Answer:
(a) The magnitude of force is 116.6 lb, as exerted by the rod CD
(b) The reaction at A is (-72.7j-38.1k) lb and at B it is (37.5j) lb.
Explanation:
Step by step working is shown in the images attached herewith.
For this given system, the coordinates are the following:
A(0, 0, 0)
B(26, 0, 0)
And the value of angle alpha is 20.95°
Hope that answers the question, have a great day!
A series circuit contains four resistors. In the circuit, R1 is 80 , R2 is 60 , R3 is 90 , and R4 is 100 . What is the total resistance? A. 330 B. 250 C. 460 D. 70.3
Given the unity feedback system
G(s)= K(s+4)/s(s+1.2)(s+2)
Find:
a. The range of K that keeps the system stable
b. The value of K that makes the system oscillate
c. The frequency of oscillation when K is set to the value that makes the system oscillate
Answer:
A.) 0 > K > 9.6
B.) K = 9.6
C.) w = +/- 2 sqrt (3)
Explanation:
G(s)= K(s+4)/s(s+1.2)(s+2)
For a closed loop stability, we can analyse by using Routh - Horwitz analysis.
To make the pole completely imaginary, K must be equal to 9.6 Because for oscillations. Whereas, one pair of pole must lie at the imaginary axis.
Please find the attached files for the solution
A wall 0.12 m thick having a thermal diffusivity of 1.5 × 10-6 m2/s is initially at a uniform temperature of 97°C. Suddenly one face is lowered to a temperature of 20°C, while the other face is perfectly insulated. Use the explicit finite-difference technique with space and time increments of 30 mm and 300 s to determine the temperature distribution at at 45 minutes.
Answer:
at t = 45 s :
To = 61.7⁰c, T1 = 55.6⁰c, T2 = 49.5⁰c, T3 = 34.8⁰C
Explanation:
Wall thickness = 0.12 m
thermal diffusivity = 1.5 * 10^-6 m^2/s
Δt ( time increment ) = 300 s
Δ x = 0.03 m ( dividing wall thickness into 4 parts assuming the system to be one dimensional )
using the explicit finite-difference technique
Detailed solution is attached below
Who plays a role in the financial activities of a company?
O A. Just employees
O B. Just managers
O C. Only members of the finance and accounting department
O D. Everyone at the company, including managers and employees
Hey,
Who plays a role in the financial activities of a company?
O D. Everyone at the company, including managers and employees
Answer:
Everyone at the company, including managers and employees
Explanation:
Describe the meaning of the different symbols and abbreviations found on the drawings/documents that they use (such as BS8888, surface finish to be achieved, linear and geometric tolerances, electronic components, weld symbols and profiles, pressure and flow characteristics, torque values, imperial and metric systems of measurement, tolerancing and fixed reference points)
Answer:
Engineering drawing abbreviations and symbols are used to communicate and detail the characteristics of an engineering drawing.
There are many abbreviations common to the vocabulary of people who work with engineering drawings in the manufacture and inspection of parts and assemblies.
Technical standards exist to provide glossaries of abbreviations, acronyms, and symbols that may be found on engineering drawings. Many corporations have such standards, which define some terms and symbols specific to them; on the national and international level, like BS8110 or Eurocode 2 as an example.
Explanation:
what's the maximum shear on a 3.0 m beam carrying 10 kN/m?
Answer:
max shear = R = V = 15 kN
Explanation:
given:
load = 10 kn/m
span = 3m
max shear = R = V = wL / 2
max shear = R = V = (10 * 3) / 2
max shear = R = V = 15 kN
The speed above which an airplane will experience structural damage when a load is applied, instead of stalling, is called the ______________ speed and varies with weight
Answer:
Maneuvering speed.
Explanation:
The speed above which an airplane will experience structural damage when a load is applied, instead of stalling, is called the maneuvering speed and varies with weight.
In aeronautical engineering, the maneuvering speed (Va) of an aircraft such as an aeroplane, helicopter, or jet is an airspeed limitation which is mainly selected by an aircraft designer.
Generally, at speeds higher or greater than the manoeuvring speed, aircraft pilots are advised not to attempt a full deflection of any flight control surface because it's capable of resulting in a damage to the structure of an aircraft.
If you're a pilot, to find the maneuvering speed of an aircraft, you should look at the flight manual of the aircraft or on the cockpit placard in the aircraft. The maneuvering speed of an aircraft is a calibrated speed and should not be exceeded by any pilot.
Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane-strain fracture toughness of 26.0 MPa m0.5. It has been determined that fracture results at a stress of 112 MPa when the maximum internal crack length is 8.6 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.
Answer:
the required stress level at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa
Explanation:
From the given information; the objective is to compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.
The Critical Stress for a maximum internal crack can be expressed by the formula:
[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]
[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]
where;
[tex]\sigma_c[/tex] = critical stress required for initiating crack propagation
[tex]K_{lc}[/tex] = plain stress fracture toughness = 26 Mpa
Y = dimensionless parameter
a = length of the internal crack
given that ;
the maximum internal crack length is 8.6 mm
half length of the internal crack will be 8.6 mm/2 = 4.3mm
half length of the internal crack a = 4.3 × 10⁻³ m
From :
[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]
[tex]Y= \dfrac{26}{112 \times \sqrt{\pi \times 4.3 \times 10 ^{-3}}}[/tex]
[tex]Y= \dfrac{26}{112 \times0.1162275716}[/tex]
[tex]Y= \dfrac{26}{13.01748802}[/tex]
[tex]Y=1.99731315[/tex]
[tex]Y \approx 1.997[/tex]
For this same component and alloy, we are to also compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.
when the length of the internal crack a = 3mm
half length of the internal crack will be 3.0 mm / 2 = 1.5 mm
half length of the internal crack a =1.5 × 10⁻³ m
From;
[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]
[tex]\sigma_c = \dfrac{26}{1.997 \sqrt{\pi \times 1.5 \times 10^{-3}}}[/tex]
[tex]\sigma_c = \dfrac{26}{0.1370877444}[/tex]
[tex]\sigma_c =189.6595506[/tex]
[tex]\sigma_c =[/tex] 189.66 MPa
Thus; the required stress level at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa
If you see a red, a green, and a white light on another boat, what does this tell you?
A boat is approaching you head on.
The red and green lights are sidelights that are positioned on the port side (red) (left as facing the bow) and starboard (green) (right as facing the bow) side of the boat. Various white lights are required depending on the size of the boat, but generally, a white masthead light and stern light are required. See the US Coast Guard site in the link below for more specific information.
Hope this helps
Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to the maximum shear stress.
In this exercise we have to calculate the formula that will be able to determine the length of the cantilevered, like this:
[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]
So to determinated the maximum tensile and compreensive stress due to bending we can describe the formula as:
[tex]\sigma_b = \frac{MC}{I}[/tex]
Where,
[tex]\sigma_b[/tex] is the compressive stress or tensile stress[tex]M[/tex] is the B.M [tex]C[/tex] is the N.A distance[tex]I[/tex] is the moment of interiorSo making this formula for the max, we have:
[tex]\sigma_c=\frac{MC}{I} \\\sigma_T=-\sigma_c=-\frac{MC}{I}\\\sigma_{max}=M_{max}\\[/tex]
With all this information we can put the formula as:
[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]
See more about stress in the beam at brainly.com/question/23637191
. A belt drive is desired to couple the motor with a mixer for processing corn syrup. The 25-hp electric motor is rated at 950 rpm and the mixer must operate as close to 250 rpm as possible. Select an appropriate belt size, commercially available sheaves, and a belt for this application. Also calculate the actual belt speed and the center distance.
Answer:
Hello the table which is part of the question is missing and below are the table values
For a 5V belt the available diameters are : 5.5, 5.8, 5.9, 6.2, 6.3, 6.6, 12.5, 13.9, 15.5, 16.1, 18.5, 20.1
Answers:
belt size = 140 in with diameter of 20.1n
actual speed of belt = 288.49 in/s
actual center distance = 49.345 in
Explanation:
Given data :
Electric motor (driver sheave) speed (w1) = 950 rpm
Driven sheave speed (w2) = 250 rpm
pick D1 ( diameter of driver sheave) = 5.8 in ( from table )
To select an appropriate belt size we apply the equation for the velocity ratio to get the diameter first
VR = [tex]\frac{w1}{w2}[/tex] = 950 / 250
also since the speed of belt would be constant then ;
Vb = w1r1 = w2r2 ------- equation 1
r = d/2
substituting the value of r into equation 1
equation 2 becomes : [tex]\frac{w1}{w2} = \frac{d2}{d1}[/tex] = VR
Appropriate belt size ( d2) can be calculated as
d2 = [tex]\frac{w1d1}{w2}[/tex] = [tex]\frac{950 * 5.8}{250}[/tex] = 22.04
From the given table the appropriate belt size would be : 20.1 because it is the closest to the calculated value
next we have to determine the belt length /size
[tex]L = 2C + \frac{\pi }{2} ( d1+d2) + \frac{(d2-d1)^2}{4C}[/tex]
inputting all the values into the above equation including the value of C as calculated below
L ≈ 140 in
Calculating the center distance
we use this equation to get the ideal center distance
[tex]d2< C_{ideal} < 3( d1 +d2)[/tex]
22.04 < c < 3 ( 5.8 + 20.1 )
22.04 < c < 77.7
the center distance is between 22.04 and 77.7 but taking an average value
ideal center distance would be ≈ 48 in
To calculate the actual center distance we use
[tex]C = \frac{B+\sqrt{B^2 - 32(d2-d1)^2} }{16}[/tex] -------- equation 3
B = [tex]4L -2\pi (d2 + d1 )[/tex]
inputting all the values into (B)
B = 140(4) - 2[tex]\pi[/tex]( 20.01 + 5.8 )
B ≈ 399.15 in
inputting all the values gotten Back to equation 3 to get the actual center distance
C = 49.345 in ( actual center distance )
Calculating the actual belt speed
w1 = 950 rpm = 99.48 rad/s
belt speed ( Vb) = w1r1 = w1 * [tex]\frac{d1}{2}[/tex]
= 99.48 * 5.8 / 2 = 288.49 in/s
An inventor claims to have developed a heat pump that produces a 200-kW heating effect for a 293 K heatedzone while only using 75 kW of power and a heat source at 273 K. Justify the validity of this claim.
Answer:
From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.
Explanation:
Heat generated Q = 200 kW
power input W = 75 kW
Temperature of heated region [tex]T_{h}[/tex] = 293 K
Temperature of heat source [tex]T_{c}[/tex] = 273 K
For this engine,
coefficient of performance COP = Q/W = 200/75 = 2.67
The maximum theoretical COP obtainable for a heat pump is given as
COP = [tex]\frac{T_{h} }{T_{h} - T_{c} }[/tex] = [tex]\frac{293 }{293 - 273 }[/tex] = 14.65
From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.