You are fixing a transformer for a toy truck that uses an 8.0-V emf to run it. The primary coil of the transformer is broken; the secondary coil has 40 turns. The primary coil is connected to a 120-V wall outlet.
(a) How many turns should you have in the primary coil?
(b) If you then connect this primary coil to a 240-V source, what emf would be across the secondary coil?
Comments: The relevant equation is N1/N2 = V1/V2 where N is the number of turns and V is the voltage. I'm just not sure how to get the voltage of the secondary coil using emf.

Answers

Answer 1

Answer:

a. The primary turns is 60 turns

b. The secondary voltage will be 360 volts.

Explanation:

Given data

secondary turns N2= 40 turns

primary turns N1= ?

primary voltage V1= 120 volts

secondary voltage V2= 8 volts

Applying the transformer formula which is

[tex]\frac{N1}{N2} =\frac{V1}{V2}[/tex]

we can solve for N1 by substituting into the equation above

[tex]\frac{N1}{40} =\frac{120}{8} \\\ N1= \frac{40*120}{8} \\\ N1= \frac{4800}{8} \\\ N1= 60[/tex]

the primary turns is 60 turns

If the primary voltage is V1 240 volts hence the secondary voltage V2 will be (to get the voltage of the secondary coil using emf substitute the values of the previously gotten N1 and N2 using V1 as 240 volts)

[tex]\frac{40}{60} =\frac{240}{V2}\\\\V2= \frac{60*240}{40} \\\\V2=\frac{ 14400}{40} \\\\V2= 360[/tex]

the secondary voltage will be 360 volts.

Answer 2

(a) In the primary coil, you have "60 turns".

(b) The emf across the secondary coil would be "360 volts".

Transformer and Voltage

According to the question,

Primary voltage, V₁ = 120 volts

Secondary voltage, V₂ = 8 volts

Secondary turns, N₂ = 40 turns

(a) By applying transformer formula,

→ [tex]\frac{N_1}{N_2} = \frac{V_1}{V_2}[/tex]

or,

   N₁ = [tex]\frac{N_2\times V_1}{V_2}[/tex]

By substituting the values,

        = [tex]\frac{40\times 120}{8}[/tex]

        = [tex]\frac{4800}{8}[/tex]

        = 60

(2) Again by using the above formula,

→ V₂ = [tex]\frac{60\times 240}{40}[/tex]

       = [tex]\frac{14400}{40}[/tex]

       = 360 volts.

Thus the above approach is correct.  

Find out more information about voltage here:

https://brainly.com/question/4389563


Related Questions

The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the plugs by pulling on the end of a 25-cm-long wrench. Because of the cramped space under the hood, you'll need to put at an angle of 120∘with respect to the wrench shaft. With what force must you pull?

Answers

Answer:

F= 175.5N

Explanation:

Given:

Torque which can also be called moment is defined as rotational equivalent of linear force. It is the product of the external force and perpendicular distance

torque of 38N⋅m

angle of 120∘

Torque(τ): 38Nm

position r relative to its axis of rotation: 25cm , if we convert to metre for consistency we have 0.25m

Angle: 120°

To find the Force, the torque equation will be required which is expressed below

τ = Frsinθ

We need to solve for F, if we rearrange the equation, we have the expression below

F= τ/rsinθ

Note: the torque is maximum when the angle is 90 degrees

But θ= 180-120=60

F= 38/0.25( sin(60) )

F= 175.5N

A 3.15-kg object is moving in a plane, with its x and y coordinates given by x = 6t2 − 4 and y = 5t3 + 6, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.15 s.

Answers

Answer:

206.67N

Explanation:

The sum of force along both components x and y is expressed as;

[tex]\sum Fx = ma_x \ and \ \sum Fy = ma_y[/tex]

The magnitude of the net force which is also known as the resultant will be expressed as [tex]R =\sqrt{(\sum Fx)^2 + (\sum Fx )^2}[/tex]

To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.

Given the position of the object along the x-component to be x = 6t² − 4;

[tex]a_x = \frac{d^2 x }{dt^2}[/tex]

[tex]a_x = \frac{d}{dt}(\frac{dx}{dt} )\\ \\a_x = \frac{d}{dt}(6t^{2}-4 )\\\\a_x = \frac{d}{dt}(12t )\\\\a_x = 12m/s^{2}[/tex]

Similarly,

[tex]a_y = \frac{d}{dt}(\frac{dy}{dt} )\\ \\a_y = \frac{d}{dt}(5t^{3} +6 )\\\\a_y = \frac{d}{dt}(15t^{2} )\\\\a_y = 30t\\a_y \ at \ t= 2.15s; a_y = 30(2.15)\\a_y = 64.5m/s^2[/tex]

[tex]\sum F_x = 3.15 * 12 = 37.8N\\\sum F_y = 3.15 * 64.5 = 203.18N[/tex]

[tex]R = \sqrt{37.8^2+203.18^2}\\ \\R = \sqrt{1428.84+41,282.11}\\ \\R = \sqrt{42.710.95}\\ \\R = 206.67N[/tex]

Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N

•• A metal sphere carrying an evenly distributed charge will have spherical equipotential surfaces surrounding it. Suppose the sphere’s radius is 50.0 cm and it carries a total charge of (a) Calculate the potential of the sphere’s surface. (b)You want to draw equipotential surfaces at intervals of 500 V outside the sphere’s surface. Calculate the distance between the first and the second equipotential surfaces, and between the 20th and 21st equipotential surfaces. (c) What does the changing spacing of the surfaces tell you about the electric field?

Answers

Answer:

Explanation:

For this exercise we will use that the potential is created by the charge inside the equinoctial surface and just like in Gauss's law we can consider all the charge concentrated in the center.

Therefore the potential on the ferric surface is

        V = k Q / r

where k is the Coulomb constant, Q the charge of the sphere and r the distance from the center to the point of interest

a) On the surface the potential

        V = 9 10⁹ Q / 0.5

        V = 18 10⁹ Q

Unfortunately you did not write the value of the load, suppose a value to complete the calculations Q = 1 10⁻⁷ C, with this value the potential on the surfaces V = 1800 V

b) The equipotential surfaces are concentric spheres, let's look for the radii for some potentials

for V = 1300V let's find the radius

             r = k Q / V

             r = 9 109 1 10-7 / 1300

             r = 0.69 m

other values ​​are shown in the following table

V (V)      r (m)

1800     0.5

1300     0.69

 800      1,125

 300     3.0

In other words, we draw concentric spheres with these radii and each one has a potential difference of 500V

C) The spacing of the spheres corresponds to lines of radii of the electric field that have the shape

         E = k Q / r²

Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the spectrum is on the left and the red end of the spectrum is on the right. A B 5. (1 point) What is the name for this type of spectrum? 6. (1 point) Transition A is associated with an electron moving between the n= 1 and n= 3 levels. Transition B is associated with an electron moving between the n= 2 and n= 5 levels. Which transition is associated with a photon of longer wavelength?

Answers

Answer:

Explanation:

a )

This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .

b ) The wavelength of a photon  is inversely proportional to its energy .  Photon  due to transition between n = 1 and n = 3 will have higher energy than

that due to transition between n = 2 and n = 5 . So the later photon ( B)  will have greater wavelength or photon  due to transition between n = 2 and n = 5 will have greater wavelength .

Exercise 1 - Questions 1. Hold the grating several inches from your face, at an angle. Look at the grating that you will be using. Record what details you see at the grating surface. 0 Words 2. Hold the diffraction grating up to your eye and look through it. Record what you see. Be specific. 0 Words 3. Before mounting the diffraction grating, look through the opening that you made for your grating. Record what you see across the back of your spectroscope.

Answers

Answer:

1) on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

2)If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum

3) must be able to see the well-collimated light emission source

Explanation:

1) A diffraction grating (diffraction grating) is a surface on which a series of indentations are drawn evenly spaced.

These crevices or lines are formed by copying a standard metal net when the plastic is melted and after hardening is carefully removed, or if the nets used are a copy of the master net.

The network can be of two types of transmission or reflection, in teaching work the most common is the transmission network, on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

The number of lines per linear mm determines which range of the spectrum a common value can be observed to observe the range of viable light is 600 and 1200 lines per mm.

2) when looking through the diffraction grating what we can observe depends on the relative angle between the eye and the normal to the network.

If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum, if it is an incandescent lamp we see a continuum with all the colors in the visible range and if it is a gas lamp we see the characteristic emission lines of the gas.

3) Before mounting the grid on the spectrometer, we must be able to see the well-collimated light emission source, this means that it is clearly observed.

The spectrometers have several screws to be able to see the lamp clearly, this is of fundamental importance in optical experiments.

At what frequency f, in hertz, would you have to move the comb up and down to produce red light, of wavelength 600 nm

Answers

Answer:

f = 500 x 10^12Hz

Explanation:

E=hc/wavelength

E=hf

hc/wavelength =hf

c/wavelength =f

f = 3 x 10^8 / 600 x 10^-9 = 500 x 10^12Hz

A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V. What speed does the proton gain? (e = 1.60 × 10-19 C , mproton = 1.67 × 10-27 kg)

Answers

Answer:

[tex]3.1\times 10^{5}m/s[/tex]

Explanation:

The computation of the speed does the proton gain is shown below:

The potential difference is the difference that reflects the work done as per the unit charged

So, the work done should be

= Potential difference × Charge

Given that

Charge on a proton is

= 1.6 × 10^-19 C

Potential difference = 500 V

[tex]v= \sqrt{\frac{2.q.\Delta V}{m_{p}}} \\\\\\= \sqrt{\frac{2\times 1.6\times 10^{-19}\times 5\times 10^{2}}{1.67\times 10^{-27}}}[/tex]

[tex]v= \sqrt{9.58\times 10^{10}}m/s \\\\= 3.095\times 10^{5}m/s\\\\\approx 3.1\times 10^{5}m/s[/tex]

Simply we applied the above formulas

A 5.00-kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of 1.60 s. Find the force constant of the spring.

Answers

Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.

N/m

Explanation:

Three resistors, 6.0-W, 9.0-W, 15-W, are connected in parallel in a circuit. What is the equivalent resistance of this combination of resistors?

Answers

Answer:

2.9Ω

Explanation:

Resistors are said to be in parallel when they are arranged side by side such that their corresponding ends are joined together at two common junctions. The combined resistance in such arrangement of resistors is given by;

1/Req= 1/R1 + 1/R2 + 1/R3 .........+ 1/Rn

Where;

Req refers to the equivalent resistance and R1, R2, R3 .......Rn refers to resistance of individual resistors connected in parallel.

Note that;

R1= 6.0Ω

R2 = 9.0Ω

R3= 15.0 Ω

Therefore;

1/Req = 1/6 + 1/9 + 1/15

1/Req= 0.167 + 0.11 + 0.067

1/Req= 0.344

Req= (0.344)^-1

Req= 2.9Ω

The equivalent resistance of this combination of resistors is 2.9Ω.

Calculation of the equivalent resistance:

The combined resistance in such arrangement of resistors is provided by;

1/Req= 1/R1 + 1/R2 + 1/R3 .........+ 1/Rn

here.

Req means  the equivalent resistance and R1, R2, R3

.Rn means the resistance of individual resistors interlinked in parallel.

Also,

R1= 6.0Ω

R2 = 9.0Ω

R3= 15.0 Ω

So,

1/Req = 1/6 + 1/9 + 1/15

1/Req= 0.167 + 0.11 + 0.067

1/Req= 0.344

Req= (0.344)^-1

Req= 2.9Ω

learn more about resistance here: https://brainly.com/question/15047345

Tuning a guitar string, you play a pure 330 Hz note using a tuning device, and pluck the string. The combined notes produce a beat frequency of 5 Hz. You then play a pure 350 Hz note and pluck the string, finding a beat frequency of 25 Hz. What is the frequency of the string note?

Answers

Answer:

The  frequency is  [tex]F = 325 Hz[/tex]

Explanation:

From the question we are told that

    The frequency for the first note is  [tex]F_1 = 330 Hz[/tex]

     The  beat frequency of the first note is  [tex]f_b = 5 \ Hz[/tex]

     The  frequency for the second note is  [tex]F_2 = 350 \ H_z[/tex]

      The  beat frequency of the first note is [tex]f_a = 25 \ Hz[/tex]

Generally beat frequency is mathematically represented as

        [tex]F_{beat} = | F_a - F_b |[/tex]

Where [tex]F_a \ and \ F_b[/tex] are frequencies of two sound source

  Now in the case of this question

For the first note

     [tex]f_b = F_1 - F \ \ \ \ \ ...(1)[/tex]

Where  F is the frequency of the string note

For the second note  

      [tex]f_a = F_2 - F \ \ \ \ \ ...(2)[/tex]

Adding  equation 1 from 2

      [tex]f_b + f_a = F_1 + F_2 + ( - F) + (-F) )[/tex]

      [tex]f_b + f_a = F_1 + F_2 -2F[/tex]

substituting values

       [tex]5 +25 = 330 + 350 -2F[/tex]

=>     [tex]F = 325 Hz[/tex]

       

Two buses are moving in opposite directions with velocities of 36 km/hr and 108
km/hr. Find the distance between them after 20 minutes.

Answers

Explanation:

It is given that,

Speed of bus 1 is 36 km/h and speed of bus 2 is 108 km/h. We need to find the distance between bus 1 and 2 after 20 minutes.

Time = 20 minutes = [tex]\dfrac{20}{60}\ h=\dfrac{1}{3}\ h[/tex]

As the buses are moving in opposite direction, then the concept of relative velocity is used. So,

Distance, [tex]d=v\times t[/tex]

v is relative velocity, v = 108 + 36 = 144 km/h

So,

[tex]d=144\ km/h \times \dfrac{1}{3}\ h\\\\d=48\ km[/tex]

So, the distance between them is 48 km after 20 minutes.

A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.60 s, what will be the induced emf in the short coil during this time

Answers

Answer:

The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

Explanation:

The magnetic field at the center of the solenoid is given by;

B = μ(N/L)I

Where;

μ is permeability of free space

N is the number of turn

L is the length of the solenoid

I is the current in the solenoid

The rate of change of the field is given by;

[tex]\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s[/tex]

The induced emf in the shorter coil is calculated as;

[tex]E = NA\frac{\delta B}{\delta t}[/tex]

where;

N is the number of turns in the shorter coil

A is the area of the shorter coil

Area of the shorter coil = πr²

The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m

Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²

[tex]E = NA\frac{\delta B}{\delta t}[/tex]

E = 14 x 0.000491 x 0.02514

E = 1.728 x 10⁻⁴ V

Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

The induced emf in the coil at the center of the longer solenoid is [tex]1.725\times10^{-4}V[/tex]

Induced EMF:

The induced emf is produced in a coil when the magnetic flux through the coil is changing. It opposes the change of magnetic flux. Mathematically it is represented as the negative rate of change of magnetic flux at follows:

[tex]E=-\frac{\delta\phi}{\delta t}[/tex]

where E is the induced emf,

[tex]\phi[/tex] is the magnetic flux through the coil.

The changing current varies the magnetic flux through the coil at the center of the long solenoid, which is given by:

[tex]\phi = \frac{\mu_oNIA}{L}[/tex]

so;

[tex]\frac{\delta\phi}{\delta t}=\frac{\mu_oNA}{L} \frac{\delta I}{\delta t}[/tex]

where N is the number of turns of longer solenoid, A is the cross sectional area, I is the current and L is the length of the coil.

[tex]\frac{\delta\phi}{\delta t}=\frac{4\pi \times10^{-7} \times600 \times \pi \times(1.25\times10^{-2})^2}{25\times10^{-2}} \frac{5}{60}\\\\\frac{\delta\phi}{\delta t}=1.23\times10^{-7}Wb/s[/tex]

The emf produced in the coil at the center of the solenoid which has 14 turns will be:

[tex]E=N\frac{\delta \phi}{\delta t}\\\\E=14\times1.23\times10^{-7}V\\\\E=1.725\times10^{-4}V[/tex]

Learn more about induced emf:

https://brainly.com/question/16765199?referrer=searchResults

Suppose Young's double-slit experiment is performed in air using red light and then the apparatus is immersed in water. What happens to the interference pattern on the screen?

Answers

Answer:

The bright fringes will appear much closer together

Explanation:

Because λn = λ/n ,

And the wavelength of light in water is smaller than the wavelength of light in air. Given that the distance between bright fringes is proportional to the wavelength

select the example that best describes a renewable resource.
A.after a shuttle launch, you can smell the jet fuel for hours.
B.solar panels generate electricity that keeps the satellites running.
C.tractor trailers are large trucks that run on diesel fuel.
D. we use our barbeque every night; it cooks with propane.

Answers

Answer:

B.solar panels generate electricity that keeps the satellites running.

Explanation:

Solar panels are a renewable resource because they take energy from the sun.

collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity

Answers

Answer:

metre per seconds

Explanation:

because velocity = distance ÷ time

Based on the graph below, what prediction can we make about the acceleration when the force is 0 newtons? A. It will be 0 meters per second per second. B. It will be 5 meters per second per second. C. It will be 10 meters per second per second. D. It will be 15 meters per second per second.
PLZ HURRY WILL MARK BRAINLIEST IF CORRECT

Answers

Answer:

Option A

Explanation:

Acceleration will be obviously zero when Force = 0

That is how:

Force = Mass * Acceleration

So, If force = 0

0 = Mass * Acceleration.

Dividing both sides by Mass

Acceleration = 0/Mass

Acceleration = 0 m/s²

Answer:

[tex]\boxed{\mathrm{A. \: It \: will \: be \: 0 \: meters \: per \: second \: per \: second. }}[/tex]

Explanation:

[tex]\mathrm{force=mass \times acceleration}[/tex]

The force is given 0 newtons.

[tex]\mathrm{force=0 \: N}[/tex]

Plug force as 0.

[tex]\mathrm{0=mass \times acceleration}[/tex]

Divide both sides by mass.

[tex]\mathrm{\frac{0}{mass} =acceleration}[/tex]

[tex]\mathrm{0 =acceleration}[/tex]

[tex]\mathrm{acceleration= 0\: m/s/s}[/tex]

Consider an electromagnetic wave where the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis.

Required:
In what directions is it possible that the wave is traveling?

Answers

Answer:

The wave is traveling in the y axis direction

Explanation:

Because the wave will always travel in a direction 90° to the magnetic and electric components

A 18.0 kg electric motor is mounted on four vertical springs, each having a spring constant of 24.0 N/cm. Find the period with which the motor vibrates vertically.

Answers

Answer:

Explanation:

Total mass m = 18 kg .

Spring are parallel to each other so total spring constant

= 4 x 24 = 96 N/cm = 9600 N/m

Time period of vibration

[tex]T=2\pi\sqrt{\frac{m}{k} }[/tex]

Putting the given  values

[tex]T=2\pi\sqrt{\frac{18}{9600} }[/tex]

= .27 s .

Estimate the volume of a human heart (in mL) using the following measurements/assumptions:_______.
1. Blood flow through the aorta is approximately 11.2 cm/s
2. The diameter of the aorta is approximately 3.0 cm
3. Assume the heart pumps its own volume with each beat
4. Assume a pulse rate of 67 beats per minute.

Answers

Answer:

Explanation:

radius of aorta = 1.5 cm

cross sectional area = π r²

= 3.14 x 1.5²

= 7.065 cm²

volume of blood flowing out per second out of heart

= a x v , a is cross sectional area , v is velocity of flow

= 7.065 x 11.2

= 79.128 cm³

heart beat per second = 67 / 60

= 1.116666

If V be the volume of heart

1.116666 V = 79.128

V = 70.86 cm³.

A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along the central radius is

Answers

Answer:

0.0081T

Explanation:

The magnetic field B in the toroid is proportional to the applied current I and the number of turns N per unit length L of the toroid. i.e

B ∝ I [tex]\frac{N}{L}[/tex]

B = μ₀ I [tex]\frac{N}{L}[/tex]                   ----------------(i)

Where;

μ₀ = constant of proportionality called the magnetic constant = 4π x 10⁻⁷N/A²

Since the radius (r = 4.2cm = 0.042m) of the toroid is given, the length L is the circumference of the toroid given by

L = 2π r

L = 2π (0.042)

L = 0.084π

The number of turns N = 1000

The current in the toroid = 1.7A

Substitute these values into equation (i) to get the magnetic field as follows;

B = 4π x 10⁻⁷ x  1.7 x  [tex]\frac{1000}{0.084\pi }[/tex]        [cancel out the πs and solve]

B = 0.0081T

The magnetic field along the central radius is 0.0081T

Describe the orientation of magnetic field lines by drawing a bar magnet, labeling the poles, and drawing several lines indicating the direction of the forces.

Answers

Answer:

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields map electrical forces, and magnetic fields map magnetic forces.

Explanation:

Which scientist proved experimentally that a shadow of the circular object illuminated 18. with coherent light would have a central bright spot?
A. Young
B. Fresnel
C. Poisson
D. Arago

Answers

Answer:

Your answer is( D) - Arago

A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its location at time t = 3.01.

Answers

Answer:

New location at time 3.01 is given by: (7.49, 2.11)

Explanation:

Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

[tex]V_x=x^2=7^2=49\\V_y=x+y^2=7+2^2=11[/tex]

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:

[tex]distance=v\,*\, t[/tex]

[tex]distance_x=49\,(0.01)=0.49\\distance_y=11\,(0.01)=0.11[/tex]

Therefore, adding these displacements in component form to the original particle's position, we get:

New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)

A boat floating in fresh water displaces 16,000 N of water. How many newtons of salt water would it displace if it floats in salt water of specific gravity 1.10

Answers

Answer:

It will displace the same weight of fresh water i.e.16000N. The point is the body 'floats'- which is the underlying assumption here, and by Archimedes Principle, for this body or vessel or whatever it may be, to float it should displace an equal weight of water

Explanation:

A magnetic field is entering into a coil of wire with radius of 2(mm) and 200 turns. The direction of magnetic field makes an angle 25° in respect to normal to surface of coil. The magnetic field entering coil varies 0.02 (T) in every 2 seconds. The two ends of coil are connected to a resistor of 20 (Ω).
A) Calculate Emf induced in coil
B) Calculate the current in resistor
C) Calculate the power delivered to resistor by Emf

Answers

Answer:

a) 2.278 x 10^-5 volts

b) 1.139 x 10^-6 Ampere

c) 2.59 x 10^-11 W

Explanation:

The radius of the wire r = 2 mm = 0.002 m

the number of turns N = 200 turns

direction of the magnetic field ∅ = 25°

magnetic field strength B = 0.02 T

varying time = 2 sec

The cross sectional area of the wire = [tex]\pi r^{2}[/tex]

==> A = 3.142 x [tex]0.002^{2}[/tex] = 1.257 x 10^-5 m^2

Field flux Φ = BA cos ∅ = 0.02 x 1.257 x 10^-5 x cos 25°

==> Φ = 2.278 x 10^-7 Wb

The induced EMF is given as

E = NdΦ/dt

where dΦ/dt = (2.278 x 10^-7)/2 = 1.139 x 10^-7

E = 200 x 1.139 x 10^-7 = 2.278 x 10^-5 volts

b) If the two ends are connected to a resistor of 20 Ω, the current through the resistor is given as

[tex]I[/tex] = E/R

where R is the resistor

[tex]I[/tex] = (2.278 x 10^-5)/20 = 1.139 x 10^-6 Ampere

c) power delivered to the resistor is given as

P = [tex]I[/tex]E

P = (1.139 x 10^-6) x (2.278 x 10^-5) = 2.59 x 10^-11 W

Suppose a particle moves back and forth along a straight line with velocity v(t), measured in feet per second, and acceleration a(t). What is the meaning of ^120∫60 |v(t)| dt?

Answers

Answer:

The meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds

Explanation:

We are told that the particle moves back and forth along a straight line with velocity v(t).

Now, velocity is the rate of change of distance with time. Thus, the integral of velocity of a particle with respect to time will simply be the distance covered by the particle.

Thus, the meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds

If an astronomer wants to find and identify as many stars as possible in a star cluster that has recently formed near the surface of a giant molecular cloud (such as the Trapezium cluster in the Orion Nebula), what instrument would be best for her to use

Answers

Answer:

Infrared telescope and camera

Explanation:

An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.

Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, Infrared images is better used, since they are able to penetrate the surrounding clouds of dust, and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.

Astronauts increased in height by an average of approximately 40 mm (about an inch and a half) during the Apollo-Soyuz missions, due to the absence of gravity compressing their spines during their time in space. Does something similar happen here on Earth

Answers

Answer:

Yes. Something similar occurs here on Earth.

Explanation:

Gravity tends to pull objects perpendicularly to the ground. In space, the absence of this force means there is no compression on the spine due to gravity trying to pull it down. This means that astronauts undergo an increase in height in space.

Here on Earth, we experience gravity pull on our spine during the day. At night when we sleep, we lie down with our spine parallel to the ground, which means that our spine is no longer under compression from gravity force. The result is that we are a few centimetres taller in the morning when we wake up, than we are before going to bed at night. The increase is not much pronounced here on Earth because there is a repeated cycle of compression and decompression of our spine due to gravity, unlike when compared to that of astronauts that spend long duration in space, all the while without gravity forces on their spine

A solenoid 26.0 cm long and with a cross-sectional area of 0.580 cm^2 contains 490 turns of wire and carries a current of 90.0 A.
Calculate:
(a) the magnetic field in the solenoid;
(b) the energy density in the magnetic field if the solenoid is filled with air;
(c) the total energy contained in the coil’s magnetic field (assume the field is uniform);
(d) the inductance of the solenoid.

Answers

Answer:

A.21.3T

B.1.8x 10^6J/m^3

C.0.27x10^2J

D.6.6x10^-3H

Explanation:

Pls see attached file

The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional toA) the particle's charge.B) the particle's momentum.C) the particle's energy.D) the flux density of the field.E)All of these are correct

Answers

Answer:

B) the particle's momentum.

Explanation:

We know that

The centripetal force  on the particle when its moving in the radius R and velocity V

[tex]F_c=\dfrac{m\times V^2}{R}[/tex]

The magnetic force on the particle when the its moving with velocity V in the magnetic filed B and having charge q

[tex]F_m=q\times V\times B[/tex]

At the equilibrium condition

[tex]F_m=F_c[/tex]

[tex]q\times V\times B=\dfrac{m\times V^2}{R}[/tex]

[tex]R=\dfrac{m\times V}{q\times B}[/tex]

Momentum = m V

Therefore we can say that the radius of curvature is directly proportional to the particle momentum.

B) the particle's momentum.

Other Questions
If youre hungry and you cant eat what should you do what is a type of emigration where offspring moveaway from their parents. For the functions f(x)=8 x 2 +7x and g(x)= x 2 +2x , find (f+g)(x) and (f+g)(3) The state of CT claims that the average time on death row is 15 years. A random survey of 75 death row inmates revealed that the average length of time on death row is 17.8 years with a standard deviation of 5.9 years. Conduct a hypothesis to test the state of CT's claim. What type of test should be run? t-test of a mean z-test of a proportion The alternative hypothesis indicates a right-tailed test left-tailed test two-tailed test Calculate the p-value. What is the decision? We reject the claim that the average time on death row is 15 years We fail to reject the claim that the average time on death row is 15 years Explain please -- Find the measure of angle A to the nearest degree. a. 26 b. 27 c. 63 A firm sells 300,000 units per week. It charges $ 35 per unit, the average variable costs are $40, and the average costs are $55. In the long run, the firm should 2. Demand for Riana's product in the U.S. is inconsistent. When orders are slow, she sometimes needs to shut down production to help control inventory levels. One way Riana could improve her firm's situation is to How does diction affect setting?O by revealing the author's purpose in writing nonfictionO by creating a specific description of the time and placeO by misleading the reader's sense of time and placeO by creating smooth sentence fluency that has rhythm when read aloud Question 15 of 25What is the solution to this equation?X + 8 = -3 The area that was located south of Upper Egypt was called __________. A. Nubia B. the Levant C. Lower Egypt D. the Sahara Desert F(x) = 3x+2 what is f(5) In a random sample of 40 refrigerators, the mean repair cost was $150. Assume the population standard deviation is $15.50. Construct a 99% confidence interval for the population mean repair cost. Then change the sample size to n = 60. Which confidence interval has the better estimate? Which energy profile best shows that the enthalpy of formation of CS2 is 89.4 KJ/mol? helppppppp (08.06 MC)Consider the following dot plot. Of the following statements, which two characteristics of this dot plot make the median a better choice than the mean to summarize the center of the distribution? PQR is located at P (3, 3), Q (0, 0), and R (3, 3). Which statement correctly classifies PQR? Find the slope of the line passing through the points (8,-4) and (4, -8). Indira was preoccupied with the size of her nose. She constantly checked its size in mirrors or any reflecting surface she passed. She was convinced she needed a nose job, even though her nose was an average size. Indira most likely was suffering from:__________. Chad washes windows after school to make some extra money. He charges $5.50 to wash each window. If the customer provides the supplies, Chad deducts $3.25 from the total cost. One customer paid a total of $35.25 and did provide supplies. Which equation could be used to find the number of windows, w , that Chad washed for this customer? A) 5.5 w + 3.25 = 35.25 B) 5.5 w - 3.25 = 35.25 C) 5.5 w = 35.25 D) 5.5 - 3.25 w = 35.25 Solve sin 20 = COS CE-30) 3x2 +4=0 whats the answer?