|x–5|=|x+5| If you answer this question before 2:35 pm on July 28, 2020, I will give 10 points!!

Answers

Answer 1

Answer:

[tex]\boxed{x=0}[/tex]

Step-by-step explanation:

[tex]|x-5|=|x+5|[/tex]

Solve absolute value.

There are two possibilities.

First possibility:

[tex]x-5=x+5\\0=10[/tex]

No solution.

Second possibility:

[tex]x-5=-(x + 5)\\x-5=-x-5\\2x=0\\x=0[/tex]


Related Questions

omplete)
HWS
X 3.3.13-BE
The manufacturer's suggested retail price (MSRP) for a particular car is $25,495, and it is expected to be worth $20,081 in 2 years.
(a) Find a linear depreciation function for this car.
(b) Estimate the value of the car 4 years from now.
(c) At what rate is the car depreciating?
(a) What is the linear depreciation function for this car?
f(x) =
(Simplify your answer. Do not include the $ symbol in your answer.)​

Answers

Answer:

a) y = 25495 - 2707x

b) y = 25495 - 2707(4) = 14,667

c) $2,707 per year

Step-by-step explanation:

Value now: $25,495

Value in 2 years: $20,081

Loss of value in 2 years: $25,495 - $20,081 = $5,414

Loss of value per year: $5,414/2 = $2,707

a) y = 25495 - 2707x

b) y = 25495 - 2707(4) = 14,667

c) $2,707 per year

You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately 60%. You would like to be 98% confident that your estimate is within 2.5% of the true population proportion. How large of a sample size is required?

Answers

Answer:

A sample size of 2080 is needed.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

98% confidence level

So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].

Based on previous evidence, you believe the population proportion is approximately 60%.

This means that [tex]\pi = 0.6[/tex]

How large of a sample size is required?

We need a sample of n.

n is found when [tex]M = 0.025[/tex]. So

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.025 = 2.327\sqrt{\frac{0.6*0.4}{n}}[/tex]

[tex]0.025\sqrt{n} = 2.327\sqrt{0.6*0.4}[/tex]

[tex]\sqrt{n} = \frac{2.327\sqrt{0.6*0.4}}{0.025}[/tex]

[tex](\sqrt{n})^{2} = (\frac{2.327\sqrt{0.6*0.4}}{0.025})^{2}[/tex]

[tex]n = 2079.3[/tex]

Rounding up

A sample size of 2080 is needed.

Find the total surface area of the cone in the figure. ( use rr=3.14.)

Answers

Answer:

Answer D

Step-by-step explanation:

The formula is [tex]A = pi r(r+\sqrt{h^2+r^2})[/tex]. We have our r (radius) and h (height), so plugging it all in would give us A = (3.14)(5 + sqrt(12^2)+(5^2). After computing this, you would get answer D, 282.6.

PLZ help me !!!!!! QUICKLY
What is the solution to the inequality −1/6e ≥ 2 ?

Answers

Answer:

e < -12

Step-by-step explanation:

In algebra, we always need to follow a set of steps that involve undoing the operations that led to the equation to reveal the value of x.

Step 1: Divide by -1/6

e < -12

(Since we divided by a negative number, we must reverse the inequality sign.)

Step 2: Check

(-1/6)(-12) > 2

2 > 2 ✅

Now we check a number less than -12, such as -14.

(-1/6)(-14) > 2

2 1/3 > 2 ✅

The correct answer is: e < -12I'm always happy to help :)

What is the missing side lenght in the triangle below?​

Answers

Answer:

45

Step-by-step explanation:

Let's call the missing side x

This is a right triangle and in right triangles the square length of hypotenuse is equal to sum of square length of base and side lengths

53^2 = 28^2 + x^2

x = 45

If the 2nd and 5th terms of a
G.P are 6 and 48 respectively,
find the sum of the first four
terms​

Answers

Answer:

45

Step-by-step explanation:

The n th term of a GP is

[tex]a_{n}[/tex] = a[tex]r^{n-1}[/tex]

where a is the first term and r the common ratio

Given a₂ = 6 and a₅ = 48, then

ar = 6 → (1)

a[tex]r^{4}[/tex] = 48 → (2)

Divide (2) by (1)

[tex]\frac{ar^4}{ar}[/tex] = [tex]\frac{48}{6}[/tex] , that is

r³ = 8 ( take the cube root of both sides )

r = [tex]\sqrt[3]{8}[/tex] = 2

Substitute r = 2 into (1)

2a = 6 ( divide both sides by 2 )

a = 3

Thus

3, 6, 12, 24 ← are the first 4 terms

3 + 6 + 12 + 24 = 45 ← sum of first 4 terms

6th grade math, help me pleasee:)

Answers

Answer:

8 pounds

Step-by-step explanation:

2 x 3 = 6 tb of chili powder in pot 2

find pounds per tablespoon: 48 / 6 = 8 pounds

Answer:

1/2 pound per tablespoon

Step-by-step explanation:

Jaden sure does like his chili!

In the first and second pot, he uses 3 pounds worth of ground beef, which means, 12 ounces of something is a pound. And because Jaden had used 3 times the amount of chili powder in the second pot, he used 6 tablespoons worth of powder. 3 pounds divided by 6 equals 1/2.

Express 0.325 as a percentage

Answers

Answer:

32.5%

Step-by-step explanation:

0.325 x 100%=32.5%

32.5% as there are 100%in total percentage
And 0.325 is question
So .0325*100=32.5

Six human skulls from around 4000 b.c. were measured, and the lengths have a mean of 94.2 mm and a standard deviation of 4.9
mm. If you want to construct a 95% confidence interval estimate of the mean length of all such skulls, assume that the requirements
are satisfied. Find the critical values that would be used to construct a 95% confidence interval estimate of o

Answers

Answer:

Step-by-step explanation:

Hello!

You have to estimate the mean length of 4000 b.c. human skulls trough a 95% confidence interval.

You know that

n= 6 human skulls

[tex]\frac{}{X}[/tex]= 94.2mm

S= 4.9

Assuming that the variable X: length of a 4000b.c. human skull (mm) has a normal distribution, to construct the interval you have to use the t statistic:

[[tex]\frac{}{X}[/tex] ± [tex]t_{n_1;1-\alpha /2} * \frac{S}{\sqrt{n} }[/tex]]

[tex]t_{n-1;1-\alpha /2}= t_{5; 0.975}= 2.571[/tex]

[94.2 ± 2.571 * [tex]\frac{4.9}{\sqrt{6} }[/tex]]

[89.06; 99.34]mm

With a 95% confidence level you'd expect the interval [89.06; 99.34]mm to contain the value for the average skull length for humans 4000 b.c.

I hope this helps!

Louden County Wildlife Conservancy counts butterflies each year. Data over the last three years regarding four types
of butterflies are shown below. What is the average number of Variegated Fritillaries for all three samples?
A. 55 B.83 C.106 D.165

Answers

Answer:

A). 55

Step-by-step explanation:

Number of Variegated Fritillaries for each year is

2009 = 7

2010= 95

2011= 63

The sum total of the samples= 7+95+63

The sum total of the samples= 165

Number of years= 3

The average= total/number of years

The average= 165/3

The average= 55

Answer: A

Step-by-step explanation: I have a massive brain (•-*•)

the product of two consequtive integers is 72 the equation x(x+1)=72 represents the situation, where x represents the smaller integer, which equation can be factor and solve for the smaller integer?

Answers

Answer:

x² + x - 72 = 0 can be factored into (x - 8)(x + 9) = 0 to find your answer.

Step-by-step explanation:

Step 1: Distribute x

x² + x = 72

Step 2: Move 72 over

x² + x - 72 = 0

Step 3: Factor

(x - 8)(x + 9) = 0

Step 4: Find roots

x - 8 = 0

x = 8

x + 9 = 0

x = -9

Answer:

x² + x - 72 = 0 ⇒ (x - 8)(x + 9) = 0

Step-by-step explanation:

Let the first consecutive integer be x.

Let the second consecutive integer be x+1.

The product of the two consecutive integers is 72.

x(x + 1) = 72

x² + x = 72

Subtracting 72 from both sides.

x² + x - 72 = 0

Factor left side of the equation.

(x - 8)(x + 9) = 0

Set factors equal to 0.

x - 8 = 0

x = 8

x + 9 = 0

x = -9

8 and -9 are not consecutive integers.

Try 8 and 9 to check.

x = 8

x + 1 = 9

x(x+1) = 72

8(9) = 72

72 = 72

True!

The two consecutive integers are 8 and 9.

The product of 6 and a number (n) is 48 . Which equation shows this relationship? ANSWER CHOICES: 6n=48 n+6=48 48n=6 n-6=48

Answers

Answer:

6n=48

Step-by-step explanation:

product means multiplication

6×n=48

6n=48

An equation that shows this relationship is: A. 6n = 48.

How to determine the equation representing the product?

In order to solve this word problem, we would assign a variable to the unknown number, and then translate the word problem into an algebraic equation as follows:

Let the variable n represent the unknown number.

Based on the statement "The product of 6 and a number is 48," we can logically deduce the following algebraic equation;

6 × n = 48

6n = 48

n = 48/6

n = 8.

Read more on equation here: brainly.com/question/18912929

#SPJ6

Does anyone know the answers to these?

Answers

Step-by-step explanation:

a. The point estimate is the mean, 47 days.

b. The margin of error is the critical value times the standard error.

At 31 degrees of freedom and 98% confidence, t = 2.453.

The margin of error is therefore:

MoE = 2.453 × 10.2 / √32

MoE = 4.42

c.  The confidence interval is:

CI = 47 ± 4.42

CI = (42.58, 51.42)

d. We can conclude with 98% confidence that the true mean is between 42.58 days and 51.42 days.

e. We can reduce the margin of error by either increasing the sample size, or using a lower confidence level.

Which of the following points is a solution of y > Ixl + 5?

A. (0, 5)
B. (1, 7)
C. (7, 1)​

Answers

Answer:

B. (1,7)

Step-by-step explanation:

We can substitute the x and y values of each coordinate into the inequality and test if they work.

Let's start with A, 5 being y and 0 being x .

[tex]5 > |0|+5\\5> 0+5\\5 > 5[/tex]

5 IS NOT greater than 5, they are the exact same, so A is out.

Let's try B, 1 being x and 7 being y.

[tex]7 > |1| + 5\\7 > 1 + 5\\7 > 6[/tex]

7 IS greater than 6, so B. (1,7) does work for this inequality!

Let's do C for fun, when 7 is x and 1 is y.

[tex]1 > |7| + 5\\1>7+5\\1>12[/tex]

1 IS NOT greater than 12, it is quite less than 12, so C doesn't work.

Therefore B. (1,7) works for the inequality of [tex]y > |x|+5[/tex].

Hope this helped!

Efficiency is the ratio of output work to input work, expressed as a percentage. Light bulbs put out less light energy than the amount of electrical energy that is put into the bulb. An illustration of a wide arrow with a light bulb at the tail of it labeled electrical energy 100 J, breaks into a small arrow going forward labeled light 10 J and a larger curling away labeled heat 90 J. The goal of the bulb is to produce light. What is the efficiency of this bulb as it works to put out light? 10% 80% 90% 100%

Answers

Answer:

  10%

Step-by-step explanation:

Using the given formula with the given data, we have ...

  efficiency = output work / input work

  = (10 J)/(100 J) = 0.10 = 10%

Answer:

A) 10%

Step-by-step explanation:

10/100=10

The value of y varies inversely as the square of x, and y = 16, when I = 3.
Find the value of x when y = 1.​

Answers

Answer:

x = 12

Step-by-step explanation:

The statement

The value of y varies inversely as the square of x is written as

[tex]y = \frac{k}{ {x}^{2} } [/tex]

where k is the constant of proportionality

To find the value of x when y = 1 first find the formula for the variation

y = 16 x = 3

k = yx²

k = 16(3)²

k = 16 × 9

k = 144

The formula for the variation is

[tex]y = \frac{144}{ {x}^{2} } [/tex]

when y = 1

We have

[tex]1 = \frac{144}{ {x}^{2} } [/tex]

Cross multiply

x² = 144

Find the square root of both sides

We have the final answer as

x = 12

Hope this helps you

g Find the mean and the variance of the random variable X with probability function or density f(x) of a uniform distribution on [0, 8].

Answers

Answer: E(X) = 4

              V(X) = [tex]\frac{16}{3}[/tex]

Step-by-step explanation: An uniform distribution is a random variable X restricted to a finite interval [a,b] and has a constant function f(x) over this interval, i.e., the function is of form:

f(x) = [tex]\left \{ {{\frac{1}{b-a} } \atop {0}} \right.[/tex]  

The mean or expectation of an unifrom distribution is:

E(X) = [tex]\int\limits^b_a {x.f(x)} \, dx[/tex]

For the density function in interval [0,8], expectation value is:

E(X) = [tex]\int\limits^8_0 {x.(\frac{1}{8-0} )} \, dx[/tex]

E(X) = [tex]\int\limits^8_0 {\frac{x}{8} } \, dx[/tex]

E(X) = [tex]\frac{1}{8}. \int\limits^8_0 {x} \, dx[/tex]

E(X) = [tex]\frac{1}{8}.(\frac{x^{2}}{2} )[/tex]

E(X) = [tex]\frac{1}{8} (\frac{8^{2}}{2} )[/tex]

E(X) = 4

Variance of a probability distribution can be written as:

V(X) = [tex]E(X^{2}) - [E(X)]^{2}[/tex]

For uniform distribution in interval [0,8]:

V(X) = [tex]\int\limits^b_a {x^{2}.\frac{1}{8-0} } \, dx - (\frac{8+0}{2})^{2}[/tex]

V(X) = [tex]\frac{1}{8} \int\limits^8_0 {x^{2}} \, dx - 4^{2}[/tex]

V(X) = [tex]\frac{1}{8} (\frac{x^{3}}{3} ) - 16[/tex]

V(X) = [tex]\frac{1}{8} (\frac{8^{3}}{3} ) - 16[/tex]

V(X) = [tex]\frac{64}{3}[/tex] - 16

V(X) = [tex]\frac{16}{3}[/tex]

The mean and variance are 4 and 16/3, respectively

When josh borrowed money, he originally agreed to repay the loan by making three equal payments of $1500, with a payment due now, another payment due two years from now, and the final payment due four years from now. Instead of the original payments, he plans to pay off the loan by making a single payment of 5010. If interest is 10%, compounded annually, when will he make the single payment?

Answers

Answer:

5 years

Step-by-step explanation:

Principal Amount to be paid=$4500

Interest rate = 2%

Number if Times compounded= number of years

Number of years = x

Among total= $5010

A= p(1+r/n)^(nt)

But n= t =x

A= p(1+r/x)^(x²)

5010=4500(1+0.02/x)^(x²)

5010/4500 = (1+0.02/x)^(x²)

1.11333=( 1+0.02/x)^(x²)

Using trial and error method the number of years maximum to give approximately $5010 is 5 years

What is ∛2197? Explain how you got your answer.

Answers

Answer:

13

Step-by-step explanation:

We need to write our answer in exponential form. Ask yourself the question, "What times itself 3 times will give you 2197?" Your answer is [tex]13^{3}[/tex]. This will go inside of your cube root. You now have [tex]\sqrt[3]{13^{3} }[/tex]. Since there's a power of 3 and a cube root, those cancel each other out, and your answer is 13.

Answer:

[tex]\boxed{13}[/tex]

Step-by-step explanation:

=> [tex]\sqrt[3]{2197}[/tex]

Factorizing 2197 gives 13 * 13 * 13

=> [tex]\sqrt[3]{13*13*13}[/tex]

=> [tex]\sqrt[3]{13^3}[/tex]

We know that [tex]\sqrt[3]{} = ^{1/3}[/tex]

=> [tex]13^{3 * 1/3}[/tex]

=> [tex]13^1[/tex]

=> 13

From a population that is not normally distributed and whose standard deviation is not known, a sample of 6 items is selected to develop an interval estimate for the mean of the population (μ).
a. The normal distribution can be used.
b. The t distribution with 6 degrees of freedom must be used.
c. The sample size must be increased.
d. The t distribution with 5 degrees of freedom must be used.

Answers

Answer:

d) The t-distribution with 5 degrees of freedom must be used

Step-by-step explanation:

For cases of Normal Distribution where the variance is unknown and the sample size n is smaller than 30, we must use the t-student distribution.

The shape of the curve for t-student is bell-shape (flatter and with wider tails than the bell shape of normal distribution.

Actually, when we deal with t-student distribution we are dealing with a family of curves that will become closer and closer to the bell shape of the normal distribution as the degree of freedom increases. From values of n =30( and bigger),  we can assume that the curve of t-student is the same as for normal distribution

The ratio of oranges in a fruit salad to people it will serve is 9/40, or 9:40. If Lisa wants to serve 800 people, how many oranges will Lisa use?

Answers

The correct answer is 180 oranges

Explanation:

In mathematics, a ratio expresses two or more numbers that are related. In the case fo the ration 9: 40 this expresses 9 oranges are used to serve fruit salad for 40 people. Now, if you need to determine what is the number of oranges not for 40 people but for 800 people you can use cross multiplication. This process is explained below:

[tex]\frac{9}{40} = \frac{x}{800}[/tex]   - 1. Multiply  9 x 800 and 40 x x (cross multiplication)

[tex]7200 = 40x[/tex] - 2. Solve the equation by diving 7200 into 40

[tex]\frac{7200}{40} = x[/tex]

[tex]x = 180[/tex] - 3. 180 represents the number of oranges to serve 800 people, which   can be expressed as 180: 800

Which is hyperplane is better between B1 and B2? a. B1 is better than B2 b. B2 is better than B1 c. Both B1 and B2 are the same d. Neither B1 nor B2

Answers

Answer:

a. B1 is better than B2.

Step-by-step explanation:

Hyperplane is a geometric shape which has subspace whose dimension is one less than ambient space. Hyperplane that maximizes the margin it will have better generalization. Margin is calculated by [tex]\frac{2}{||W||}[/tex]. The correct option is a.

Answer:

A

Step-by-step explanation:

Find the area under the standard normal curve to the right of z = 2.

Answers

Answer:

  0.0228

Step-by-step explanation:

A suitable probability calculator (or spreadsheet) can tell you this.

It is about 0.0228.

Statistics students in Oxnard College sampled 10 textbooks in the Condor bookstore, and recorded number of pages in each textbook and its cost. The bivariate data is shown below, Number of Pages ( x ) Cost( y ) 526 52.08 625 59 589 56.12 409 25.72 489 34.12 500 53 906 78.48 251 26.08 595 50.6 719 68.52 A student calculates a linear model y = x + . (Please show your answers to two decimal places) Use the model above to estimate the cost when number of pages is 563 Cost = $ (Please show your answer to 2 decimal places.)

Answers

Answer:

y = -0.85 + 0.09x; $49.82

Step-by-step explanation:

1. Calculate Σx, Σy, Σxy, and Σx²  

The calculation is tedious but not difficult.

[tex]\begin{array}{rrrr}\mathbf{x} & \mathbf{y} & \mathbf{xy} & \mathbf{x^{2}}\\526 & 52.08 & 27394.08 & 276676\\625& 59.00 & 36875.00 &390625\\589 & 56.12 & 33054.68 & 346921\\409 & 25.72 & 10519.48 & 167281\\489 & 34.12& 16684.68 & 293121\\500 & 53.00 & 26500.00 &250000\\906 & 76.48 & 71102.88 & 820836\\251 &26.08 & 6546.08 & 63001\\595 & 50.60 & 30107.00 & 354025\\719 & 68.52 & 49265.88 & 516961\\\mathbf{5609} & \mathbf{503.72} &\mathbf{308049.76} & \mathbf{3425447}\\\end{array}[/tex]

2. Calculate the coefficients in the regression equation

[tex]a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}} = \dfrac{503.7 \times 3425447 - 5609 \times 308049.76}{10 \times 3425447- 5609^{2}}\\\\= \dfrac{1725466163 - 1727851103.84}{34254470 - 31460881} = -\dfrac{2384941}{2793589}= \mathbf{-0.8537}[/tex]

[tex]b = \dfrac{n\sumx y - \sum x \sumxy}{n\sum x^{2}- \left (\sum x\right )^{2}} = \dfrac{3080498 - 2825365.48}{2793589} = \dfrac{255132}{2793589} = \mathbf{0.09133}[/tex]

To two decimal places, the regression equation is

y = -0.85 + 0.09x

3. Prediction

If x = 563,

y = -0.85 + 0.09x = -0.85 + 0.09 × 563 = -0.85  + 50.67 = $49.82

(If we don't  round the regression equation to two decimal places, the predicted value is $50.56.)

 

Leechtown Co. has 4.3% coupon bonds on the market with 18 years left to maturity. The bonds make annual payments. If the bond currently sells for $870, what is its YTM? (Do not round intermediate calculations. Round the final answer to 2 decimal places.) Yield to maturity %

Answers

Answer:

YTM = 5.45%

Step-by-step explanation:

Here, we are interested in calculating the yield to maturity.

Mathematically;

Annual coupon=1000*4.3%=43

YTM=[Annual coupon+(Face value-Present value)/time to maturity]/(Face value+Present value)/2

=[43+(1000-870)/18]/(1000+870)2

=5.45%

Determine which of the sets of vectors is linearly independent. A: The set where p1(t) = 1, p2(t) = t2, p3(t) = 3 + 3t B: The set where p1(t) = t, p2(t) = t2, p3(t) = 2t + 3t2 C: The set where p1(t) = 1, p2(t) = t2, p3(t) = 3 + 3t + t2

Answers

Answer:

The set of vectors A and C are linearly independent.

Step-by-step explanation:

A set of vector is linearly independent if and only if the linear combination of these vector can only be equalised to zero only if all coefficients are zeroes. Let is evaluate each set algraically:

[tex]p_{1}(t) = 1[/tex], [tex]p_{2}(t)= t^{2}[/tex] and [tex]p_{3}(t) = 3 + 3\cdot t[/tex]:

[tex]\alpha_{1}\cdot p_{1}(t) + \alpha_{2}\cdot p_{2}(t) + \alpha_{3}\cdot p_{3}(t) = 0[/tex]

[tex]\alpha_{1}\cdot 1 + \alpha_{2}\cdot t^{2} + \alpha_{3}\cdot (3 +3\cdot t) = 0[/tex]

[tex](\alpha_{1}+3\cdot \alpha_{3})\cdot 1 + \alpha_{2}\cdot t^{2} + \alpha_{3}\cdot t = 0[/tex]

The following system of linear equations is obtained:

[tex]\alpha_{1} + 3\cdot \alpha_{3} = 0[/tex]

[tex]\alpha_{2} = 0[/tex]

[tex]\alpha_{3} = 0[/tex]

Whose solution is [tex]\alpha_{1} = \alpha_{2} = \alpha_{3} = 0[/tex], which means that the set of vectors is linearly independent.

[tex]p_{1}(t) = t[/tex], [tex]p_{2}(t) = t^{2}[/tex] and [tex]p_{3}(t) = 2\cdot t + 3\cdot t^{2}[/tex]

[tex]\alpha_{1}\cdot p_{1}(t) + \alpha_{2}\cdot p_{2}(t) + \alpha_{3}\cdot p_{3}(t) = 0[/tex]

[tex]\alpha_{1}\cdot t + \alpha_{2}\cdot t^{2} + \alpha_{3}\cdot (2\cdot t + 3\cdot t^{2})=0[/tex]

[tex](\alpha_{1}+2\cdot \alpha_{3})\cdot t + (\alpha_{2}+3\cdot \alpha_{3})\cdot t^{2} = 0[/tex]

The following system of linear equations is obtained:

[tex]\alpha_{1}+2\cdot \alpha_{3} = 0[/tex]

[tex]\alpha_{2}+3\cdot \alpha_{3} = 0[/tex]

Since the number of variables is greater than the number of equations, let suppose that [tex]\alpha_{3} = k[/tex], where [tex]k\in\mathbb{R}[/tex]. Then, the following relationships are consequently found:

[tex]\alpha_{1} = -2\cdot \alpha_{3}[/tex]

[tex]\alpha_{1} = -2\cdot k[/tex]

[tex]\alpha_{2}= -2\cdot \alpha_{3}[/tex]

[tex]\alpha_{2} = -3\cdot k[/tex]

It is evident that [tex]\alpha_{1}[/tex] and [tex]\alpha_{2}[/tex] are multiples of [tex]\alpha_{3}[/tex], which means that the set of vector are linearly dependent.

[tex]p_{1}(t) = 1[/tex], [tex]p_{2}(t)=t^{2}[/tex] and [tex]p_{3}(t) = 3+3\cdot t +t^{2}[/tex]

[tex]\alpha_{1}\cdot p_{1}(t) + \alpha_{2}\cdot p_{2}(t) + \alpha_{3}\cdot p_{3}(t) = 0[/tex]

[tex]\alpha_{1}\cdot 1 + \alpha_{2}\cdot t^{2}+ \alpha_{3}\cdot (3+3\cdot t+t^{2}) = 0[/tex]

[tex](\alpha_{1}+3\cdot \alpha_{3})\cdot 1+(\alpha_{2}+\alpha_{3})\cdot t^{2}+3\cdot \alpha_{3}\cdot t = 0[/tex]

The following system of linear equations is obtained:

[tex]\alpha_{1}+3\cdot \alpha_{3} = 0[/tex]

[tex]\alpha_{2} + \alpha_{3} = 0[/tex]

[tex]3\cdot \alpha_{3} = 0[/tex]

Whose solution is [tex]\alpha_{1} = \alpha_{2} = \alpha_{3} = 0[/tex], which means that the set of vectors is linearly independent.

The set of vectors A and C are linearly independent.

Which number line represents the solution set for the inequality 3(8 - 4x) < 6(x - 5)?

Answers

Answer:

x>3

Step-by-step explanation:

We draw a random sample of size 25 from a normal population with variance 2.4. If the sample mean is 12.5, what is a 99% confidence interval for the population mean?

Answers

Answer:

11.2≤[tex]\mu[/tex]12.8

Step-by-step explanation:

Confidence interval for the population mean is expressed by the formula;

CI = xbar ± Z(S/√n) where;

xbar is the sample mean = 12.5

Z is the z score at 99% confidence = 2.576

S is the standard deviation = √variance

S = √2.4 = 1.5492

n is the sample size = 25

Substituting the given values into the formula given above,

CI = 12.5 ± 2.576(1.5492/√25)

CI = 12.5 ± 2.576(0.30984)

CI = 12.5 ± 0.7981

CI = (12.5-0.7981, 12.5+0.7981)

CI = (11.2019, 12.7981)

Hence the 99% confidence interval for the population mean is 11.2≤[tex]\mu[/tex]12.8 (to 1 decimal place)

A 99% confidence interval for the population mean will be "11.2 [tex]\leq[/tex] 12.8".

Statistics

According to the question,

Sample mean, [tex]\bar x[/tex] = 12.5

Z score at 99%, Z = 2.576

Standard deviation, S = √Variance

                                    = √2.4

                                    = 1.5492

Sample size, n = 25

We know the formula,

Confidence interval, CI = [tex]\bar x \ \pm[/tex] Z ([tex]\frac{S}{\sqrt{n} }[/tex])

By substituting the given values, we get

                                        = 12.5 [tex]\pm[/tex] 2.576 ([tex]\frac{1.5492}{\sqrt{25} }[/tex])

                                        = 12.5 [tex]\pm[/tex] 2.576 (0.30984)

                                        = 12.5 [tex]\pm[/tex] 0.7981

Now,

                                   Cl = (12.5 - 0.7981, 12.5 + 0.7981)

                                        = (11.2019, 12.7981) or,

                                        = (11.2, 12.8)

Thus the above answer is appropriate.        

Find out more information about mean here:

https://brainly.com/question/7597734

Which of the following graphs is described by the function below ?

Answers

Answer:

The point of interception of the graph and x axis are -2.366 and -0.634.

The only graph that satisfy this conditions is Graph A

Step-by-step explanation:

Given the equation;

[tex]y = 2x^2 + 6x + 3\\[/tex]

at y = 0

[tex]2x^2 + 6x + 3=0\\[/tex]

the roots of the quadratic equation (at y =0) can be calculated using the quadratic formula;

[tex]x = \frac{-b\pm \sqrt{b^2 -4ac}}{2a}[/tex]

Using the quadratic equation to solve for the roots;

[tex]x = \frac{-6\pm \sqrt{6^2 -4*2*3}}{2*2}\\x = \frac{-6\pm \sqrt{36 - 24}}{4}\\x = \frac{-6\pm \sqrt{12}}{4}\\so, we have \\x = -2.366\\or\\x = -0.634\\[/tex]

Therefore, the point of interception of the graph and x axis are -2.366 and -0.634.

The only graph that satisfy this conditions is Graph A

What is the solution for x in the given equation? (root)9x+7+ (root)2x=7 A. x = 18 and x = 2 B. x = 18 C. x = 2 D. x = 18 and x = -2

Answers

Answer:

C. x = 2

Step-by-step explanation:

[tex] \sqrt{9x + 7} + \sqrt{2x} = 7 [/tex]

Since you have square roots, you need to separate the square roots and square both sides.

[tex] \sqrt{9x + 7} = 7 - \sqrt{2x} [/tex]

Now that one square root is on each side of the equal sign, we square both sides.

[tex] (\sqrt{9x + 7})^2 = (7 - \sqrt{2x})^2 [/tex]

[tex] 9x + 7 = 49 - 14\sqrt{2x} + 2x [/tex]

Now we isolate the square root and square both sides again.

[tex] 7x - 42 = -14\sqrt{2x} [/tex]

Every coefficient is a multiple of 7, so to work with smaller numbers, we divide both sides by 7.

[tex] x - 6 = -2\sqrt{2x} [/tex]

Square both sides.

[tex] (x - 6)^2 = (-2\sqrt{2x})^2 [/tex]

[tex] x^2 - 12x + 36 = 4(2x) [/tex]

[tex] x^2 - 20x + 36 = 0 [/tex]

We need to try to factor the left side.

-2 * (-18) = 36 & -2 + (-18) = -20, so we use -2 and -18.

[tex] (x - 2)(x - 18) = 0 [/tex]

[tex] x = 2 [/tex]   or   [tex] x = 18 [/tex]

Since solving this equation involved the method of squaring both sides, we much check for extraneous solutions by testing our two solutions in the original equation.

Test x = 2:

[tex] \sqrt{9x + 7} + \sqrt{2x} = 7 [/tex]

[tex] \sqrt{9(2) + 7} + \sqrt{2(2)} = 7 [/tex]

[tex] \sqrt{25} + \sqrt{4} = 7 [/tex]

[tex] 5 + 2 = 7 [/tex]

[tex] 5 = 5 [/tex]

We have a true equation, so x = 2 is a true solution of the original equation.

Now we test x = 18.

[tex] \sqrt{9x + 7} + \sqrt{2x} = 7 [/tex]

[tex] \sqrt{9(18) + 7} + \sqrt{2(18)} = 7 [/tex]

[tex] \sqrt{162 + 7} + \sqrt{36} = 7 [/tex]

[tex] \sqrt{169} + 6 = 7 [/tex]

[tex] 13 + 6 = 7 [/tex]

[tex] 19 = 7 [/tex]

Since 19 = 7 is a false equation, x = 18 is not a true solution of the original equation and is discarded as an extraneous solution.

Answer: C. x = 2

Other Questions
Which of the following pure elements exist as liquids at normal Earth temperatures? Andrew is about to leave for school. if he walks at the speed of 50 meters per minute he will arrive 3 minutes after the bell rings. if he runs at the speed of 80 meters per minute he will arrive 3 minutes before the bell rings. in how many minutes will the bell ring? Iron(II) is available to bond with chloride ion. How many of each type of ion will bond to form an ionic compound?A) 3 iron(II), 1 chlorideB) 2 iron(II), 3 chlorideC) 2 iron(II), 1 chlorideD) 1 iron(II), 2 chloride Please answer it now in two minutes The difference between Karson's behavior at the end of the 12 weeks versus the promise to cure Karson of ADHD can be described as the measure of the:________. A. expectation interest. B. reliance interest. C. restitution interest. D. All of these are correct. Which of the following statements most accurately describe Macbeths state of mind during his soliloquy? (Act 2, Scene 1) 1 - Eager to murder Duncan 2 - Prepared to murder Duncan 3 - Doubtful he will be able to murder Duncan 4 - Unable to murder Duncan *PLEASE ANSWER, NEED HELP* Find the surface area of the rectangular prism below. Congressional leaders form ________ committees when they want to take up an issue that falls between the jurisdiction of existing committees, to highlight an issue, or to investigate a particular problem. Find the product.7xy(3x2y3)PLEASES HELP!!! ASAP!!! Any radiation treatment has the potential to damage DNA in healthy cells. Which lists therapeutic uses of radiation based on the likelihood of affecting healthy cells in order from least likely to most likely? How does merit pay differ from a bonus? Group of answer choices A bonus becomes part of an employee's base pay, but merit pay does not. A bonus is linked to individual performance, while merit pay is linked to team performance. Merit pay is linked to individual performance, while a bonus is linked to team performance. Merit pay becomes part of an employee's base pay, but a bonus does not. Write the following phrase as an expression. "7 more than n" The risk-free rate of return is 5%, the required rate of return on the market is 10%, and High-Flyer stock has a beta coefficient of 1.5. If the dividend per share expected during the coming year, D1, is $2.50 and g = 4%, at what price should a share sell? (Do not round intermediate calculations. Round your answer to 2 decimal places. Which statement is correct? Carbon dioxide diffuses from the alveoli into surrounding capillaries. In the blood, oxygen is bound to hemoglobin, a protein found in red blood cells. Oxygen is released from the mitochondria as a product of cellular respiration. As oxygen diffuses from the lungs into capillaries, blood becomes deoxygenated. Oxygen diffuses from large blood vessels into the body's cells. Nationwide Smoking Ban Consider the market for minivans (Some would describe a minivan as a family car). Looking at the two statements, which one is true and which one is false? Then again, are they both true or both false? Statement 1: People decide to have fewer children. The demand curve for minivans will shift to the right. Statement 2: The stock market crashes lowering peoples wealth (Hint: Minivan would be considered a normal good). The demand curve for minivans will shift to the right. In January, Stitch, Inc. adopted the dollar-value LIFO method of inventory valuation. At adoption, inventory was valued at $50,000. During the year, inventory increased $30,000 using base-year prices, and prices increased 10%. The designated market value of Stitch's inventory exceeded its cost at year end. What amount of inventory should Stitch report in its year-end balance sheet Y = -4x + 11 , 3x + y = 1 If the bases of an isosceles trapezoid have lengths of 11 and 26, what is the length of the median? A: 7.5 units B: 37 units C: 18.5 units D: 15 units When you use Word's Email option to share a document, you should edit the _____ line to let the recipient know the email is from a legitimate source.