq -2[/tex]
Adding 2 to both sides
[tex]y \leq -2+8[/tex]
[tex]y \leq 6[/tex]
What property do rectangles and parallelograms always share?
Base: z(x)=cosx Period:180 Maximum:5 Minimum: -4 What are the transformation? Domain and Range? Graph?
Answer:
The transformations needed to obtain the new function are horizontal scaling, vertical scaling and vertical translation. The resultant function is [tex]z'(x) = \frac{1}{2} + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right)[/tex].
The domain of the function is all real numbers and its range is between -4 and 5.
The graph is enclosed below as attachment.
Step-by-step explanation:
Let be [tex]z (x) = \cos x[/tex] the base formula, where [tex]x[/tex] is measured in sexagesimal degrees. This expression must be transformed by using the following data:
[tex]T = 180^{\circ}[/tex] (Period)
[tex]z_{min} = -4[/tex] (Minimum)
[tex]z_{max} = 5[/tex] (Maximum)
The cosine function is a periodic bounded function that lies between -1 and 1, that is, twice the unit amplitude, and periodicity of [tex]2\pi[/tex] radians. In addition, the following considerations must be taken into account for transformations:
1) [tex]x[/tex] must be replaced by [tex]\frac{2\pi\cdot x}{180^{\circ}}[/tex]. (Horizontal scaling)
2) The cosine function must be multiplied by a new amplitude (Vertical scaling), which is:
[tex]\Delta z = \frac{z_{max}-z_{min}}{2}[/tex]
[tex]\Delta z = \frac{5+4}{2}[/tex]
[tex]\Delta z = \frac{9}{2}[/tex]
3) Midpoint value must be changed from zero to the midpoint between new minimum and maximum. (Vertical translation)
[tex]z_{m} = \frac{z_{min}+z_{max}}{2}[/tex]
[tex]z_{m} = \frac{1}{2}[/tex]
The new function is:
[tex]z'(x) = z_{m} + \Delta z\cdot \cos \left(\frac{2\pi\cdot x}{T} \right)[/tex]
Given that [tex]z_{m} = \frac{1}{2}[/tex], [tex]\Delta z = \frac{9}{2}[/tex] and [tex]T = 180^{\circ}[/tex], the outcome is:
[tex]z'(x) = \frac{1}{2} + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right)[/tex]
The domain of the function is all real numbers and its range is between -4 and 5. The graph is enclosed below as attachment.
Y + 1 1/6 = 7 5/6 what is Y
Answer:
6[tex]\frac{2}{3}[/tex]
Step-by-step explanation:
y + 1[tex]\frac{1}{6}[/tex] = 7[tex]\frac{5}{6}[/tex]
y + [tex]\frac{7}{6}[/tex] = [tex]\frac{47}{6}[/tex]
y = 40/6 = 20/3 = 6[tex]\frac{2}{3}[/tex]
The area of a triangle is 14 square inches. The base is 28 inches. What is the height in inches? Do not include units in your answer.
Answer:
Hey there!
A=1/2bh
14=1/2(28)h
14=14h
h=1
Hope this helps :)
Answer:
the height is 1 inchStep-by-step explanation:
Area of a triangle is
[tex] \frac{1}{2} \times b \times h[/tex]
where b is the base
h is the height
From the question
Area = 14in²
b = 14 inches
So we have
[tex]14 = \frac{1}{2} \times 28 \times h[/tex]
which is
[tex]14 = 14h[/tex]
Divide both sides by 14
That's
[tex] \frac{14}{14} = \frac{14h}{14} [/tex]
We have the final answer as
h = 1
Therefore the height is 1 inch
Hope this helps you
The _________ measures the strength and direction of the linear relationship between the dependent and the independent variable.
Answer:
Correlation Coefficient
Step-by-step explanation:
Please Help!!! Find X for the triangle shown.
Answer:
[tex] x = 2 [/tex]
Step-by-step explanation:
Given a right-angled triangle as shown above,
Included angle = 60°
Opposite side length = 3
Adjacent side length = x
To find x, we would use the following trigonometric ratio as shown below:
[tex] tan(60) = \frac{3}{x} [/tex]
multiply both sides by x
[tex] x*tan(60) = \frac{3}{x}*x [/tex]
[tex] x*tan(60) = 3 [/tex]
Divide both sides by tan(60)
[tex] \frac{x*tan(60)}{tan(60} = \frac{3}{tan(60} [/tex]
[tex] x = \frac{3}{tan(60} [/tex]
[tex] x = 1.73 [/tex]
[tex] x = 2 [/tex] (approximated to whole number)
tje mean of 12 scores is 8.8 what is the sum of tue 12 scores
Answer:
105.6
Step-by-step explanation:
If the mean is 8.8, than that means that in total the sum must be (8.8 * 12) which equals 105.6.
This is because the sum of all the numbers in a list divided by the amount of numbers in a list equals the mean.
The Customer Service Center in a large New York department store has determined that the amount of time spent with a customer about a complaint is normally distributed, with a mean of 8.9 minutes and a standard deviation of 2.5 minutes. What is the probability that for a randomly chosen customer with a complaint, the amount of time spent resolving the complaint will be as follows. (Round your answers to four decimal places.)
The complete question is;
The Customer Service Center in a large New York department store has determined that the amount of time spent with a customer about a complaint is normally distributed, with a mean of 8.9 minutes and a standard deviation of 2.5 minutes. What is the probability that for a randomly chosen customer with a complaint, the amount of time spent resolving the complaint will be as follows. (Round your answers to four decimal places.)
(a) less than 10 minutes
(b) longer than 5 minutes
(c) between 8 and 15 minutes
Answer:
A) P (x < 10) = 0.6700
B) P (x > 5 ) = 0.9406
C) P (8.0000 < x < 15.0000) = 0.6332
Step-by-step explanation:
A) we are given;
Mean;μ = 8.9 minutes
Standard deviation;σ = 2.5 minutes
Normal random variable;x = 10
So to find;P(x < 10) we will use the Z-score formula;
z = (x - μ)/σ
z = (10 - 8.9)/2.5 = 0.44
From z-distribution table and Z-score calculator as attached, we have;
P (x < 10) = P (z < 0.44) = 0.6700
B) similarly;
z = (x - μ)/σ =
z = (5 - 8.9)/2.5
z = -1.56
From z-distribution table and Z-score calculator as attached, we have;
P (x > 5 ) = P (z > -1.56) = 0.9406
C)between 8 and 15 minutes
For 8 minutes;
z = (8 - 8.9)/2.5 = -0.36
For 15 minutes;
z = (15 - 8.9)/2.5 = 2.44
From z-distribution table and Z-score calculator as attached, we have;
P (8.0000 < x < 15.0000) = P (-0.36 < z < 2.44) = 0.6332
C(t) = 2t^4 – 8t^3 +6t^2 Find the t-intercept?
Answer:
0
Step-by-step explanation:
The t-intercept here is what's khown as the x-intercept wich is given by C(t)=0
● C(t) = 2t^4-8t^3+6t^2
● 0 = 2t^4-8t^3+6t^2
Factor using t
● t(2t^3-8t^2+6t^1) = 0
Wich means that t=0
Solve the right triangle.
A = 48.31º. c = 49.9
Assuming angle A is opposite to side a, B is the opposite to side b, and angle C is the opposite to side c.
Answer:
The right triangle has the following angles:
A = 48.31º, B = 41.69º and C = 90º.
The sides are:
[tex] \\ a = 37.26[/tex], [tex] \\ b = 33.12[/tex] and c = 49.9.
Step-by-step explanation:
The inner sum of a triangle = 180º.
A=48.31º,
C=90º
A + B + C = 180º
48.31º+ B + 90º = 180º
B = 180º - 90º - 48.31º
B = 41.69º
We can apply the Law of Sines to solve for unknown sides:
[tex] \\ \frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}[/tex]
We know that sin(90º) = 1.
[tex] \\ \frac{a}{sin(48.31)} = \frac{b}{sin(41.69)} = \frac{49.9}{1}[/tex]
Then, a is:
[tex] \\ \frac{a}{sin(48.31)} = \frac{49.9}{1}[/tex]
[tex] \\ a = 49.9*sin(48.31)[/tex]
[tex] \\ a = 49.9*0.7467[/tex]
[tex] \\ a = 37.26[/tex]
Thus, b is:
[tex] \\ \frac{b}{sin(41.69)} = \frac{49.9}{1}[/tex]
[tex] \\ b = 49.9*sin(41.69)[/tex]
[tex] \\ b = 33.12[/tex]
Angle bisectors AX and of triangle ABC meet at point I. Find angle C in degrees, if AIB = 109.
Answer:
angle C = 38 degrees
Step-by-step explanation:
Refer to attached figure (sorry, forgot to attach earlier)
Given
AIB = 109
Let
CAX = XAB = x
CBY = YBA = y
XIB = YIA = x+y ........exterior angles
XIB = YIA = 180-109 = 71 ............ sum of angles on a line
=>
x+y = 71
ACB = 180 - 2x -2y ................. sum of angles of a triangle
= 180 - 2(x+y)
= 180 - 2(71)
= 180 - 142
= 38
I NEED HELP ASAP!!!!!!! Find 2 numbers that multiply to make -24 and add to make -10
Answer:
Step-by-step explanation:
-8*3= -24+14=-10
Answer:
-12 and 2.
Step-by-step explanation:
-12*2= -24,
-12+2=-10
someone please do this like literally please
Answers:
sin a=12/15=4/5
step by step explanation:
AB=9, and BC=12
find c: hyp.=√12²+9²=c²
c=15
sin a=opp/hyp.=12/15=4/5 ( convert to degrees)
a=41.10
letry. 14 Chapter 9: Chapter 9 rest Chapter Test
A roof has a cross section that is a right triangle. The diagram shows the approximate dimensions of this cross section. Find the height of the roof.
Round your answer to the nearest tenth.
15 ft
h
8 ft
17 ft
Answer:
h = 7.1 cm
Step-by-step explanation:
To find the height of the triangle, we can first find the area of the triangle using the Heron's formula:
[tex]S = \sqrt{p(p-a)(p-b)(p-c)}[/tex]
Where a, b and c are the sides of the triangle and p is the semi perimeter of the triangle:
[tex]p = \frac{a+b+c}{2} = \frac{15 + 8 + 17 }{2} = 20\ cm[/tex]
So the area of the triangle is:
[tex]S = \sqrt{20(20-15)(20-8)(20-17)}[/tex]
[tex]S = 60\ cm^2[/tex]
Now, to find the height, we can use the following equation for the area of the triangle:
[tex]S = base * height/2[/tex]
The height draw in the figure is relative to the side of 17 cm, so this side is the value of base used in the formula. So we have that:
[tex]60 = 17 * h/2[/tex]
[tex]h = 120/17[/tex]
[tex]h = 7.06\ cm[/tex]
Rounding to the nearest tenth, we have h = 7.1 cm
Answer:
7.1 cm
Step-by-step explanation:
:D
Diners frequently add a 15% tip when charging a meal to a credit card. What is the price of the meal without the tip if the amount charged is $
Question:
Diners frequently add a 15% tip when charging a meal to a credit card. What is the price of the meal without the tip if the amount charged is $20.70? How much was the tip?
Answer:
Price of meal = $18
Tip price = $2.70
Step-by-step explanation:
Let the price of the meal be y;
Let the tip be t
From the question;
15% of y is the tip charge (t). i.e
t = 15%y
=> t = 0.15y --------(i)
The total amount charged is $20.70 (This means that the sum of the price of the meal and the tip is $20.70)
=> y + t = 20.70 [substitute the value of t=0.15y from equation (i)]
=> y + 0.15y = 20.70
=> 1.15y = 20.70
=> y = [tex]\frac{20.70}{1.15}[/tex]
=> y = $18
Therefore the price of the meal, y, is $18.
From equation (i),
t = 0.15y [substitute the value of y = $18]
t = 0.15(18)
t = $2.70
Therefore the tip was $2.70
Find the slope of the line that passes through (1, 14) and (4,9)
Which two numbers in the points represent x values? Select both in the
list.
In any coordinate pair, the first number is the x-value and the second number is the y-value.
To find the slope, simply take the difference of the y values and divide by the difference in the x values: (14-9)/(1-4) is equal to -5/3.
The slope of the line that passes through (1, 14) and (4,9) is -5/3.
It is find the slope of the line.
what is slope?The slope of any line, ray, or line segment is the ratio of the vertical to the horizontal distance between any two points on it (“slope equals rise over run”).
The slope is always calculated from the rise divided by the run. Typically, the equation is presented as:
m = Rise/Run
If you have two points, the points should be [tex]P_{1} (x_{1} ,y_{1} )[/tex] and [tex]P_{2} (x_{2} ,y_{2} )[/tex] So, the equation would be:
[tex]m=\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
In any coordinate pair, the first number is the x-value and the second number is the y-value.
The difference of the y values and divide by the difference in the x values:
m=(14-9)/(1-4) is equal to -5/3.
The slope of the line that passes through (1, 14) and (4,9) is -5/3.
Learn more about slope here:
https://brainly.com/question/17114095
#SPJ5
How much of a radioactive kind of sodium will be left after 9 years if you start with 96 grams and the half-life is 3 years?
Answer:
9 years = 12 grams
Step-by-step explanation:
0 years = 96 grams
After 3 years , the amount left is 1/2 of what you started with
3 years = 1/2 *96 = 48 grams
After 3 years , the amount left is 1/2
6 years = 1/2 (48) = 24 grams
After 3 years , the amount left is 1/2
9 years = 1/2 ( 24) = 12 grams