Answer:
~0.3158
Step-by-step explanation:
Number of even numbers in the range of 1 - 38 is 38/2 = 19
=> P(E) = 19/38 = 1/2
Having: 38 = 3 x 12 + 2, then the number of numbers that is a multiple of 3 in the range of 1 - 38 is 12
=> P(M) = 12/38 = 6/19
Having: 38 = 6 x 6 + 2, then the number of numbers that is a multiple of 6 (or multiple of 2 and 3) is 6
=> P(E and M) = 6/38 = 3/19
Applying the conditional probability formula:
P(M|E) = P(E and M)/P(E) = (3/19)/(1/2) = 6/19 = ~0.3158
Use Newton's method to approximate the indicated root of the equation correct to six decimal places. The negative root of ex = 4 − x2
Answer:
x = -1.964636
Step-by-step explanation:
Given equation;
eˣ = 4 - x²
This can be re-written as;
eˣ - 4 + x² = 0
Let
f(x) = eˣ - 4 + x² -----------(i)
To use Newton's method, we need to get the first derivative of the above equation as follows;
f¹(x) = eˣ - 0 + 2x
f¹(x) = eˣ + 2x -----------(ii)
The graph of f(x) has been attached to this response.
As shown in the graph, the curve intersects the x-axis twice - around x = -2 and x = 1. These are the approximate roots of the equation.
Since the question requires that we use the negative root, then we start using the Newton's law with a guess of x₀ = -2 at n=0
From Newton's method,
[tex]x_{n+1} = x_n + \frac{f(x_{n})}{f^1(x_{n})}[/tex]
=> When n=0, the equation becomes;
[tex]x_{1} = x_0 - \frac{f(x_{0})}{f^1(x_{0})}[/tex]
[tex]x_{1} = -2 - \frac{f(-2)}{f^1(-2)}[/tex]
Where f(-2) and f¹(-2) are found by plugging x = -2 into equations (i) and (ii) as follows;
f(-2) = e⁻² - 4 + (-2)²
f(-2) = e⁻² = 0.13533528323
And;
f¹(2) = e⁻² + 2(-2)
f¹(2) = e⁻² - 4 = -3.8646647167
Therefore
[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]
[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]
[tex]x_{1} = -2 - -0.03501863503[/tex]
[tex]x_{1} = -2 + 0.03501863503[/tex]
[tex]x_{1} = -1.9649813649[/tex]
[tex]x_{1} = -1.96498136[/tex] [to 8 decimal places]
=> When n=1, the equation becomes;
[tex]x_{2} = x_1 - \frac{f(x_{1})}{f^1(x_{1})}[/tex]
[tex]x_{2} = -1.96498136 - \frac{f(-1.9649813)}{f^1(-1.9649813)}[/tex]
Following the same procedure as above we have
[tex]x_{2} = -1.96463563[/tex]
=> When n=2, the equation becomes;
[tex]x_{3} = x_2 - \frac{f(x_{2})}{f^1(x_{2})}[/tex]
[tex]x_{3} = -1.96463563- \frac{f( -1.96463563)}{f^1( -1.96463563)}[/tex]
Following the same procedure as above we have
[tex]x_{3} = -1.96463560[/tex]
From the values of [tex]x_2[/tex] and [tex]x_3[/tex], it can be seen that there is no change in the first 6 decimal places, therefore, it is safe to say that the value of the negative root of the equation is approximately -1.964636 to 6 decimal places.
Newton's method of approximation is one of the several ways of estimating values.
The approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]
The equation is given as:
[tex]\mathbf{e^x = 4 - x^2}[/tex]
Equate to 0
[tex]\mathbf{4 - x^2 = 0}[/tex]
So, we have:
[tex]\mathbf{x^2 = 4}[/tex]
Take square roots of both sides
[tex]\mathbf{ x= \pm 2}[/tex]
So, the negative root is:
[tex]\mathbf{x = -2}[/tex]
[tex]\mathbf{e^x = 4 - x^2}[/tex] becomes [tex]\mathbf{f(x) = e^x - 4 + x^2 }[/tex]
Differentiate
[tex]\mathbf{f'(x) = e^x +2x }[/tex]
Using Newton's method of approximation, we have:
[tex]\mathbf{x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}}[/tex]
When x = -2, we have:
[tex]\mathbf{f'(-2) = e^{(-2)} +2(-2) = -3.86466471676}[/tex]
[tex]\mathbf{f(-2) = e^{-2} - 4 + (-2)^2 = 0.13533528323}[/tex]
So, we have:
[tex]\mathbf{x_{1} = -2 - \frac{0.13533528323}{-3.86466471676}}[/tex]
[tex]\mathbf{x_{1} = -2 + \frac{0.13533528323}{3.86466471676}}[/tex]
[tex]\mathbf{x_{1} = -1.96498136}[/tex]
Repeat the above process for repeated x values.
We have:
[tex]\mathbf{x_{2} = -1.96463563}[/tex]
[tex]\mathbf{x_{3} = -1.96463560}[/tex]
Up till the 6th decimal places,
[tex]\mathbf{x_2 = x_3}[/tex]
Hence, the approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]
Read more about Newton approximation at:
https://brainly.com/question/14279052
Solve for x. a) 10 b) 12 c) 13 d) 11
Answer:
A : 10
Step-by-step explanation:
Answer:
the correct answer is 12
Step-by-step explanation:
6/8=9/x
cross multiply
6x=72
divide by six
x=12
Helen’s age is a multiple of 4. Next year it’ll be a multiple of 3. Helen’s older brother is now 19. How old is Helen now?
Answer: Helen is 8 years old.
Step-by-step explanation:
Given: Helen’s age is a multiple of 4.
i.e. Choices for Helen’s age = 4, 8 , 16, ...
Helen’s older brother is now 19.
That means Helen's age < 19
Choices for Helen's age left = 4, 8, 16
Next year it’ll be a multiple of 3.
That is only possible if Helen's age = 8
Because next year her age = 8+1 = 9 years which is divisible by 3.
Hence, Helen is 8 years old.
Please help. I’ll mark you as brainliest if correct!
Answer:
[tex]\large \boxed{\sf \ \ x=0, \ \ y=-5 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
We have two equations:
(1) -2x - 4y = 20
(2) -3x + 5y = -25
5*(1)+4*(2) gives
-10x - 20y -12x + 20y = 100 - 100 = 0
-22x = 0
x = 0
I replace in (1)
-4y = 20
y = -20/4 = -5
There is one solution x = 0, y = -5
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
The two equations are
-2x-4y=20
-3x+5y=-25
multiply equation 1 by 5 and equation 2 by 4
-10x-20y=100
-12x+20y=-100
-22x=0
x=0
Substitute value in either equation
y=-5
So,option 1 is correct only one solution
If a transversal is perpendicular to one of two parallel lines, then it's ________ to the other line. Question 16 options: A) perpendicular B) congruent C) parallel D) supplementary
Answer: Perpendicular.
Step-by-step explanation:
Suppose that you have two perpendicular lines:
Remember that a line is something like:
y = a*x +b
and two lines are parallel if they have the same slope (a) but a different y-intercept(b)
Then our lines can be:
y1 = a*x + b1
y2 = a*x + b2.
Now, if we have a line:
y = a*x + b
Then a perpendicular line will have a slope equal to -(1/a):
yp = (-1/a)*x + c
So this only depends on the slope, and we know that our two parallel lines have the same slope. So if we construct a transversal line that is perpendicular to one of our lines, it also must be perpendicular to the other line.
Answer:
A
Step-by-step explanation:
Harry is trying to complete his hill walking scouts badge. He is using a map with a scale of 1 cm : 2 km. To earn the badge he needs to walk 14 km. What is the distance he needs to walk on the map?
Answer:
7 cm
Step-by-step explanation:
14 / 2 = 7 cm
7cm is the distance Harry needs to walk on the map?
What is Distance?Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are.
Given that,
Harry is trying to complete his hill walking scouts badge.
He is using a map with a scale of 1 cm : 2 km.
To earn the badge he needs to walk 14 km.
Let the distance he needs to walk on the map is x.
By given data we write an equation
1/2=x/14
Apply Cross Multiplication
14/2=x
7=x
Hence, 7cm is the distance he needs to walk on the map.
To learn more on Distance click:
https://brainly.com/question/15172156
#SPJ5
Describe appropriate domain and range for the function (blood alcohol con tent, reflex time)for a single person
Answer:
If we have a function f(x) = y.
the set of possible values of x is called the domain
the set of possible values of y is called the range.
In this case, we have:
Blood alcohol content vs Reflex time,
The possible values of alcohol in blood content depend on the particular person, but we can have a minimum of 0.0 (no alcohol in blood) and a maximum of .51 (for a 90 lb person) because at this range the person enters the risk of death.
So the domain is: D = [0.0, 0.51]
But, we actually can have higher values of alcohol in blood, so we actually can use a domain:
D = [0.0, 1.0]
For the range, we need to see at the possible values of the reflex time.
And we know that the human reflex time is in between 100ms and 500ms
So our range can be:
R = [100ms, 500ms]
Write an inequality and show on a number line all numbers: greater than (−3) but less than or equal to 3
To write an inequality and show on a number line all numbers: greater than (−3) but less than or equal to 3
Let n be the number, then -3 < n ≤3 .
On number line we mark open circle at -3 (since it has a strictly less than sign) and a closed circle at 3 (since it has a less than and equal to sign) .
To the required inequality that shows all the numbers greater than (−3) but less than or equal to 3 : -3 < n ≤3 and the number line is represented below.
Five less than the product of 14 and Vanessa's height Use the variable v to represent Vanessa's height.
Answer:
14v - 5
Step-by-step explanation:
The product of 14 and v is 14v. 5 less than that is 14v - 5.
Answer:
7v = 119
Step-by-step explanation:
The diagram shows a right triangle and three squares. The area of the largest square is 363636 units^2 2 squared. Which could be the areas of the smaller squares?
Answer:
The answers are A. and B.
Step-by-step explanation:
Since the area of the largest square is 36. We need two numbers that equal 36. and A. had 6 and 30 so i picked it and it was right and B. is 28 and 8 which also equals 36. But, C. is 4 and 16 which is not 36. So A. and B. are the answers. Hope this helps! :)
We can use the Pythagorean theorem (a^2+b^2=c^2)(a
2
+b
2
=c
2
)left parenthesis, a, squared, plus, b, squared, equals, c, squared, right parenthesis to determine possible areas of the two smaller squares.
\text{Area of a square} =\text{side}^2Area of a square=side
2
start text, A, r, e, a, space, o, f, space, a, space, s, q, u, a, r, e, end text, equals, start text, s, i, d, e, end text, squared
So, we can substitute the areas of the squares that share side lengths with the triangle for a^2, b^2a
2
,b
2
a, squared, comma, b, squared and c^2c
2
c, squared in the Pythagorean theorem.
Hint #22 / 6
For example, in the diagram above, the area of the square that shares a side with the hypotenuse is 363636 square units. So, c^2=36c
2
=36c, squared, equals, 36.
Hint #33 / 6
Let's fill in the possible values to see if they make the equation true.
\begin{aligned} a^2 + b^2 &= c^2 \\\\ a^2 + b^2 &= 36 \\\\ 6 + 30 &\stackrel{\large?}{=}36 \\\\ 36 &\stackrel{\checkmark}{=}36\\\\ \end{aligned}
a
2
+b
2
a
2
+b
2
6+30
36
=c
2
=36
=
?
36
=
✓
36
The sum of the areas of the squares connected to the two shorter triangle sides is equal to the area of the square connected to the longest side.
So, 666 and 303030 could be the areas of the smaller squares.
Hint #44 / 6
\begin{aligned} a^2 + b^2 &= c^2 \\\\ a^2 + b^2 &= 36 \\\\ 8 + 28 &\stackrel{\large?}{=}36 \\\\ 36 &\stackrel{\checkmark}{=}36\\\\ \end{aligned}
a
2
+b
2
a
2
+b
2
8+28
36
=c
2
=36
=
?
36
=
✓
36
The sum of the areas of the squares connected to the two shorter triangle sides is equal to the area of the square connected to the longest side.
So, 888 and 282828 could be the areas of the smaller squares.
Hint #55 / 6
\begin{aligned} a^2 + b^2 &= c^2 \\\\ a^2 + b^2 &= 36 \\\\ 4 + 16 &\stackrel{\large?}{=}36 \\\\ 20 &\neq 36\\\\ \end{aligned}
a
2
+b
2
a
2
+b
2
4+16
20
=c
2
=36
=
?
36
=36
The sum of the areas of the squares connected to the two shorter triangle sides is not equal to the area of the square connected to the longest side.
So, 444 and 161616 could not be the areas of the smaller squares.
Hint #66 / 6
The area of the smaller squares could be:
666 and 303030
888 and 2828
The probability density of a random variable X is given in the figure below.
From this density, the probability that X is between 0.68 and 1.44 is:
Find the probability that X is between 0.68 and 1.44.
Answer:
0.38
Step-by-step explanation:
The area under the probability density curve is equal to 1.
The width of the rectangle is 2, so the height of the rectangle must be ½.
The probability that X is between 0.68 and 1.44 is therefore:
P = ½ (1.44 − 0.68)
P = 0.38
Using the uniform distribution, it is found that there is a 0.38 = 38% probability that X is between 0.68 and 1.44.
-----------------------
Uniform probability distribution:
Has two bounds, a and b. The probability of finding a value between c and d is:[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]
In this problem:
The bounds are 0 and 2, thus [tex]a = 0, b = 2[/tex].The probability that X is between 0.68 and 1.44 is:
[tex]P(0.68 \leq X \leq 1.44) = \frac{1.44 - 0.68}{2 - 0} = 0.38[/tex]
0.38 = 38% probability that X is between 0.68 and 1.44.
A similar problem is given at https://brainly.com/question/13547683
A clinic treated 536 children over a 4month period how many children did the clinic treat in 1month
536 children = 4 months
536/4 children = 4/4 months ... divide both sides by 4
134 children = 1 month
The clinic treated 134 children in 1 month. This is assuming that every month was the same number of patients.
Answer: 134Step-by-step explanation:
Solution,
Number of children treated in 4 months = 536
Now, let's find the number of children treated in one month:
[tex] = \frac{total \: number \: of \: childrens \: }{total \: month} [/tex]
Plug the values
[tex] = \frac{536}{4} [/tex]
Calculate
[tex] = 134 \: [/tex] childrens
Therefore, A clinic treated 134 childrens in one month.
Hope this helps...
Best regards!!
A line with a slope of 5 passes through the point (2,10). What is its equation in slope intercept form
Answer:
The answer is
y = 5xStep-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
From the question
Slope / m = 5
Equation of the line passing through point (2 , 10) is
y - 10 = 5(x - 2)
y - 10 = 5x - 10
y = 5x - 10 + 10
y = 5xHope this helps you
A type of golf ball is tested by dropping it onto a hard surface from a height of 1 meter. The height it bounces is known to be normally distributed. A sample of 25 balls is tested and the bounce heights are given below. Use Excel to find a 95% confidence interval for the mean bounce height of the golf ball. Round your answers to two decimal places and use increasing order.
Height
81.4
80.8
84.4
85.6
82.9
76.0
80.0
83.2
80.8
79.6
82.9
83.4
82.2
86.0
76.2
84.8
82.0
76.3
77.0
75.4
82.0
79.8
80.4
86.9
82.1
Answer:
79.95, 82.62
Step-by-step explanation:
using excel to find a 95% confidence interval for the mean bounce height of the golf ball
Heights given are :
81.4
80.8
84.4
85.6
82.9
76.0
80.0
83.2
80.8
79.6
82.9
83.4
82.2
86.0
76.2
84.8
82.0
76.3
77.0
75.4
82.0
79.8
80.4
86.9
82.1
The statistical out put of the problem after solving with excel is attached below
therefore the 95% confidence interval from the attached solution will be ( 79.95, 82.62 )
Answer: (79.95, 82.61)
Step-by-step explanation:
Use Excel to calculate the 95% confidence interval, where α=0.05 and n=25.
1. Open Excel and enter the given data in column A. Find the sample mean, x¯, using the AVERAGE function and the sample standard deviation, s, using the STDEV.S function. Thus, the sample mean, rounded to two decimal places, is 81.28 and the sample standard deviation, rounded to two decimal places, is 3.23.
2. Click on any empty cell, enter =CONFIDENCE.T(0.05,3.23,25), and press ENTER.
3. The margin of error, rounded to two decimal places, is 1.33. The confidence interval for the population mean has a lower limit of 81.28−1.33=79.95 and an upper limit of 81.28+1.33=82.61.
Thus, the 95% confidence interval for the mean bounce height of the golf balls is (79.95, 82.61).
Witch table represents a linear function ?
Answer:
If you compute the slope between any two points that must be the same, that's how you can tell if a table represents a linear function.
Remember that the slope between any two points (x1,y1), (x2,y2) is
slope = ( y2 - y1 ) / (x2 - x1)
Step-by-step explanation:
If you compute the slope between any two points that must be the same, that's how you can tell if a table represents a linear function.
Remember that the slope between any two points (x1,y1), (x2,y2) is
slope = ( y2 - y1 ) / (x2 - x1)
Cerra Co. expects to receive 5 million euros tomorrow as a result of selling goods to the Netherlands. Cerra estimates the standard deviation of daily percentage changes of the euro to be 1 percent over the last 100 days. Assume that these percentage changes are normally distributed. Use the value-at-risk (VaR) method based on a 95 percent confidence level. What is the maximum one-day percentage loss if the expected percentage change of the euro tomorrow is 0.5 percent
Answer:
The maximum one-day percentage loss = -1.15%
Step-by-step explanation:
Let assume that with the normal distribution, 95% of observations are smaller than 1.65 standard deviations above the mean.
Given that:
Cerra estimates the standard deviation of daily percentage changes of the euro to be 1 percent over the last 100 days.
if the expected percentage change of the euro tomorrow is 0.5 percent
and that Z value at 95% C.I level = 1.65
∵ The maximum one-day percentage loss = (expected percentage change - Z-Value) × standard deviation
The maximum one-day percentage loss = (0.5 - 1.65) × 1
The maximum one-day percentage loss = -1.15 × 1
The maximum one-day percentage loss = -1.15%
Shane has a bag of marbles with 4 blue marbles, 3 white marbles, and 1 red marbles. Find the following probabilities of Shane drawing the given marbles from the bag if the first marble(s) is(are) not returned to the bag after they are drawn. (Give your answer as a fraction)
Answer: A). A Blue, then a Red.
= 4/8 * 1/7
= 1/14
B). A Red, then a White.
= 1/7 * 3/8
= 3/56
C). A Blue, then a Blue, then another Blue.
= 4/8 * 3/7 * 2/6
= 1/14
Step-by-step explanation:
had to complete the question first.
Find the following probabilities of Derek drawing the given marbles from the bag if the first marble(s) is(are) not returned to the bag after they are drawn.
(a) A Blue, then a Red =
(b) A Red, then a White =
(c) A Blue, then a Blue, then a Blue =
given data:
blue marble = 4
white marble = 3
red marble = 1
total marble = 8
solution:
probability of drawing
A). A Blue, then a Red.
= 4/8 * 1/7
= 1/14
B). A Red, then a White.
= 1/7 * 3/8
= 3/56
C). A Blue, then a Blue, then another Blue.
= 4/8 * 3/7 * 2/6
= 1/14
The triangles in the diagram are congruent. If mF = 40°, mA = 80°, and mG = 60°, what is mB?
Answer:
40
Step-by-step explanation:
The measure of m∠B in the triangle is 40°.
What is a triangle?A triangle is a 2-D figure with three sides and three angles.
The sum of the angles is 180 degrees.
We can have an obtuse triangle, an acute triangle, or a right triangle.
We have,
Since the triangles are congruent, we know that their corresponding angles are congruent as well.
Therefore, we have:
m∠B = m∠F = 40°.
Note that we also have:
m∠C = m∠A = 80° (by corresponding angles)
m∠H = m∠G = 60° (by corresponding angles)
Finally, we can use the fact that the sum of the angles in a triangle is 180° to find the measure of angle D:
m∠D = 180° - m∠B - m∠C = 180° - 40° - 80° = 60°.
Therefore,
m∠B = 40°.
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ7
A 6 foot person casts a 26 foot shadow. What is the angle of elevation of the sun? (nearest whole degree)
Answer:
13°
Step-by-step explanation:
The trigonometric ratio formula can be used in calculating the angle of elevation (x°) of the sun, as the person makes a right angle with the ground.
The height of the person would be the opposite length = 6 ft, the shadow of the person would be the adjacent length = 26 ft
Therefore, according to the trigonometric ratio formula, we would calculate angle of elevation (x°) as follows:
[tex] tan x = \frac{opposite}{adjacent} [/tex]
[tex] tan x = \frac{6}{26} [/tex]
[tex] tan x = 0.2308 [/tex]
x = tan-¹(0.2308)
x = 12.996
x ≈ 13° (to the nearest whole degree)
The angle of elevation of the sun = 13°
Find m<1. Triangle Angle-sum theorem
Answer:
m<1 = 50
Step-by-step explanation:
We can first find the angle next to 140, by doing 180 - 40 = 40.
Now that we know that one of the triangles angle is 40, we also know that there's a 90 degree angle, so we can do:
180 - 90 - 40 = 50
So m<1 = 50
A recipe for 1 batch of muffins used 2/3 of blueberries. Amir made 2 1/2 batches of muffins. How many cups of blueberries did he use? A. 1 4/6 B. 1 5/6 C. 2 2/6 D. 3 1/6. Please show your work.
Answer:
A. 1 4/6 cups of blueberries
Step-by-step explanation:
1 -- 2/3
Proportion, Batches to Blueberries
1*(2 1/2) -- (2/3)( 2 1/2)
Because we are now multiplying the 1 batch to 2 1/2 batches. So to keep the proportion balanced/equal we are using the same operation on the right side of the proportion
2 1/2 -- (2/3)( 5/2 )
2 1/2 -- 5/3
2 1/2 -- 1 2/3
Simplify
On the right side shows the blueberries for 2 1/2 batches. 1 2/3 = 1 4/6
Hope that helps! Tell me if you need more info
∛3375-[tex]\sqrt[4]{38416}[/tex]=?
Answer:
1
Step-by-step explanation:
=> [tex]\sqrt[3]{3375} - \sqrt[4]{38416}[/tex]
Factorizing 3375 gives 15 * 15 * 15 which equals 15^3 and factorizing 38416 gives 14 * 14 * 14 * 14 which equals 14^4
=> [tex]\sqrt[3]{15^3} - \sqrt[4]{14^4}[/tex]
=> 15 - 14
=> 1
Answer:
1Step-by-step explanation:
[tex] \sqrt[3]{3375} - \sqrt[4]{38416} [/tex]
Calculate the cube root
[tex] \sqrt[3]{ {15}^{3} } - \sqrt[4]{38416} [/tex]
Calculate the root
[tex] \sqrt[3]{ {15}^{3} } - \sqrt[4]{ {14}^{4} } [/tex]
[tex] {15}^{ \frac{3}{3} } - {14}^{ \frac{4}{4} } [/tex]
[tex]15 - 14[/tex]
Subtract the numbers
[tex]1[/tex]
Hope this helps...
NEED HELP LIKE NOW PLSSS HELP 50 POINTS Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar and ^ to indicate an exponent. Find the missing term.
Answer:
The expression that fits into the box is x¹⁵⁸
Step-by-step explanation:
Let the empty box be y
(x¹²)⁵ × (x⁻²)⁹ × y = (x⁴⁰)⁵
Here, we will apply the laws of indices.
The laws of indices gives the answer for the expressions
1) xᵏ × xˢ = xᵏ⁺ˢ
2) xᵏ ÷ xˢ = xᵏ⁻ˢ
3) (xᵏ)ˢ = xᵏ•ˢ
So,
(x¹²)⁵ = x⁶⁰
(x⁻²)⁹ = x⁻¹⁸
(x⁴⁰)⁵ = x²⁰⁰
(x¹²)⁵ × (x⁻²)⁹ × y = (x⁴⁰)⁵
Becomes
x⁶⁰ × x⁻¹⁸ × y = x²⁰⁰
x⁶⁰⁻¹⁸ × y = x²⁰⁰
x⁴² × y = x²⁰⁰
y = x²⁰⁰ ÷ x⁴²
y = x²⁰⁰⁻⁴² = x¹⁵⁸
Hope this Helps!!!
Give me the correct format of report writing plzzz (subject English) help plz
Step-by-step explanation:
Hi, there!!..
The format of report writing are given in points;
Title (reflects of report as its main function and it should be clear, brief, specific and weighty.)After title you have to right place and date.and start your body,
Background information about the report. (it should be clear and have reasons)Purpose (the report should have purpose)Actions or, sequences of happening should be clearly written. Characters mentioned should be written properly.and write conclusion,
Observation (it should be clear, factual and objectives).You may add comments on it.
Hope it helps....
Find the exact perimeter (in inches) and area (in square inches) of the segment shown, given that m∠O = 60° and OA = 24 in.
Answer:
A. Perimeter of segment = 49 in.
B. Area of segment = 52 in².
Step-by-step explanation:
Data obtained from the question include:
Radius (r) = 24 in.
Angle at the centre (θ) = 60°
Perimeter of segment =.?
Area of segment =.?
A. Determination of the perimeter of the segment.
Perimeter of segment = length of arc + length of chord
Length of arc = θ/360 x 2πr
Length of chord = 2r x sine (θ/2)
Pi (π) = 3.14
Length of arc = θ/360 x 2πr
Length of arc = 60/360 x 2 x 3.14 x 24
Lenght of arc = 25.12 in
Length of chord = 2r x sine (θ/2)
Length of chord = 2 x 24 x sine (60/2)
Length of chord = 24 in
Perimeter of segment = length of arc + length of chord
Perimeter of segment = 25.12 + 24
Perimeter of segment = 49.12 ≈ 49 in.
B. Determination of the area of the segment.
Area of segment = Area of sector – Area of triangle.
Area of sector = θ/360 x πr²
Area of triangle = r²/2 sine θ
Area of sector = θ/360 x πr²
Area of sector = 60/360 x 3.14 x 24²
Area of sector = 301.44 in²
Area of triangle = r²/2 sine θ
Area of triangle = 24²/2 x sine 60
Area of triangle = 249.42 in².
Area of segment = Area of sector – Area of triangle.
Area of segment = 301.44 – 249.42
Area of segment = 52.02 ≈ 52 in²
The average weight of a person is 160.5 pounds with a standard deviation of 10.4 pounds. 1. What is the probability a person weighs more than 150.2 pounds
Answer:
0.8390
Step-by-step explanation:
From the question,
Z score = (Value-mean)/standard deviation
Z score = (150.2-160.5)/10.4
Z score = -0.9904.
P(x>Z) = 1- P(x<Z)
From the Z table,
P(x<Z) = 0.16099
Therefore,
P(x>Z) = 1-0.16099
P(x>Z) = 0.8390
Hence the probability that a person weighs more than 150.2 pounds = 0.8390
Simplify the expression by using the properties of rational exponents. Write the final answer using positive exponents only. (x4y8)2/3
Answer:
[tex]x^\frac{8}{3} y^\frac{16}{3}[/tex]
Step-by-step explanation:
Given the expression [tex](x^4y^8)^\frac{2}{3}[/tex], to simplify the expression using the rational exponents;
Applying one of the law of indices to simplify the expression;
[tex](a^m)^n = a^{mn}[/tex]
[tex](x^4y^8)^\frac{2}{3}\\\\= (x^4)^\frac{2}{3} * (y^8)^\frac{2}{3}\\\\= x^{4*\frac{2}{3} } * y^{8*\frac{2}{3} }\\\\= x^\frac{8}{3} * y^\frac{16}{3}\\ \\The \ final \ expression \ will \ be \ x^\frac{8}{3} y^\frac{16}{3}[/tex]
i give you brailenst
Answer:
The answer is #3 which is 24%.
Step-by-step explanation:
6 × 100
25
25 into 100 is 4, then 6×4 = 24%
I really hope this helps :)
Determine the zeros of r=2sin5theta
Answer:
[tex]\theta=\frac{n\pi}{5}[/tex]
Step-by-step explanation:
You have the following function:
[tex]r=2sin5\theta[/tex] (1)
In order to find the zeros of the function you equal to zero the equation (1), and then you solve for θ:
[tex]2sin5\theta=0\\\\sin5\theta=0\\\\5\theta=sin^{-1}(0)=n\pi;\ \ \ \ n=0,1,2,3,..\\\\\theta=\frac{n\pi}{5}[/tex]
Then, there are infinite zeros for the function of the equation (1), because n has infinite positive integers values.
Answer:
θ = 0, pi/5, 2pi/5, 3pi/5, 4pi/5 ,pi
Step-by-step explanation:
Consider the y-intercepts of the functions. F(c)=1/5lx-15l, g(x) =(x-2)2, the y-coordinate of the greatest y-intercept is ______
Answer: 4
Step-by-step explanation:
Given functions:
[tex]f(x)=\dfrac{1}{5}|x-15|\\\\ g(x)=(x-2)^2[/tex]
We know that the y--intercept of a function is the value of the function at x=0.
so, put x=0 in both the functions.
The y-coordinate of the y-intercept of f(x) = [tex]f(0)=\dfrac{1}{5}|0-15|=\dfrac{15}{5}=3[/tex]
The y-coordinate of the y-intercept of g(x) = [tex]g(0)=(0-2)^2=2^2=4[/tex]
As 4 > 3, that means he y-coordinate of the greatest y-intercept is 4.