a 130-w lamp is placed in series with a resistor and a 120-v source. if the voltage across the lamp is 32 v, what is the resistance r of the resistor?

Answers

Answer 1

The resistance r of the resistor which is placed in series with a 130-w lamp and a 120 V source is 21.66 Ω

According to the question,

Power of the lamp = 130 W

The voltage of the source = 120 V

The voltage across the lamp = 32 V

According to Kirchow's voltage Law,

The algebraic sum of voltage in a closed loop is zero.

So ∑V = [tex]V_{resistor}+V_{lamp}+V_{source}[/tex] =0

[tex]V_{Lamp}=-32 V[/tex]

[tex]V_{source}=120V[/tex]

0 = 120 - 32 + [tex]V_{resistor}[/tex]

[tex]V_{resistor}[/tex] = -88 V

Power of the lamp = V * I

130 = 32 * I

I = [tex]\frac{130}{32} A[/tex]

According to Ohm's Law,

V ∝ I

V = I*R

where V is the potential difference across the resistor

I is the current flowing through the resistor

R is the resistance of the resistor

Since the lamp and resistor are connected in series, they have the same amount of current flowing

Therefore, 88 = [tex]\frac{130}{32}[/tex] * r

r = [tex]\frac{88*32}{130}[/tex]

r = 21.66 Ω

Learn more about Ohm's Law:

https://brainly.com/question/19892453

#SPJ4


Related Questions

a series circuit has a total resistance of 180 ω and a total voltage of 120 v. what is the current flow?

Answers

To find the current flow in a series circuit with a total resistance of 180 ω and a total voltage of 120 V, we can use Ohm's law,(Ohm’s law states the relationship between electric current and potential difference. The current that flows through most conductors is directly proportional to the voltage applied to it. Georg Simon Ohm, a German physicist was the first to verify Ohm’s law experimentally.)

which states that current (I) equals voltage (V) divided by resistance (R), or

I = V/R. Therefore, the current flow in this circuit would be:

I = 120V/180Ohm

I = 0.67 amperes (A)

So, the current flow in this series circuit is 0.67 A.

To know more about Ohm's law, please click:

brainly.com/question/1247379

#SPJ11

A client reports general malaise and has a temperature is 103.8°F (39.9°C). What is the rationale for administering a prescribed aspirin, an antipyretic, to this client?
Antipyretics protect vulnerable organs, such as the brain, from extreme temperature elevation.
Temperatures in excess of 99.5°F (37.5°C) can result in seizure activity.
Lower temperatures inhibit the protein synthesis of bacteria.
Most antipyretics have been shown to have little effect on core temperature but alleviate discomforts.

Answers

A client reports general malaise and has a temperature is 103.8°F (39.9°C). What is the rationale for administering a prescribed aspirin, an antipyretic, to this client

step-by-step explanation:

Step 1: A client reports general malaise and has a temperature of 103.8°F (39.9°C).

Step 2: The high temperature is an indication that the body is fighting an infection or inflammation.

Step 3: Antipyretics, such as aspirin, work by blocking the production of certain chemicals in the body that cause fever.

Step 4: Lowering the body temperature can help alleviate the discomfort associated with fever and reduce the risk of complications, such as seizures or dehydration.

Step 5: Aspirin is a commonly prescribed antipyretic that can be effective in reducing fever.

Step 6: The rationale for administering a prescribed aspirin, an antipyretic, to this client is to lower the body temperature and alleviate the discomfort associated with fever.

Step 7: It is important to follow the prescribed dosage and instructions for aspirin to avoid potential side effects or interactions with other medications.

                 

Step 8: If the fever persists or worsens, it is important to seek medical attention to determine the underlying cause and ensure appropriate treatment.

To know more about Antipyretics :

https://brainly.com/question/30758739

#SPJ11

The carbon cycle describes the process in which carbon atoms continually travel from the atmosphere to the Earth and then back into the atmosphere. Examine the model. What are abiotic components of the carbon cycle? Choose ALL that apply

Answers

The carbon cycle involves both biotic (living) and abiotic (non-living) components.

What are the abiotic components of the carbon cycle?

Abiotic components of the carbon cycle include:

Atmosphere: The atmosphere is a major abiotic component of the carbon cycle. Carbon dioxide (CO2) is a greenhouse gas that makes up a small percentage of Earth's atmosphere (currently around 0.04%). Carbon dioxide is released into the atmosphere through processes such as respiration, combustion of fossil fuels, and volcanic eruptions. It can also be absorbed from the atmosphere through processes such as photosynthesis and dissolution in bodies of water.

Oceans: The world's oceans are a significant abiotic component of the carbon cycle. They act as a sink for carbon dioxide, absorbing large amounts of it from the atmosphere. Carbon dioxide dissolves in seawater to form carbonic acid, which can then undergo various chemical reactions to form bicarbonate ions and carbonate ions. These dissolved forms of carbon can be transported and stored in the deep ocean for long periods of time, a process known as oceanic carbon sequestration.

Soil: Soil is another abiotic component of the carbon cycle. Dead plant material and other organic matter that accumulates in soil can undergo decomposition by microorganisms, releasing carbon dioxide back into the atmosphere through a process called soil respiration. Additionally, carbon can be stored in soil as organic carbon, which can remain in the soil for years to centuries depending on environmental conditions.

Geological formations: Carbon can also be stored in abiotic reservoirs such as geological formations, including fossil fuels such as coal, oil, and natural gas. These fossil fuels are formed from ancient organic matter that has been buried and preserved in the Earth's crust over millions of years. When these fossil fuels are burned for energy, carbon is released into the atmosphere as carbon dioxide, contributing to the increase in atmospheric carbon dioxide concentrations.

These abiotic components of the carbon cycle play a crucial role in regulating the balance of carbon between the atmosphere, oceans, soil, and geological formations, and are important in understanding the overall carbon cycle and its impact on the Earth's climate.

Learn more about carbon cycle here: https://brainly.com/question/12005308

#SPJ1

a space ship is traveling at 0.7c when a laser beam is turned on that is directed in the direction the ship is traveling. what is the speed of the laser light?

Answers

A spaceship is traveling at 0.7c when a laser beam is turned on, directed in the direction the ship is traveling.

According to the theory of relativity, the speed of light in a vacuum is always the same for all observers, regardless of their relative velocities.

The speed of the laser light is always c, which is the speed of light in a vacuum, approximately 3.0 x 10^8 meters per second. This is because the speed of light is constant and does not depend on the speed of the source (in this case, the spaceship).

Explanation:

In this scenario, the spaceship is traveling at 0.7c, which means that it is moving at a speed that is 0.7 times the speed of light. When a laser beam is turned on in the direction of the spaceship's motion, the speed of the laser light is still c, as measured by an observer on the spaceship. This is because the speed of light is always the same, regardless of the motion of the source or observer.

To learn more about Theory of relativity. Please Visit:

https://brainly.com/question/14212639

#SPJ11

A laser beam is activated and pointed in the direction of a spaceship that is moving at 0.7c.

The speed of light in a vacuum is constant for all observers, regardless of their relative velocities, according to the theory of relativity.

The speed of the laser light is always c, or around 3.0 x 108 metres per second, the speed of light in a vacuum. This is due to the fact that the speed of light is independent of the source's (in this example, the spacecraft's) speed and is always constant.

In this scenario, the spaceship is traveling at 0.7c, which means that it is moving at a speed that is 0.7 times the speed of light. When a laser beam is turned on in the direction of the spaceship's motion, the speed of the laser light is still c, as measured by an observer on the spaceship. This is because the speed of light is always the same, regardless of the motion of the source or observer.

learn more about theory of relativity here:

https://brainly.com/question/14212639

#SPJ4

what magnitude force is required to give a helicopter of mass m an acceleration of 0.10g upward?what work is done by this force as the helicopter moves a distance h upward?

Answers

A) The magnitude force required to give a helicopter of mass M an acceleration of 0.10 g upward is F = 0.981 M N.

B) The work done by the force as the helicopter moves a distance h upward is W = 0.981 Mh N.

A) The force required to give a helicopter of mass M an acceleration of 0.10 g upward can be calculated using Newton's Second Law of Motion, which states that the force applied to an object is equal to the object's mass multiplied by its acceleration. The acceleration given is 0.10g, which can be converted to meters per second squared (m/s²) as follows:

0.10 g = 0.10 × 9.81 m/s² = 0.981 m/s²

Thus, the force required can be calculated as:

F = M × a

F = M × 0.981 N

B) To calculate the work done by the force as the helicopter moves a distance h upward, we can use the formula for work done by a constant force, which is:

W = F × d × cos(θ)

where W is the work done, F is the force applied, d is the displacement, and θ is the angle between the force and the displacement vectors. In this case, the displacement is upward and the force is also upward, so θ = 0 and cos(θ) = 1.

The work done by the force as the helicopter moves a distance h upward is:

W = F × h × cos(θ)

W = F × h

Substituting the value of F from Part A, we get:

W = 0.981 M N × h

To learn more about force the link:

https://brainly.com/question/26115859

#SPJ4

The complete question is:

A) What magnitude force is required to give a helicopter of mass M an acceleration of 0.10 g upward? Express your answer in terms of the variable M and appropriate constants.

B) What work is done by this force as the helicopter moves a distance h upward? Express your answer in terms of the variables M,h, and appropriate constants.

let's say i was standing in one spot (zero speed facing north). then i took one step (one meter) and it took me a second to do so (still facing north). did i acceleration?

Answers

No, you will not accelerate.

Acceleration is the rate of change of velocity, which is a vector quantity that includes both magnitude and direction. If your velocity did not change in direction, then you did not accelerate.

In your case, you moved one meter in one second while facing north. Since your velocity did not change in direction, you did not accelerate. However, you did have a non-zero average speed of 1 meter per second over that one second interval. Speed is a scalar quantity that only includes magnitude, not direction. So, while you did not accelerate, you did have a non-zero speed for that short period of time.

To know more about acceleration, here

brainly.com/question/12550364

#SPJ4

--The complete question is, Let's say i was standing in one spot (zero speed facing north). then i took one step (one meter) and it took me a second to do so (still facing north). did i accelerate?--

A 2-kg ball moving at 6 m/s rolls into sand and comes out of the sand rolling at 2 m/s

Answers

The velocity of the ball as it exits the sand is 6m/s.

Explanation and Calculation of the Velocity of the Ball in Motion

When the ball rolls into the sand, it experiences a force of friction acting against its motion, which causes it to slow down. The amount of frictional force depends on the properties of the sand and the ball's velocity. Assuming that the ball rolls horizontally into the sand and comes out horizontally as well, the conservation of momentum applies, which means that the momentum of the ball before it enters the sand is equal to the momentum of the ball after it exits the sand.

We can use the equation for conservation of momentum to calculate the final velocity of the ball:

Initial momentum = Final momentum

mv1 = mv2

where m is the mass of the ball, v1 is the initial velocity of the ball, and v2 is the final velocity of the ball.

Substituting the given values, we get:

2 kg x 6 m/s = 2 kg x v2

12 kg m/s = 2 kg x v2

v2 = 6 m/s

Therefore, the final velocity of the ball as it exits the sand is 6 m/s.

Learn more about momentum here:

https://brainly.com/question/1042017

#SPJ1

A rifle has a mass of 45 kg. The bullet that it fires travels at 300 m/s. The mass of the bullet is 0.01 kg. What is the velocity of the rifle after it recoils?

Answers

Assuming the rifle recoils in the same direction as the bullet, the velocity of the rifle after recoil would be 5.44 m/s.

What is velocity ?

Velocity is a vector quantity that measures the rate of change in the position of an object. It is expressed as a speed and a direction. Velocity is a measure of the rate and direction of motion of an object, and is equal to the displacement of the object divided by the time taken for the displacement. The units of velocity are usually expressed in terms of meters per second (m/s).

This can be calculated using the equation of conservation of momentum, which states that the total momentum of a system must remain constant. Thus, the momentum of the bullet (0.01 kg× 300 m/s) must be equal to the momentum of the rifle (45 kg× v), where v is the velocity of the rifle after recoil. Solving for v yields 5.44 m/s.

To learn more about velocity

https://brainly.com/question/80295?

#SPJ1

a guitar string has a total length of 92 cm and has a mass of 3.4 g. the distance from the bridge to the support post (the part that vibrates) is 62 cm, and the string is under a tension of 520 n. what is the frequency of the fundamental, in hz?

Answers

The frequency of the fundamental in Hz is 184.

The speed of the wave on the string is given by v = √(T/μ), where T is the tension in N and μ is the linear density of the string in kg/m.

μ = m/L, where m is the mass of the string in g and L is the length of the string in m.

So, μ = 3.4 g / 0.92 m = 3.7 x 10⁻² kg/m

v = √(520 N / 3.7 x 10⁻² kg/m) = 365.7 m/s

The fundamental frequency is given by f = v/2L, where L is the length of the vibrating part of the string.

L = 62 cm = 0.62 mf = 365.7 m/s / (2 x 0.62 m) = 184 Hz

To learn more about frequency of the fundamental, here

https://brainly.com/question/29264927

#SPJ4

one engine works with constant power p and the other one increases its power linearly with time. what is the ratio of the work done by the engines (engine two to engine one) if the second engine increased its power from zero to 5.2 p during the observed time?

Answers

The work done by the second engine is 2.6 times the work done by the first engine.

The work done by an engine is given by the product of power and time. The first engine works with a constant power of P, so its work done is given by W1 = P*t, where t is the observed time.

The second engine increases its power linearly with time, and its final power is 5.2P. Let the power at time t be

P(t) = kt, where k is the rate of increase of power.

At time t=0, the power is zero, so we have

P(0) = 0.

At time t, the power is kt, so we have

P(t) = kt.

When the power reaches 5.2P, we have

P(t) = 5.2P

so kt = 5.2P, and k = 5.2P/t.

The work done by the second engine is given by

W₂  = ∫P(t)

dt from 0 to t, which evaluates to

W₂ = 1/2 × k × t²

= 1/2 × 5.2P ÷ t × t²

= 2.6P × t.

The ratio of the work done by the second engine to the first engine is

W2 ÷ W1 = (2.6P × t) ÷ (P × t) = 2.6.

To learn more about work length the link:

https://brainly.com/question/13662169

#SPJ4

true or false. the plane that contains the earth's orbit around the sun is also called the plane of the ecliptic. when you look for the planets in the sky, you expect to find

Answers

True. The ecliptic plane is the plane that contains the Earth's orbit around the Sun. As they roughly orbit the Sun in the same plane, planets should be found close to the ecliptic while looking for them in the sky.

The apparent path of the Sun across the sky over the course of a year, as seen from Earth, is known as the ecliptic. The orbit of the Earth around the Sun is also contained inside this plane. The other planets in our solar system are similarly visible close to the ecliptic because they orbit the Sun in a similar general plane. The inclination of the planets' orbits and the Earth's rotation around the Sun, however, cause the positions of the planets with respect to the ecliptic to change throughout time.

learn more about planets here:

https://brainly.com/question/14581221

#SPJ11

at what speed do a bicycle and its rider, with a combined mass of 90 kg , have the same momentum as a 1600 kg car traveling at 4.8 m/s ? express your answer to two significant figures and include the appropriate units.

Answers

The momentum of an object is defined as the product of its mass and velocity. Therefore, we can set up an equation where the momentum of the bicycle and rider is equal to the momentum of the car:

(m_bicycle + m_rider)v_bicycle = m_carv_car

where m_bicycle and m_rider are the masses of the bicycle and rider (assumed to be combined), v_bicycle is the velocity of the bicycle and rider, m_car is the mass of the car, and v_car is the velocity of the car.

Substituting the given values, we get:

(90 kg)v_bicycle = (1600 kg)(4.8 m/s)

Solving for v_bicycle, we get:

v_bicycle = (1600 kg)(4.8 m/s)/(90 kg) = 85.3 m/s

Therefore, the bicycle and rider would have to travel at a speed of 85.3 m/s to have the same momentum as the car traveling at 4.8 m/s.

you can safely hold your fingers on both sides of a candle flame due mainly to group of answer choices convection. radiation. conduction. none of the above

Answers

You can safely hold your fingers on both sides of a candle flame due mainly to convection.

Convection is the process by which heat is transferred through the movement of fluids or gases, such as air. In this case, the heated air around the candle flame rises upwards, which means the heat is not directly transferred to your fingers when they are on both sides of the flame. Therefore we can correctly say that you can safely hold your fingers on both sides of a candle flame mainly due to convection.

More on convection: https://brainly.com/question/19446911

#SPJ11

Help me brainstorm for my Physics Project!!!! 100 points if completed!!!!!!

Answers

I can suggest three sports that could be interesting to explore the physics behind them:

Golf

Skateboarding

Snowboarding/Skiing

How to explain the sports

Golf: Golf is a sport that involves a lot of physics, such as the motion of the ball, the force applied to the club, and the aerodynamics of the ball. Exploring the physics behind golf can be fascinating.

Skateboarding: Skateboarding is another sport that involves many physics concepts, such as friction, gravity, and momentum. It would be interesting to investigate the physics behind the tricks that skateboarders perform and the forces involved.

Snowboarding/Skiing: Snowboarding and skiing also involve physics concepts such as momentum, gravity, and friction. The physics behind carving turns and jumping can be a fascinating topic to explore.

All three of these sports have unique and exciting aspects of physics to explore and could make great topics for a project.

Learn more about sport on

https://brainly.com/question/1528405

#SPJ1

A pitcher supplies a constant force on a baseball whose mass is .14 kg. The pitcher's hand is in contact with the ball over a distance of 1.5m. The ball's speed as it is released is 40 m/s.
A) What force acted on the ball?
B) What was the change in momentum of the ball?
C) How long did the force act on the ball?

Answers

That the force (F) acting on the ball is the same as calculated in part A, we can rearrange the equation to solve for time (t):

Time (t) = Impulse (J) / Force (F)

What is Mass?

Mass is a fundamental property of matter that represents the amount of matter contained in an object. It is a scalar quantity and is typically measured in units such as kilograms (kg), grams (g), or other appropriate units depending on the scale of the object being measured.

The initial momentum (p_initial) of the ball can be calculated as the product of its mass and initial velocity:

Initial momentum (p_initial) = Mass (m) × Initial velocity (v_initial)

Since the ball is released with a speed of 40 m/s, the initial velocity (v_initial) is 40 m/s.

The final momentum (p_final) of the ball can be calculated as the product of its mass and final velocity:

Final momentum (p_final) = Mass (m) × Final velocity (v_final)

Since the ball is released with a speed of 40 m/s, the final velocity (v_final) is also 40 m/s.

The change in momentum (Δp) of the ball is the difference between the final and initial momenta:

Change in momentum (Δp) = Final momentum (p_final) - Initial momentum (p_initial)

Plugging in the values, we can calculate the force (F) acting on the ball:

Force (F) = Change in momentum (Δp) / Time (t)

B) The change in momentum (Δp) of the ball can be calculated as the final momentum (p_final) minus the initial momentum (p_initial):

Change in momentum (Δp) = Final momentum (p_final) - Initial momentum (p_initial)

C) The time (t) for which the force acts on the ball can be calculated using the formula for impulse, which relates force, change in momentum, and time:

Impulse (J) = Force (F) × Time (t)

Learn more about Mass from the given link

https://brainly.com/question/86444

#SPJ1

calculate the energy in joules released by the fusion of a 2.25 -kg mixture of deuterium and tritium, which produces helium. there are equal numbers of deuterium and tritium nuclei in the mixture.

Answers

The energy released by the fusion of a 2.25-kg mixture of deuterium and tritium, which produces helium, is approximately [tex]2.821 * 10^{-13} J.[/tex]

The energy released by the fusion of a mixture of deuterium and tritium into helium can be calculated using the formula:

[tex]E = \Delta m \cdot c^2[/tex]

where E is the energy released, Δm is the change in mass during the fusion process, and c is the speed of light (approximately [tex]3.00 * 10^8 m/s[/tex]).

The change in mass Δm can be calculated using the difference between the mass of the reactants and the mass of the products:

[tex]\Delta m = (2 \cdot m_d + 3 \cdot m_t) - 4 \cdot m_h[/tex]

where [tex]m_d[/tex] is the mass of a deuterium nucleus (2.0141 u), [tex]m_t[/tex]is the mass of a tritium nucleus (3.0160 u), and [tex]m_h[/tex] is the mass of a helium nucleus (4.0026 u).

The mass of a nucleus in atomic mass units (u) can be converted to kilograms using the conversion factor [tex]1.66 * 10^{-27} kg/u.[/tex]

Substituting the values and simplifying, we get:

[tex]\Delta m = (2 \cdot 2.0141 \, \text{u} + 3 \cdot 3.0160 \, \text{u}) - 4 \cdot 4.0026 \, \text{u} = 0.0189 \, \text{u}[/tex]

Δm in kilograms is therefore:

[tex]\Delta m = 0.0189 \, \text{u} \cdot (1.66 \times 10^{-27} \, \text{kg/u}) = 3.134 \times 10^{-30} \, \text{kg}[/tex]

The energy released E can now be calculated:

[tex]E = \Delta m \cdot c^2 = 3.134 \times 10^{-30} \, \text{kg} \cdot (3.00 \times 10^8 \, \text{m/s})^2[/tex]

[tex]= 2.821 * 10^{-13} J[/tex]

Therefore, the energy released by the fusion of a 2.25-kg mixture of deuterium and tritium, which produces helium, is approximately [tex]2.821 * 10^{-13} J.[/tex]

For more such questions on energy , Visit:

https://brainly.com/question/13881533

#SPJ11

a ? is a wheel with a concave edge for supporting a moving rope that is changing direction.

Answers

is a wheel with a concave edge for supporting a moving rope that is changing direction.

A sheave is a wheel with a concave edge for supporting a moving rope that is changing direction. A sheave helps to reduce friction and increase efficiency when managing ropes in various applications.

The term you are looking for is "pulley". A pulley is a simple machine that consists of a wheel with a grooved rim or concave edge, which is designed to support a moving rope or cable and change its direction of motion. Pulleys are commonly used in various applications, such as lifting heavy objects, moving loads, and transmitting power between machines.

They can also be combined with other pulleys and mechanical systems to create complex machines that perform a wide range of tasks.

To know more about  direction of motion:

https://brainly.com/question/3421105

#SPJ11

an electromagnetic flowmeter applies a magnetic field of 0.20 t perpendicular to blood flowing through a coronary artery at a speed of 15 cm/s. what is the magnitude of the force (in n) felt by a chlorine ion with a single negative charge?

Answers

The magnitude of the force felt by a chlorine ion with a single negative charge is [tex]-4.806 \times 10^{-18} N[/tex].

An electromagnetic flowmeter measures the flow rate of conductive fluids, such as blood, using the principles of electromagnetic induction. When a conductive fluid, such as blood, flows through a magnetic field, a voltage is induced across the fluid. The magnitude of this voltage is proportional to the velocity of the fluid and the strength of the magnetic field.

In this case, the flow rate of blood through a coronary artery is given as 15 cm/s, and the magnetic field strength is 0.20 T. To calculate the force felt by a chlorine ion with a single negative charge, we need to first calculate the induced voltage.

The induced voltage (V) is given by the equation:

V = B × v × d

Where B is the magnetic field strength, v is the velocity of the fluid, and d is the distance between the electrodes of the flowmeter. In this case, we assume the distance between the electrodes is small compared to the diameter of the artery, so we can ignore it.

Thus, V = 0.20 T × 15 cm/s

= 3 V

The force (F) felt by a charged particle in an electric field is given by the equation:

F = q × E

Where q is the charge of the particle and E is the electric field strength.

In this case, the induced voltage is proportional to the velocity of the fluid and the strength of the magnetic field, but it does not depend on the charge of the particle. Therefore, the electric field strength can be calculated by dividing the induced voltage by the distance between the electrodes:

E = V / d

= 3 V / 0.1 m

= 30 V/m

The force felt by a chlorine ion with a single negative charge can be calculated as:

F = q × E

[tex]= -1.602 \times 10^{-19} C \times 30 \frac{V}{m}[/tex]

[tex]= -4.806 \times 10^{-18} N[/tex]

To learn more about magnitude

https://brainly.com/question/14452091

#SPJ4

A mechanic exerts a force of 55 N on a 0.015 m2 hydraulic piston to lift a small automobile. The piston the automobile sits on has an area of 2.4 m2. What is the weight of the automobile?

Answers

The force needed to lift the car is 8800 N, which is its weight.

What kind of forces do hydraulic systems produce?

In hydraulic systems, forces are transferred from one area to another inside an incompressible fluid, such as water or oil. Most aircraft's landing gear and braking systems are hydraulic. In order to function, pneumatic systems need a compressible fluid like air.

The smaller piston received a 55 N force from the mechanic, and its surface area was 0.015 m². We may determine the pressure used by the mechanic using the pressure formula P = F/A:

P = F/A = 55 N / 0.015 m² = 3666.67 Pa

This pressure is transmitted to the larger piston with an area of 2.4 m². The force on the larger piston can be calculated using the formula F = PA:

F = PA = 3666.67 Pa x 2.4 m² = 8800 N

To know more about force visit:-

https://brainly.com/question/13191643

#SPJ1

patricia has a weight of 131 lb.note: this is a multi-part question. once an answer is submitted, you will be unable to return to this part.what is her weight in newtons? (1 lb

Answers

The volume of the rectangular prism is 480 cubic centimeters.

The question asks us to find the volume of a rectangular prism with dimensions 12 cm by 8 cm by 5 cm. A rectangular prism is a 3-dimensional shape with six rectangular faces, where opposite faces are congruent and parallel.

To find the volume of a rectangular prism, we use the formula:

Volume = length x width x height

In this case, the length is 12 cm, the width is 8 cm, and the height is 5 cm. So, we substitute these values into the formula:

Volume = 12 cm x 8 cm x 5 cm

Volume = 480 cubic centimeters

To know more about Volume, here

brainly.com/question/1578538

#SPJ4

ten 7.0-w christmas tree lights are connected in series to each other and to a 120-v source. what is the resistance of each bulb?

Answers

The resistance of each bulb which are connected in series is 20.571 Ω.

Let's find the resistance of each bulb using the given terms:

1. Voltage of source (V_source) = 120 V
2. Number of bulbs (n) = 10
3. Power of each bulb (P) = 7.0 W

We'll use the formula P = V²/R to find the resistance of each bulb.

1: Find the total power of the series.
Total power (P_total) = n * P = 10 * 7.0 W = 70 W

2: Find the total resistance of the series.
Using the formula P_total = V_source^2 / R_total, we can find R_total:
R_total = V_source² / P_total = (120 V)² / 70 W = 14400 / 70 = 205.71 Ω

3: Find the resistance of each bulb.

Since the bulbs are connected in series, the total resistance is the sum of the individual resistances. Therefore, we can find the resistance of each bulb (R_bulb) as follows:

R_bulb = R_total / n = 205.71 Ω / 10 = 20.571 Ω

So, the resistance of each bulb is approximately 20.571 Ω.

Learn more about resistance:

https://brainly.com/question/24858512

#SPJ11

if the tension in the cord is 110 n , how long will it take a pulse to travel from one support to the other?

Answers

We need to know the distance between the two supports and the speed at which the pulse travels along the cord. Let's assume that the distance between the supports is d meters and the speed of the pulse is v meters per second.

We can use the formula:

time = distance / speed

to find the time it takes for the pulse to travel from one support to the other. Rearranging this formula, we get:

distance = speed x time

So, if the tension in the cord is 110 N, we still need to know the speed of the pulse to calculate the time it takes to travel the distance.

Unfortunately, the tension in the cord alone does not provide enough information to determine the speed of the pulse. We need to know other factors such as the mass per unit length of the cord, the amplitude of the pulse, and the elasticity of the cord, among others.

Therefore, we cannot provide a specific answer to this question without additional information.

To know more about distance:

https://brainly.com/question/15172156

#SPJ11

when a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory? when a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory? a sinusoidal curve a circle a straight line a parabola

Answers

When a charged particle moves perpendicularly to a uniform magnetic field, its trajectory is a circle. Here option B is the correct answer.

When a charged particle moves perpendicularly to a uniform magnetic field, its trajectory follows a circular path. This phenomenon is known as the Lorentz force, named after the Dutch physicist Hendrik Lorentz who discovered it in the late 19th century.

The Lorentz force arises due to the interaction between the magnetic field and the charged particle's electric field. When a charged particle moves through a magnetic field, it experiences a force perpendicular to both the direction of its motion and the direction of the magnetic field. This force causes the charged particle to move in a circular path with a constant radius and a constant speed.

The radius of the circular path is determined by the particle's mass, charge, and speed, as well as the strength of the magnetic field. Specifically, the radius is proportional to the particle's momentum and inversely proportional to the magnetic field strength.

The circular motion of a charged particle in a magnetic field is fundamental to many applications in physics and engineering. For example, it is the basis of the operation of particle accelerators, mass spectrometers, and MRI machines.

To learn more about magnetic fields

https://brainly.com/question/3160109

#SPJ4

Complete question:

When a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory? when a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory?

A - a sinusoidal curve

B - a circle

C - a straight line

D - a parabola

newton's second law: a box of mass 50 kg is at rest on a horizontal frictionless surface. a constant horizontal force f then acts on the box and accelerates it to the right. it is observed that it takes the box 8.0 seconds to travel 32 meters. what is the magnitude of the force?

Answers

The magnitude of the force is 25 Newtons.

We can use Newton's second law, which states that the net force (F_net) acting on an object is equal to its mass (m) times its acceleration (a):

[tex]fnet = m*a[/tex]

The final velocity can be calculated using the formula:

[tex]v = d/t[/tex]

where d is the distance travelled and t is the time taken. Plugging in the values, we get:

v = 32 m / 8.0 s

v = 4.0 m/s

Therefore, the acceleration is:

a = Δv / Δt

a = 4.0 m/s / 8.0 s

a = 0.5 m/s^2

Now we can use Newton's second law to find the magnitude of the force:

F_net = 50 kg * 0.5 m/s^2

F_net = 25 N

To know more about newton's second law:

https://brainly.com/question/13447525

#SPJ4

a loop of area 0.08 m2 is rotating at constant angular speed. it rotates at 87 rev/s with the axis of rotation perpendicular to a 0.08 t magnetic field. if there are 1017 turns on the loop, what is the maximum voltage induced in it? answer in units of v.

Answers

The maximum voltage induced in the loop is 82.05 volts. The EMF is negative.

The maximum voltage induced in the loop can be calculated using the formula:

EMF = -NΔΦ/Δt

Where EMF is the induced electromotive force, N is the number of turns in the loop, ΔΦ is the change in magnetic flux, and Δt is the time interval over which the change occurs.

In this case, the loop has an area of 0.08 m2 and is rotating at a constant angular speed of 87 rev/s, which corresponds to an angular velocity of 544.89 rad/s. The magnetic field is perpendicular to the axis of rotation, so the change in magnetic flux is given by:

ΔΦ = B*A*cos(θ)*Δt

Where B is the magnetic field strength, A is the area of the loop, θ is the angle between the magnetic field and the normal to the loop (which is 90 degrees in this case), and Δt is the time interval over which the change occurs.

Since the loop is rotating at a constant speed, the time interval over which the change occurs is equal to the time it takes for the loop to complete one revolution, which is:

Δt = 1/87 s

Plugging in the given values, we get:

ΔΦ = (0.08 T)*(0.08 m2)*(1)*(1/87 s) = 0.000921 Tm2/s

Next, we can calculate the induced EMF using the formula:

EMF = -NΔΦ/Δt

Plugging in the given values, we get:

EMF = -(1017)*(0.000921 Tm2/s)/(1/87 s) = -82.05 V

Since the EMF is negative, this means that the induced voltage is in the opposite direction to the direction of the current flow in the loop.

For more such questions on EMF.

https://brainly.com/question/14300059#

#SPJ11

Conclusion for simple pendulum with aim to determine acceleration due to gravity

Answers

In conclusion, the experiment aimed to determine the acceleration due to gravity by measuring the period of a simple pendulum. The experiment was performed by measuring the length of the pendulum and recording the time for 10 oscillations. The data was then used to calculate the average period and subsequently, the acceleration due to gravity using the formula: g = (4π²L)/T².

Based on the results obtained, the acceleration due to gravity was found to be (9.79 ± 0.06) m/s², which is in good agreement with the accepted value of 9.81 m/s². The small discrepancy could be due to the experimental errors such as air resistance, friction and measurement errors.

Overall, the experiment was successful in determining the acceleration due to gravity using a simple pendulum and demonstrated the relationship between the period and the length of the pendulum.

a mechanic releases a small object with a density of 1.5 g/cm3 and a volume of 1.0 cm3 into a large vat of motor oil whose density is 888.1 kg/m3 . the container is 12.0 m deep with a diameter of 1.8 m. what will the magnitude and direction of its acceleration be if it is released from rest at a depth of 1.6m below the surface?

Answers

Using Archimedes' principle, the magnitude of the acceleration is 39.6 m/s², and the direction is upward.

To solve this problem, we need to use Archimedes' principle, which states that the buoyant force on an object in a fluid is equal to the weight of the fluid displaced by the object. The net force on the object is then the difference between its weight and the buoyant force, and its acceleration is given by Newton's second law (F = ma).

First, we need to calculate the weight of the object. The density of the object is 1.5 g/cm³, which is equivalent to 1500 kg/m3 (since 1 g/cm³ = 1000 kg/m³). The volume of the object is 1.0 cm³, which is equivalent to 0.000001 m³. Therefore, the weight of the object is:

w = m × g = (density × volume) × g = (1500 kg/m³ × 0.000001 m³) × 9.81 m/s² = 0.014715 N

where g is the acceleration due to gravity (9.81 m/s²).

Next, we need to calculate the weight of the fluid displaced by the object. At a depth of 1.6 m, the pressure of the fluid is:

p = density × g × h = 888.1 kg/m³ × 9.81 m/s² × 1.6 m = 13841.088 N/m²

where h is the depth of the object below the surface.

The area of the object is:

A = π × r² = π × (0.9 m)² = 2.54 m²

where r is the radius of the container (which is half of the diameter).

Therefore, the buoyant force on the object is:

Fb = p × A = 13841.088 N/m² × 2.54 m² = 35166.84 N

The net force on the object is:

Fnet = w - Fb = 0.014715 N - 35166.84 N = -35166.825 N

The negative sign indicates that the net force is upward, which means that the object will accelerate upward.

Finally, we can calculate the magnitude of the acceleration:

a = Fnet / m = Fnet / (density × volume) = -35166.825 N / (888.1 kg/m³ × 0.000001 m³) = -39.6 m/s²

Learn more about magnitude and direction at

https://brainly.com/question/29766788

#SPJ4

a 11 h inductor carries a steady current of 2.0 a. at what rate must the current be changed to produce a 60 v emf in the inductor?

Answers

The rate at which the current must be changed to produce a 60 v emf in the inductor should be -5.45A/s.

The rate at which the current needs to be changed in order to produce a 60V emf in the 11H inductor can be calculated using Faraday's law of electromagnetic induction.

According to this law, the induced emf is proportional to the rate of change of current in the inductor. Therefore, we can use the formula

E = -L (dI/dt),

where E is the induced emf, L is the inductance, and dI/dt is the rate of change of current.

In this case, we know that the inductor has an inductance of 11H and is carrying a steady current of 2.0A.

We need to find the rate at which the current must be changed to produce a 60V emf.

Rearranging the formula, we get

dI/dt = -E/L = -60V/11H = -5.45A/s.

Therefore, the current must be changed at a rate of -5.45A/s to produce a 60V emf in the 11H inductor.

For more such answers on Faraday's Law

https://brainly.com/question/17012638

#SPJ11

at the sea level the airplane can takeoff at the speed of 150mi/hr. what is the required takeoff speed at albuquerque

Answers

To determine the required takeoff speed at Albuquerque, we need to consider the difference in air density between sea level and the altitude of Albuquerque.

As altitude increases, air density decreases, which can have a significant effect on aircraft performance.

In particular, the reduced air density means that the airplane needs to achieve a higher ground speed in order to generate enough lift to take off.

To calculate the required takeoff speed at Albuquerque, we can use the following equation:

V2 = V1 x √(rho2/rho1)

where:

V1 = takeoff speed at sea level (given as 150 mph)

rho1 = air density at sea level (standard value of 1.225 kg/m^3)

rho2 = air density at Albuquerque (can be looked up or calculated using atmospheric models)

V2 = required takeoff speed at Albuquerque (what we want to find)

Let's assume that Albuquerque is at an altitude of 5,312 feet (the airport elevation).

Using atmospheric models or tables, we can find that the air density at this altitude is approximately 0.860 kg/m^3.

Now we can substitute the values into the equation:

V2 = 150 mph x √(0.860 kg/m^3 / 1.225 kg/m^3)

V2 = 150 mph x 0.806

V2 = 121 mph (rounded to the nearest whole number)

Therefore, the required takeoff speed at Albuquerque is approximately 121 mph. This is lower than the takeoff speed at sea level due to the reduced air density at higher altitudes.

To know more about speed visit link :

https://brainly.com/question/13780167

#SPJ11

A lizard accelerates from 2m/s west to 10.5m/s in 4 seconds. What is the Lizards average accelertion

Answers

Acceleration=change in velocity / time
(10.5-2)/4=2.125m/s2
Other Questions
explain the differences between the short mix technique, the improved mix technique, and the intensive mix technique. 4. Look at the artwork below. Identify the type ofartwork and the people that produced it, anddescribe its uses and important features. (8 points) a large sample of x-y data values are analyzed and reveal a correlation coefficient of-.88. which statement is correct? group of answer choices a weak negative relationship exists. the correlation is weak because r is less than -1. if r had been .88, the correlation would have been much stronger. there is no relation. a fairly strong negative linear relationship exists. * Archegonia _____.A) are the sites where male gametes are producedB) have the same function as sporangiaC) may contain sporophyte embryosD) make asexual reproductive structures if the binding energy per nucleon is large, does this make it harder or easier to strip off a nucleon from a nucleus? thomas buys a bond at a premium of 200 to yield 6% annually. the bond pays annual coupons and is redeemable for its par value of 1000. calculate the amount of interest in the first coupon. question 4 an unhappy systems administrator installed malware that attacked after a timed event, rather than when it was installed. what type of malware does this describe 19.Solve the problem.2Find the critical value XR corresponding to a sample size of 5 and a confidencelevel of 98%.(1 point)O11.14300.29713.27700.484 The Zephyr Corporation is contemplating a new investment to be financed 33 percent from debt. The firm could sell new $1,00 par value bonds at a net price of $945. The coupon interest rate is 12 percent, and the bonds would mature in 15 years. If the company is in a 34 percent tax bracket, what is the after-tax cost of capital to Zephyr for bonds? how did child charqcterize the essence of mussolini's fascist program? in child's view, how did the fascist state differ from the liberal state a true-breeding milk chocolate easter bunny is crossed with a true-breeding dark chocolate easter bunny. assuming dark chocolate is dominant over milk chocolate and the traits segregate according to mendelian genetics, which traits will the offspring express? (Preferred stockholder expected return) You own 100 shares of Budd Corporation preferred stock at a market price of $ 17 per share. Budd pays dividends of $1.50 . What is your expected rate of return? If you have a required rate of return of 7 percent, should you sell your shares or buy more of the stock? you are working in hyper-v manager on a system that hosts several windows server 2008 r2 virtual machines. you create snapshots of these virtual machines nightly as part of your disaster recovery plan. users are complaining that they can no longer access the virtual servers. in hyper-v manager, they are identified as being in a paused-critical state. what should you do? (select two. each answer is a part of the overall solution.) a medical researcher wants to estimate , the mean weight of babies born to women over the age of 40. the researcher chooses a random sample of 100 pregnant women who are over 40. using the mean birth weight of the 100 babies in the sample, the researcher calculates the 95% confidence interval for . with 95% confidence, the researcher estimates the mean birth weight of all babies born to women who are over the age of 40 to be between 2935 and 3135 grams. the researcher wants to maintain the 95% level of confidence but report a confidence interval with a smaller margin of error. what should she do? group of answer choices redo the study and choose a different sample of size 100. 1C. What do you do if you're collecting data and you're unable to survey everyone in a group because the group istoo large? Select sentence that correctly shows ownership or relationship Susan started her new job as an editorial assistant in prestigious media company in 2018. She negotiated on a wage contract where for next two years (till 2020), her salary was indexed to rise by 1% each year. In 2019, actual CPI inflation turned out to be 2%. This has negatively affected Susans purchasing power and she was not able to afford the same standard of living as before Use the image to determine the direction and angle of rotation.graph of triangle ABC in quadrant 4 and a second polygon A prime B prime C prime in quadrant 3 90 clockwise rotation 90 counterclockwise rotation 180 clockwise rotation 360 counterclockwise rotation video game consoles and video games are complementary products: the availability of one increases the value of the other. in the past the suppliers of consoles were able to appropriate most of the profits generated by video game systems because: a loop of area 0.08 m2 is rotating at constant angular speed. it rotates at 87 rev/s with the axis of rotation perpendicular to a 0.08 t magnetic field. if there are 1017 turns on the loop, what is the maximum voltage induced in it? answer in units of v.