A gas with a volume of 5.64 L at a pressure of 0.73 atm is allowed to expand until the pressure drops to 0.1 atm. Its new volume will be 7L.

Answers

Answer 1

The new volume of the gas should be 41.41 L when its pressure drops to 0.1 atm, not 7 L as stated in the original statement, This statement is incorrect.

What is new volume?

According to Boyle's Law, the pressure and volume of a gas are inversely proportional, meaning that as one increases, the other decreases, as long as the temperature and amount of gas remain constant. Therefore, if the pressure of a gas decreases, its volume should increase, and vice versa.

Using Boyle's Law, we can calculate the initial volume of the gas when its pressure drops to 0.1 atm:

P1V1 = P2V2

(0.73 atm)(5.64 L) = (0.1 atm)(V2)

V2 = (0.73 atm)(5.64 L) / (0.1 atm) = 41.41 L

Therefore, the new volume of the gas should be 41.41 L when its pressure drops to 0.1 atm, not 7 L as stated in the original statement.

What is Boyle's Law?

Boyle's Law is a gas law named after the Irish chemist Robert Boyle. It states that the pressure of a gas is inversely proportional to its volume, provided that the temperature and amount of gas remain constant. Mathematically, Boyle's Law can be expressed as:

P1V1 = P2V2

where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume, respectively. This relationship means that if the volume of a gas is reduced (at constant temperature and amount), the pressure will increase proportionally, and vice versa. Boyle's Law is often applied in situations where the pressure and volume of a gas need to be controlled, such as in the design of engines and pneumatic systems.

To know more about volume, visit:

https://brainly.com/question/29653688

#SPJ1


Related Questions

In a complete sentence, write down a method you could use to determine if an equation is written in the correct way and balanced

Answers

Option (C) is correct. One should count the atoms of each element on both sides of the chemical equation to make sure they are equal and decide whether the equation is balanced and appropriately constructed.

How should a chemical equation be written? What is it used for?

The number of moles of a substance created or consumed during the chemical reaction is indicated by the coefficients next to the entity symbols.

How will you determine whether your answer to the rational equation is accurate?

Verify each answer to verify sure the result does not result in the original equation's denominator being equal to zero. a denominator in the original equation can be made zero if a solution can be discovered.

To know more about chemical equation visit:-

https://brainly.com/question/30087623

#SPJ1

Question:

What is a method you could use to determine if an equation is written in the correct way and balanced?

One method to determine if an equation is written in the correct way and balanced is to check that the number and type of atoms are the same on both sides of the equation by using the Law of Conservation of Mass.

A respiratory pigment that requires a relatively low O2 partial pressure for loading has ______ affinity for O2. a) a low b) a high c) no d) a variable.

Answers

A respiratory pigment that requires a relatively low [tex]O_2[/tex] partial pressure for loading has a high affinity for [tex]O_2[/tex]. Thus, the correct answer is an option (a).

Since the respiratory pigment requires low partial pressure of the gas, it has more affinity for the gas. As when compared to other pigments, it will more easily load the gas.

Affinity is defined as the degree to which a substance tends to combine with another and in this case, it is used to describe the degree to which the gas tends to combine with a respiratory pigment.

Respiratory pigment such as Myoglobin has a higher affinity than Haemoglobin to load oxygen.

Learn more about Respiratory Pigments:

https://brainly.com/question/31467554

#SPJ4

nAt T = 1200º C the reaction: P.(g) + 2P2(8) has an equilibrium constant R, 0.612. Suppose the initial partial pressure of Pris 5.00 atm and that of P, is 2.00 atm. Calculate the re- action quotient, Q. and state whether the reaction proceeds to reactants or products.

Answers

Since Q (0) is less than the equilibrium constant R (0.612), the reaction will proceed in the forward direction, moving towards the formation of more products.

The reaction quotient, Q, is calculated using the formula Q = (PPr)^1 x (PP2)^2, where PPr and PP2 are the partial pressures of Pr and P2, respectively. Plugging in the given values, we get Q = (5.00)^1 x (2.00)^2 = 20.00 atm^2.

To determine the direction of the reaction, we compare the reaction quotient, Q, to the equilibrium constant, K. If Q < K, the reaction proceeds forward to products. If Q > K, the reaction proceeds backward to reactants. And if Q = K, the reaction is at equilibrium.

In this case, the equilibrium constant R = 0.612, which means the reaction strongly favors reactants. Since the reaction quotient Q is much larger than the equilibrium constant (Q > K), the reaction will proceed in the reverse direction towards reactants.

To answer your question, we'll first need to correct the given reaction. Assuming the correct reaction is P(g) + 2P₂(g) ⇌ P₃(g), we can proceed.

Given the initial partial pressures, P(P) = 5.00 atm and P(P₂) = 2.00 atm, and no P₃ is mentioned, so we assume P(P₃) = 0 atm initially.

To calculate the reaction quotient, Q, we'll use the expression: Q = [P₃]/([P] * [P₂]^2). Plugging in the initial values, we get:

Q = (0) / (5.00 * 2.00^2) = 0

Since Q (0) is less than the equilibrium constant R (0.612), the reaction will proceed in the forward direction, moving towards the formation of more products.

Visit here to learn more about  equilibrium : https://brainly.com/question/4289021
#SPJ11

To calculate the reaction quotient Q and determine whether the reaction proceeds to reactants or products, we can follow these steps:

1. Write down the balanced chemical equation:
[tex]P (g) + 2 P2 (g) ⇌ 3 P (g)[/tex]

2. Given: T = 1200ºC, K = 0.612, initial partial pressure of P is 5.00 atm, and initial partial pressure of P2 is 2.00 atm.

3. Write down the expression for the reaction quotient, Q:
[tex]Q = [P]^3 / ([P] * [P2]^2)[/tex]

4. Plug in the initial partial pressures:
[tex]Q = (5.00)^3 / (5.00 * (2.00)^2) = 125 / 20 = 6.25[/tex]

Now we can compare Q to the equilibrium constant, K, to determine whether the reaction proceeds to reactants or products.

Since Q > K (6.25 > 0.612), the reaction will proceed towards the reactants to reach equilibrium.

To know more about reaction quotient Q :

https://brainly.com/question/9024475

#SPJ11

ibuprofen has the following mass percent composition: c 75.69 % , h 8.80 % , o 15.51 % . what is the empirical formula of ibuprofen?

Answers

Rounding these values to the nearest whole number, we get the empirical formula of ibuprofen as C6H9O.

To determine the empirical formula of ibuprofen, we need to convert the mass percent composition into mole ratios. This can be done by assuming that we have 100 grams of ibuprofen, and calculating the number of moles of each element present in that sample.

Starting with carbon, we have 75.69 grams of carbon in our sample, which corresponds to 6.30 moles (using the atomic weight of carbon). Similarly, we have 8.80 grams of hydrogen, which corresponds to 8.74 moles, and 15.51 grams of oxygen, which corresponds to 0.97 moles.

To get the simplest whole number ratio of these elements, we divide each mole value by the smallest one (0.97):

- Carbon: 6.30 / 0.97 = 6.49
- Hydrogen: 8.74 / 0.97 = 9.00
- Oxygen: 0.97 / 0.97 = 1.00

This means that the molecular formula of ibuprofen could be a multiple of this empirical formula (e.g. C12H18O2), but we would need additional information (such as the molecular weight) to determine that.

To learn more about : ibuprofen

https://brainly.com/question/15179513

#SPJ11

if 10 grams of aluminum reacts with 4 grams of oxygen, what is the expected grams of product?

Answers

Expected grams of aluminum oxide product from the given masses of reactants are 18.93 g.

What is aluminum?

Aluminum is chemical element with symbol Al and atomic number is 13.

4Al + 3O₂ → 2Al₂O₃

10 g Al × 1 mol Al / 26.98 g Al = 0.371 mol Al

4 g O₂ × 1 mol O₂ / 32.00 g O₂ = 0.125 mol O₂

We determine the limiting reactant by comparing the mole ratios of aluminum and oxygen in the balanced equation and reactant that produces  smaller amount of product is limiting reactant. In this case, aluminum is the limiting reactant because it produces only 0.1855 moles of aluminum oxide, which is less than the 0.25 moles of aluminum oxide produced by the oxygen:

0.371 mol Al × 2 mol Al₂O₃ / 4 mol Al = 0.1855 mol Al₂O₃

0.125 mol O₂ × 2 mol Al₂O₃ / 3 mol O2 = 0.2083 mol Al₂O₃

0.1855 mol Al₂O₃ × 101.96 g/mol = 18.93 g Al₂O₃

Therefore, expected grams of aluminum oxide product from the given masses of reactants are 18.93 g.

To know more about aluminum, refer

https://brainly.com/question/27859211

#SPJ1

A chemical reaction has a Q10 of 3. Which of the following rates characterizes this reaction?
a. a rate of 6 at 20°C and 2 at 30°C
b. a rate of 6 at 30°C and 2 at 20°C
c. a rate of 9 at 20°C and 3 at 30°C
d. a rate of 9 at 40°C and 3 at 20°C
e. a rate of 12 at 10°C and 4 at 20°C

Answers

A chemical reaction has a Q10 of 3 option  c. a rate of 9 at 20°C and 3 at 30°C is the rates that characterizes this reaction

The Q10 value is a measure of how much the rate of a chemical reaction changes with a 10°C change in temperature. A Q10 of 3 indicates that the rate of the reaction will increase by a factor of 3 when the temperature is raised by 10°C.

Looking at the answer choices, we can see that option a and b have a Q10 value of 2, which is not the same as the given Q10 value of 3. Option e has a Q10 value of 4, which is also not the same.

Option d has a Q10 value of 3, but the rates given are at 20°C and 40°C, which is not a 10°C change in temperature.

Therefore, the only option that fits the given Q10 value and has rates that are 10°C apart is option c, which has a rate of 9 at 20°C and 3 at 30°C. Therefore, the answer is c.

To learn more about chemical reaction click here

brainly.com/question/29762834

#SPJ11

Option c states that the rate of the reaction is 9 at 20°C and 3 at 30°C. The ratio of rates between 20°C and 30°C is 9/3 = 3, which matches the Q10 value of 3.  

c. a rate of 9 at 20°C and 3 at 30°C

The Q10 value is a measure of the temperature sensitivity of a reaction, and it is defined as the factor by which the rate of a reaction changes for every 10-degree Celsius change in temperature. A Q10 value of 3 indicates that the rate of the reaction increases by a factor of 3 for every 10-degree Celsius increase in temperature.

This means that the rate of the chemical  reaction is consistent with the temperature sensitivity indicated by the given Q10 value, making option c the correct answer.

Learn more about “ chemical reaction “ visit here;

https://brainly.com/question/29039149

#SPJ4

What is the difference between a bacteria cell and a
human nervous cell?

Answers

most bacteria have flagellum, also nerve cells are larger

which of the following aqueous solutions has the highest molar concentration of na (aq)?(assume each compound is fully dissolved in water.)group of answer choices3.0m nacl (sodium chloride)3.0m nac2h3o2 (sodium acetate)1.5m na2so4 (sodium sulfate)1.0m na3po4 (sodium phosphate)all of these solutions have the same concentration of na (aq).

Answers

All of these solutions have the same concentration of Na⁺ (aq) at 3.0 moles for molar concentration.

The highest molar concentration of Na⁺ (aq) can be determined by calculating the moles of Na⁺ ions in each solution.

1. Identify the number of sodium ions (Na⁺) in each compound:
  - NaCl: 1 Na⁺ ion
  - NaC₂H₃O₂: 1 Na⁺ ion
  - Na₂SO₄: 2 Na⁺ ions
  - Na₃PO₄: 3 Na⁺ ions

2. Calculate the moles of Na⁺ ions in each aqueous solution:
  - 3.0 M NaCl: 3.0 M * 1 Na⁺ ion = 3.0 moles of Na⁺ ions
  - 3.0 M NaC₂H₃O₂: 3.0 M * 1 Na⁺ ion = 3.0 moles of Na⁺ ions
  - 1.5 M Na₂SO₄: 1.5 M * 2 Na⁺ ions = 3.0 moles of Na⁺ ions
  - 1.0 M Na₃PO₄: 1.0 M * 3 Na⁺ ions = 3.0 moles of Na⁺ ions

3. Compare the moles of Na⁺ ions in each solution to determine the highest concentration.

All of these solutions have the same concentration of Na⁺ (aq) at 3.0 moles.

Learn more about molar concentration here:

https://brainly.com/question/21841645

#SPJ11

Though all the solutions have the same concentration of Na+ (aq), an aqueous solution of NaCl with 3.0 M has the highest molar concentration among the given solutions.

Explanation: To determine the molar concentration of Na+ (aq) in each solution, we need to consider the stoichiometry of the dissociation of each compound in water.


For sodium chloride (NaCl), it dissociates completely into Na+ and Cl- ions, so the molar concentration of Na+ (aq) is equal to the molar concentration of NaCl. Therefore, the molar concentration of Na+ (aq) in 3.0M NaCl is 3.0M.
For sodium acetate (NaC2H3O2), it dissociates into Na+ and C2H3O2- ions, but in a 1:1 ratio. So, the molar concentration of Na+ (aq) is half of the molar concentration of NaC2H3O2. Therefore, the molar concentration of Na+ (aq) in 3.0M NaC2H3O2 is 1.5M.
For sodium sulfate (Na2SO4), it dissociates into 2 Na+ ions and 1 SO4 2- ion. So, the molar concentration of Na+ (aq) is twice the molar concentration of Na2SO4. Therefore, the molar concentration of Na+ (aq) in 1.5M Na2SO4 is 3.0M.
For sodium phosphate (Na3PO4), it dissociates into 3 Na+ ions and 1 PO4 3- ion. So, the molar concentration of Na+ (aq) is three times the molar concentration of Na3PO4. Therefore, the molar concentration of Na+ (aq) in 1.0M Na3PO4 is 3.0M.

Therefore, the solution with the highest molar concentration of Na+ (aq) is 3.0M NaCl (sodium chloride).

To know more about the molar concentration of solutions:

brainly.com/question/8732513

#SPJ11

in an endothermic reaction, the total energy at the beginning of the reaction is group of answer choices less than the total energy at the end of the reaction. greater than the total energy at the end of the reaction. equal to the total energy at the end of the reaction. none of the above

Answers

The correct option is

In an endothermic response(reaction), the whole vitality(total energy) at the beginning of the response is more noteworthy than the full vitality at the conclusion of the response 

because endothermic responses retain warmth from the environment, which implies that the vitality of the framework increments.

An endothermic response may be a chemical response that retains warmth from the environment, which implies that the vitality of the framework increments.

This increment in vitality is utilized to break the bonds between the particles or atoms within the reactants, and the items are shaped from the modification of these iotas or atoms into unused bonds.

As a result, the whole vitality of the framework at the conclusion of the response is more noteworthy than the full vitality at the start of the response. This increment in vitality is ordinarily watched as an increment within the temperature of the framework or its environment. 

In an endothermic response, the whole vitality at the beginning of the response is less than the overall vitality at the end of the response

.

Usually, endothermic responses retain warmth from the environment, which implies that the vitality of the framework increments.

As a result, the entire vitality of the framework at the conclusion of the response is greater than the full energy at the start of the response. Subsequently,

The proper reply is "In an endothermic response(reaction), the whole vitality(total energy) at the beginning of the response is more noteworthy than the full vitality at the conclusion of the response ".

To know more about endothermic reactions refer to this :

https://brainly.com/question/1160007

#SPJ4

A solution has a concentration of 3.0 M and a volume of 0.20 L. If the solution is diluted to 4.0 L, what is the new concentration, in molarity?
Your answer should have two significant figures.

Answers

Answer:

concentration2 = 0.15 M

Explanation:

The number of moles of solute in the original solution can be calculated as:

moles = concentration × volume
moles = 3.0 M × 0.20 L
moles = 0.60 mol

When this solution is diluted to a final volume of 4.0 L, the number of moles of solute remains constant. This can be expressed using the equation:

moles1 = moles2

where moles1 is the initial number of moles and moles2 is the final number of moles.

Thus,

moles1 = moles2
0.60 mol = concentration2 × 4.0 L

Solving for concentration2 gives:

concentration2 = moles2 / volume2
concentration2 = 0.60 mol / 4.0 L
concentration2 = 0.15 M

Therefore, the new concentration of the diluted solution, to two significant figures, is 0.15 M.

All right! And when that

impetus reduces,

motion also reduces.

When the impetus is

removed, the object

stops moving!

Answers

When the impetus driving an object decreases, its motion also decreases. And when the impetus is completely removed, the object stops moving.

When the impetus driving an object decreases, its motion also decreases. The term "impetus" in this context refers to the force that sets an object in motion or maintains its motion. When this force decreases, the object experiences a decrease in its velocity or acceleration. This is due to the fact that the force acting on the object is directly proportional to the rate of change of its motion, as described by Newton's second law of motion.

If the impetus is completely removed, the object stops moving altogether. This is because there is no longer any force acting on the object to maintain its motion, and hence it decelerates and eventually comes to rest. This can be seen in everyday scenarios, such as a ball rolling to a stop when it reaches the bottom of a hill or a car slowing down and stopping when the engine is turned off.

To know more about impetus, here

brainly.com/question/11112379

#SPJ4

--The complete question is, What happens to the motion of an object when the impetus driving it decreases, and what happens when the impetus is completely removed?--

At 215°C a gas has a volume of 18.00 L. What is the volume of this gas at 23.0°C?

Answers

Answer:

using

V1/T1=V2/T2

make V2 subject of formula

V2= V1T2/T1

V2= 1.9L

In the SN1 reaction of 2-chloro-2-methylpropane with water at different temperatures, the following reaction rate constants were obtained: 17°C, 0. 0052 s-1; 30°C, 0. 0202 s-1; 42°C, 0. 0608 s-1. Calculate the half-life of this reaction at 36°C. In seconds

Answers

The half-life of the reaction at 36°C is 19.2 seconds.

We can use the following equation to determine the  half-life of the reaction at 36°C;

[tex]t_{1/2}[/tex] = ln(2) / k

where [tex]t_{1/2}[/tex] is the half-life of the reaction and k is the reaction rate constant at the given temperature.

First, we need to find the reaction rate constant at 36°C. We can use the two rate constants given for 30°C and 42°C and the Arrhenius equation;

ln(k₂/k₁) = (-Ea/R) × (1/T₂ - 1/T₁)

where k₁ and k₂ are the rate constants at temperatures T₁ and T₂, Ea will be the activation energy, R is gas constant, and T is temperature in Kelvin.

We can choose 30°C (303 K) as T₁ and 42°C (315 K) as T₂, and solve for ln(k₂/k₁) to get;

ln(k₂/k₁) = (-Ea/R) × (1/T₂ - 1/T₁)

ln(0.0608/0.0202) = (-Ea/8.314 J/(mol×K)) × (1/315 K - 1/303 K)

Ea ≈ 52.7 kJ/mol

Next, we can use the Arrhenius equation to find the rate constant at 36°C (309 K);

k = A × exp(-Ea/RT)

k = 0.0202 s⁻¹ × exp(-52.7 kJ/mol / (8.314 J/(mol×K) × 309 K))

k ≈ 0.036 s⁻¹

Finally, we can use the half-life equation with this rate constant to find the half-life at 36°C;

[tex]t_{1/2}[/tex]= ln(2) / k

[tex]t_{1/2}[/tex] = ln(2) / 0.036 s⁻¹

[tex]t_{1/2}[/tex] ≈ 19.2 s

To know more about half-life here

https://brainly.com/question/24710827

#SPJ4

At 20°C a gas has a volume of 16.00 L. What will the volume be at 175.0 °C?

Answers

The volume of the gas at 175.0 °C will be 24.50 Litres

What will the volume of the gas be at 175.0 °C?

Charles's law states that "the volume occupied by a definite quantity of gas is directly proportional to its absolute temperature.

It is expressed as;

V₁/T₁ = V₂/T₂

Where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature.

To use this formula, we need to convert the temperatures to Kelvin by adding 273.15 to them:

T1 = 20°C + 273.15 = 293.15 K

T2 = 175.0°C + 273.15 = 448.15 K

Substituting the values into the formula, we get:

16.00 L / 293.15 K = V2 / 448.15 K

Solving for V2, we get:

V2 = 24.50 L

Therefore, the final volume is 24.50 L.

Learn more about Charles's law here: https://brainly.com/question/23122443

#SPJ1

a gaseous product has a mass of 2.34 g and occupies a volume of 0.854 l. the temperature in the laboratory is 302 k, and the air pressure is 1.04 atm. calculate the molar mass of the gas. (3 points) 44.0 g/mol 86.9 g/mol 65.3 g/mol 22.4 g/mol

Answers

The molar mass of the gas is approximately 65.3 g/mol. The closest answer choice is 65.3 g/mol, so that is the correct answer.

To calculate the molar mass of the gas, we can use the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, we need to calculate the number of moles of the gas using the given information:

n = (PV) / (RT)

n = (1.04 atm * 0.854 L) / (0.0821 L·atm/(mol·K) * 302 K)

n = 0.0361 mol

Next, we can calculate the molar mass of the gas by dividing its mass by the number of moles:

molar mass = mass / number of moles

molar mass = 2.34 g / 0.0361 mol

molar mass = 64.9 g/mol

Therefore, the molar mass of the gas is approximately 65.3 g/mol. The closest answer choice is 65.3 g/mol, so that is the correct answer.

Learn more about molar mass,

https://brainly.com/question/22997914

#SPJ4

if you are given three different capacitors C1, C2, and C3, how many different combiations of capacitance can you produce, using all capacitors in your circuits?

Answers

Assuming that the capacitors are distinct and not identical, there are eight possible combinations of capacitance that can be produced using all three capacitors in a circuit.

This is because each capacitor can either be included or excluded from the circuit, resulting in two possibilities for each capacitor. With three capacitors, there are 2x2x2 = 8 possible combinations.

For example, if C1 = 1μF, C2 = 2μF, and C3 = 3μF, the eight possible combinations would be 1μF, 2μF, 3μF, 1+2=3μF, 1+3=4μF, 2+3=5μF, 1+2+3=6μF, and no capacitor connected.

To know more about capacitance, visit:

https://brainly.com/question/28445252

#SPJ1

the tollen's test is the reaction of aldehydes with silver(i) ions in basic solution to form silver metal and a carboxylate. reaction of 2 silver 1 ions with a generic aldehyde and 3 hydroxide ions to form 2 silver atoms, a generic carboxylate, and 2 water molecules. which species is being oxidized in the reaction? aldehyde which species is being reduced in the reaction? silver(i) ion which species is the visual indicator of a positive test? silver metal

Answers

In Tollen's test, the reaction of aldehydes with silver(i) ions in basic solution results in the formation of silver metal and carboxylate.

Specifically, the reaction involves the oxidation of the aldehyde and the reduction of the silver(i) ion. This can be seen in the reaction of 2 silver 1 ions with a generic aldehyde and 3 hydroxide ions, which produces 2 silver atoms, a generic carboxylate, and 2 water molecules. The species being oxidized in the reaction is the aldehyde, while the species being reduced is the silver(i) ion. The visual indicator of a positive test is the formation of silver metal, which indicates the presence of an aldehyde in the sample.

To learn more about Tollen's test, refer:-

https://brainly.com/question/30892406

#SPJ11

In this Tollen's test, the species being oxidized is the aldehyde (RCHO), while the species being reduced is the silver(I) ion (Ag+). The visual indicator of a positive test is the formation of silver metal (Ag), which appears as a shiny silver mirror on the inner surface of the test tube.

What is Tollen's Test?

In the Tollen's test, the reaction involves aldehydes reacting with silver(I) ions in a basic solution to form silver metal and a carboxylate. The generic equation for this reaction is:

2 Ag+ + RCHO + 3 OH- → 2 Ag + RCOO- + 2 H2O

In the Tollen's test, aldehydes react with silver(i) ions in basic solution to form silver metal and a carboxylate. The reaction involves the oxidation of the aldehyde and reduction of the silver(i) ion. Specifically, in the presence of 2 silver(i) ions and 3 hydroxide ions, a generic aldehyde is oxidized to form a generic carboxylate and 2 water molecules, while the silver(i) ions are reduced to form 2 silver atoms. The visual indicator of a positive test is the formation of silver metal, which indicates the presence of an aldehyde. Therefore, in this reaction, the aldehyde species is being oxidized.

To know more about Tollen's Test:

https://brainly.com/question/13833774

#SPJ11

you are preparing a standard aqueous solution for analysis by measuring a property of the solution that is directly related to a solution's concentration. unknown to you, the volumetric flask that you are using to make the solution has some residual water in it from the last time it was used. what effect will this have on the measured property of this solution?

Answers

Fill the volumetric flask approximately two thirds full and mix. Carefully fill the flask to the mark etched on the neck of the flask. Use a wash bottle or medication dropper if necessary. Mix the solution wholly by using stoppering the flask securely and inverting it ten to twelve times.

Why volumetric flask is more appropriate to be used in the preparation of the standard solution?

A volumetric flask is used when it is imperative to be aware of each precisely and accurately the quantity of the solution that is being prepared. Like volumetric pipets, volumetric flasks come in distinctive sizes, depending on the extent of the answer being prepared.

Firmly stopper the flask and invert multiple times (&gt; 10) to make certain the solution is nicely mixed and homogeneous. When working with a solute that releases warmth or gas all through dissolution, you ought to additionally pause and pull out the stopper once or twice. Use flasks for preparing options only.

Learn more about volumetric flask here:

https://brainly.com/question/2088214#SPJ1

which compounds used in this experiment should one be careful with when using a hot plate? 4-methylphenol and diethyl ether 2-methyl-2-propanol and sulfuric acid diethyl ether and tert-butanol 4-methylphenol and glacial acetic acid

Answers

One should be careful with diethyl ether and tert-butanol when using a hot plate as they have low flash points and can easily ignite.

It is important to take proper precautions such as using a well-ventilated area and avoiding any sources of ignition. Sulfuric acid and glacial acetic acid are also potentially dangerous as they are corrosive and can cause severe burns if they come into contact with skin. Propanol and butanol have higher flash points and are generally safer to use on a hot plate.


When using a hot plate in an experiment, one should be particularly careful with diethyl ether and tert-butanol. Diethyl ether is highly flammable and volatile, while tert-butanol (2-methyl-2-propanol) can generate flammable vapors when heated. These compounds pose a risk of fire or explosion if not handled properly.

To know more about acid click here

brainly.com/question/30686324

#SPJ11

The last 4 miles in the activity series of metals are commonly referred to as the "coinage medals". Why would these metals be chosen over more active metals for the use in coins? Why do you think some more active metals, such as zinc or nickel, or sometimes used in coins?

Answers

Coinage metals, which typically include copper, silver, and gold, are chosen over more active metals for use in coins because they are less reactive and more resistant to corrosion.

This ensures durability and preserves the appearance of the coins. Some more active metals like zinc or nickel are sometimes used in coins due to their lower cost and availability, while still maintaining adequate resistance to corrosion and wear for everyday use.

The reason why the last 4 miles in the activity series of metals, which are gold, silver, platinum, and palladium, are commonly referred to as the "coinage medals" is because they are highly resistant to corrosion and have a low reactivity towards other chemicals, making them ideal for use in coins. These metals are also very rare and valuable, which adds to their appeal as a currency.

More active metals such as zinc or nickel are sometimes used in coins because they are more abundant and less expensive than the "coinage metals". However, these metals tend to be more reactive and therefore more prone to corrosion and other chemical reactions, which can affect the appearance and value of the coins over time. Additionally, the use of these metals in coins is often limited to lower denominations or commemorative coins, rather than as a standard currency.

Visit here to learn more about  Coinage metals : https://brainly.com/question/6923524
#SPJ11

The "coinage metals" are typically gold, silver, copper, and platinum, which are the last 4 metals in the activity series. These metals are chosen over more active metals for use in coins because they are relatively unreactive and do not corrode easily, making them ideal for coins that need to be durable and long-lasting. Additionally, these metals have been historically valued and used as currency, making them culturally significant as well.

However, some more active metals such as zinc or nickel are sometimes used in coins because they are cheaper and more readily available than the coinage metals. These metals may be used as an alloy with the coinage metals to make coins more affordable, or they may be used as a substitute for the more expensive metals in lower denomination coins. However, these metals are not as durable as the coinage metals and may corrode more easily, leading to shorter lifespans for the coins.

To know more about "coinage metals":

https://brainly.com/question/6955271

#SPJ11

In what way was the reaction of the splint and CO2 different from the reaction of the H2 to the flaming splint

Answers

Explain to the kids that since there is essentially no —which is required for fire—if the bag contains only pure carbon dioxide, the splint would burn out right away.

What occurs when a burning splint is placed in hydrogen?

H2 - Hydrogen Pure hydrogen gas will burst into flames when a burning splint is added to it, making a popping sound. Oxygen (O2) A smouldering splint will rekindle when exposed to a sample of pure oxygen gas.

The flame goes out as a result of carbon dioxide replacing the oxygen it requires to burn (the effect). A popping sound is produced when a flame is near hydrogen because of how the gas burns.

learn more about flaming splint

https://brainly.com/question/30124568

#SPJ1

the shattered glass case at the scene of a jewelry store robbery was determined to be made of potash borosilicate glass, which has a density of 2.16 g/ml. a 2.573 g glass fragment was recovered from a suspect's clothing. when the fragment was placed into a graduated cylinder filled with water, 1.14 ml of the water was displaced. calculate the density of the glass fragment.

Answers

The density of the glass fragment is approximately 2.26 g/ml

What is the density of the fragment?

To calculate the density of the glass fragment, we can use the formula:

Density = Mass / Volume

First, let's calculate the volume of the glass fragment using the displacement method. The volume of water displaced when the glass fragment was submerged in the graduated cylinder is given as 1.14 ml.

So, the volume of the glass fragment is 1.14 ml.

Next, we can calculate the density of the glass fragment by dividing the mass of the glass fragment by its volume:

Density = Mass / Volume = 2.573 g / 1.14 ml

Density = 2.573 g / 1.14 ml ≈ 2.26 g/ml

Learn more about density here: https://brainly.com/question/6838128

#SPJ1

how many grams of n2 are required to completely react with 3.03 grams of h2 for the following balanced chemical equation? A. 1.00 B. 6.00 C. 14.0 D. 28.0

Answers

The grams of N2 are required to completely react with 3.03 grams of H2 for the following balanced chemical equation is 14 g.

We may calculate the number of moles of H2 that will be used by dividing the amount of H2 that will be utilised by its molar mass. We may multiply that number by the molar mass of N2 to get how many grammes we should use. We can divide that mole quantity by 3 to determine how many moles of N2 the reaction will consume.

In the reaction 1 mole of N2 react with  3 mole of H2 and give 2 mole of NH3

mass of H2 = 3.03g

No of moles of H2 = 3.03g/2 gmol-1

         = 1.51 mole

1.51 mole of H2 require N2 = (1/3)× 1.51 moles  

        = 0.50 mole N2

molar mass of N2  =28g/mol

Mass of N2 require   = 0.50mole ×28g/mol

    = 14g

Mass of N2 require = 14g.

Learn more about Number of grams:

https://brainly.com/question/28902645

#SPJ4

The answer is C. 14.0 grams of N2 are required to completely react with 3.03 grams of H2.

The balanced chemical equation is:

N2 + 3H2 -> 2NH3

From the equation, we can see that 1 mole of N2 reacts with 3 moles of H2 to produce 2 moles of NH3.

To find out how many grams of N2 are required to react with 3.03 grams of H2, we first need to convert 3.03 grams of H2 to moles:

moles of H2 = mass of H2 / molar mass of H2
moles of H2 = 3.03 / 2.016
moles of H2 = 1.505

Now, we can use the mole ratio from the balanced equation to find out how many moles of N2 are required to react with 1.505 moles of H2:

moles of N2 = (1.505 mol H2) / (3 mol H2/1 mol N2)
moles of N2 = 0.5017

Finally, we can convert moles of N2 to grams of N2:

mass of N2 = moles of N2 x molar mass of N2
mass of N2 = 0.5017 x 28.02
mass of N2 = 14.04

To learn more about balanced chemical equation click here

brainly.com/question/28294176

#SPJ11

the following thermochemical equation is for the reaction of n2 with h2 to form nh3. how many grams of n2 would have to react to produce 31.5 kj of energy?

Answers

The grams of N₂ would have to react to produce 31.5 kJ of the energy is 84 g.

The chemical equation is as :

N₂ + 3H₂   --->     2NH₃       ΔH = -96 kJ

The energy produces = 31.5 kJ

We have multiplied the factor so that the value of the enthalpy has also been multiplied.

The factor = 96 / 31.5 = 3

Thus, the balanced chemical equation is :

3N₂ + 9H₂   --->   6NH₃  

The moles of N₂ = 3 mol

The mass of the N₂ = moles × molar mass

The mass of the N₂ = 3 mol × 28 g/mol

The mass of the N₂ = 84 g

The amount of the N₂ would have to react to produce the 31.5 kJ of the energy is 84 g.

To learn more about energy here

https://brainly.com/question/14290716

#SPJ4

This question is incomplete, the complete question is :

The following thermochemical equation is for the reaction of n2 with h2 to form nh3. how many grams of n2 would have to react to produce 31.5 kj of energy?

N₂ + 3H₂   --->     2NH₃      ΔH = -96 kJ

if a solution originally 0.532 m in acid ha is found to have a hydronium concentration of 0.112 m at equilibrium, what is the percent ionization of the acid?

Answers

To find the percent ionization of the acid, we need to first calculate the initial concentration of the acid (HA) before it dissociates.

Since the solution is originally 0.532 M in acid (HA), we can assume that the initial concentration of HA is also 0.532 M.

Next, we need to calculate the concentration of the conjugate base (A-) at equilibrium. We can use the equation for the dissociation of an acid:
HA + H2O ⇌ H3O+ + A-

We know that the hydronium concentration at equilibrium is 0.112 M, so the concentration of the conjugate base is also 0.112 M.

To calculate the percent ionization of the acid, we use the equation:
% ionization = (concentration of dissociated acid / initial concentration of acid) x 100

We can find the concentration of dissociated acid (H3O+) by subtracting the concentration of the conjugate base (A-) from the hydronium concentration:


[H3O+] = 0.112 M - 0 M = 0.112 M

Plugging in the values, we get:
% ionization = (0.112 M / 0.532 M) x 100 = 21.05%

Therefore, the percent ionization of the acid is 21.05%.

To know more about percent ionization :

https://brainly.com/question/1619653

#SPJ11

The percent of ionization of an acid in solution of 0.532 M in acid HA i and have a hydronium concentration of 0.112 M is equals to the 21.1%.

The ionization of acids results hydrogen ions, thus, that's why compounds act as proton donors.

Molarity of solution = 0.532 M

At Equilibrium, hydronium concentration = 0.112 M

As we know, concentration is defined as the number of moles of substance in a litre of solution, that most of time concentration is replaced by molarity. So, concentration of acid solution, [ H A] = 0.532 M

Chemical reaction, [tex]HA (aq) + H_2O -> H_3O^{ +}+A^{-}[/tex]

percent of ionization of the acid =

[tex] \frac{ [ H_3O^{+}] }{ [ HA]} × 100 [/tex]

= (0.112/0.532) × 100

= 21.1%

Hence, required value is 21.1%.

For more information about percent of ionization, visit :

https://brainly.com/question/14225136

#SPJ4

question 6 how do electrons in an atom change energy? electrons can only gain energy by leaving the atom (creating an ion). electrons move between discrete energy levels, or escape the atom if given enough energy. electrons can have any energy below the ionization energy within the atom, or escape if given enough energy. electrons can have any energy within the atom, and cannot be given enough energy to cause them to escape the atom. electrons move between discrete energy levels within the atom, and cannot accept an amount of energy that causes them to escape the atom.

Answers

The  electrons cannot have any arbitrary energy within the atom, and they can be given enough energy to escape the atom, forming ions.

Electrons in an atom change energy by moving between discrete energy levels, which are quantized states within the atom. These energy levels are determined by the electron's orbitals and the principal quantum number.

Electrons can gain or lose energy through processes like absorption or emission of photons, respectively. When an electron gains enough energy, it can jump to a higher energy level, or

even escape the atom, resulting in ionization. Conversely, when an electron loses energy, it transitions to a lower energy level, emitting a photon in the process.

To learn more about : electrons

https://brainly.com/question/26084288

#SPJ11

The breakdown of a certain pollutant X in sunlight is known to follow first-order kinetics. An atmospheric scientist studying the process fills a 20. 0Lreaction flask with a sample of urban air and finds that the partial pressure of X in the flask decreases from 0. 473atm to 0. 376atm over 5. 6hours.


Calculate the initial rate of decomposition of X, that is, the rate at which Xwas disappearing at the start of the experiment.


Round your answer to 2 significant digits

Answers

The initial rate of decomposition of X is 0.0013 M/h.

The first-order rate law is given as:

Rate = k [X]

Where, k = rate constant

[X] = concentration of X

Since the partial pressure of X is given in the problem, we need to convert it to concentration using the ideal gas law:

PV = nRT

where:

P = partial pressure of X = 0.473 atm

V = volume of the flask = 20.0 L

n = number of moles of X

R = ideal gas constant = 0.08206 L atm K^-1 mol^-1

T = temperature of the flask (assumed constant) = 298 K

Solving for n,

n = PV/RT = (0.473 atm)(20.0 L)/(0.08206 L atm K^-1 mol^-1)(298 K) = 0.952 mol X

At t = 0, the concentration of X is [X]_0 = n/V = 0.952 mol/20.0 L = 0.0476 M.

Using the given data, we can calculate the rate constant (k) as follows:

ln([X]_0/[X]) = kt

where:

t = time = 5.6 hours

Substituting the given values,

ln(0.0476/0.0376) = k(5.6 hours)

Solving for k, we get:

k = (ln(0.0476/0.0376))/5.6 hours = 0.0263 h^-1

The initial rate of decomposition of X is given by:

Rate = k[X]_0 = (0.0263 h^-1)(0.0476 M) = 0.00125 M/h

Rounding off to 2 significant digits,

Initial rate of decomposition of X = 0.0013 M/h.

To know more about decomposition, here

brainly.com/question/14057429

#SPJ4

100 POINTS - A sample of crushed rock is found to have 4. 81 x10^21 atoms of gold, how many moles of gold are present in this sample? SHOW WORK INCLUDING FORMULA : THANK YOU

Answers

There are 0.00799 moles of gold present in the sample of crushed rock.

The formula to convert the number of atoms of an element to moles is:

moles = number of atoms / Avogadro's number

where Avogadro's number is approximately 6.022 x 10^23.

Using the given information, we can calculate the number of moles of gold present in the sample:

moles of gold = 4.81 x 10^21 atoms / 6.022 x 10^23 atoms/mol

moles of gold = 0.00799 mol

Note: The answer has been rounded to five significant digits in accordance with the significant figures of the given number of atoms.

To know more about atoms, here

brainly.com/question/30898688

#SPJ4

when is the residue removal log used? select the correct response. every time you rinse or air dry to remove residue from equipment before using it with organics whenever unloading a chlorine dishwasher at least once per shift

Answers

The residue removal log is used every time you rinse or air dry to remove residue from equipment before using it with organics.


The residue removal log is used whenever unloading a chlorine dishwasher, as it helps track the process of ensuring that equipment is free of residue before using it with organics.

Removal of logging residue negatively affected tree diameter and height, but had no significant effect on the basal area of the subsequent stand (in the mid-term). On the other hand, different methods of mechanical site preparation (bedding, plowing furrows, and trenching) had no effect on tree growth 1 year after planting, but had a significant effect on tree diameter, tree height, and basal area in the mid-term. Bedding treatments could have a significant positive impact on the productivity of the subsequent Scots pine stands, even when planted on sandy, free-draining soils.

Visit here to learn more about  soils : https://brainly.com/question/23813511
#SPJ11

Calculate the freezing point and the boiling point of each of the following aqueous solutions. (Assume complete dissociation. Assume that water freezes at 0.00°C and boils at 1.86°C 100.000°C. K = 0.51°C Kb = molal molal a. 0.060 m MgCl2 T = °C T = °C b. 0.060 m FeCl3 T = °C To = °C

Answers

The freezing and boiling points of 0.060 m [tex]MgCl_2[/tex] are -0.33°C and 100.09 °C. 0.060 m  [tex]FeCl_3[/tex] has the following freezing and boiling points of -0.44°C and 100.12 °C respectively.

Depression in the freezing point and elevation in the boiling point are colligative properties. Colligative properties refer to the properties that are dependent on the concentration of solute in the solution.

Depression in the freezing point is calculated as ΔT = [tex]ik_fm[/tex]

where ΔT is depression in the freezing point

i is the dissociation factor

[tex]k_f[/tex]  is the freezing depression factor = 1.86°C kg/mol

m is the molality of the solution

So, depression in 0.060 m [tex]MgCl_2[/tex] is 3*1.86*0.06

( it has 3 as a dissociation factor as it breaks into 1 [tex]Mg^{2+[/tex] and 2 [tex]Cl^-[/tex] ions)

0 - freezing point = 0.33

freezing point = -0.33°C

So, depression in 0.060 m [tex]FeCl_3[/tex] is 4*1.86*0.06

( it has 4 as a dissociation factor as it breaks into 1 [tex]Fe^{3+[/tex] and 3 [tex]Cl^-[/tex] ions)

0 - freezing point = 0.44

freezing point = -0.44°C

Elevation in boiling point is calculated as ΔT = [tex]ik_bm[/tex]

where ΔT is Elevation in boiling point

i is the dissociation factor

[tex]k_b[/tex]  is the boiling elevation factor = 0.51°C kg/mol

m is the molality of the solution

So, elevation in 0.060 m [tex]MgCl_2[/tex] is 3*0.51*0.06

( it has 3 as a dissociation factor as it breaks into 1 [tex]Mg^{2+[/tex] and 2 [tex]Cl^-[/tex] ions)

boiling point - 100 = 0.09

boiling point = 100.09 °C

So, elevation in 0.060 m [tex]FeCl_3[/tex] is 4*0.051*0.06

( it has 4 as a dissociation factor as it breaks into 1 [tex]Fe^{3+[/tex] and 3 [tex]Cl^-[/tex] ions)

boiling point - 100 = 0.12

boiling point = 100.12 °C

Learn more about Colligative Properties:

https://brainly.com/question/30575192

#SPJ4

Other Questions
modern central processing units and bus thypes plus fiber optioc networking equipment work at what signal speed On April 1st last year, Company S had assets of 79.0 million and liabilities of 27.1 million. In the year ended March 31st this year, Company S made a profit of 12.3 million before tax, of which 2.3 million is payable in tax and 3.3 million has been distributed as a dividend. No further dividends have been announced. Company S has 300 million ordinary shares in issue, each with a nominal value of 10p of which 200 million are listed on the London Stock Exchange. On April 1st last year, the market price of each of these shares was 165.56p. On March 31st this year it was 140.25p. None of Company S's assets were revalued during the year. Company S did not acquire or sell any other companies, did not issue any further shares or bonds and did not redeem any shares or bonds. There were no changes in reserves other than those stated above. How much was the book value of the shareholders' equity in Company S at March 31st this year, in millions of ? Give your answer to 1 decimal place in million, without commas. For example, for 33.762 million enter 33.76 Answer: a condition in which something is learned but is not manifested as a behavioral change until sometime in the future is called QUESTION 5 Rocket corp has 100 bonds outstanding. The bonds are annual coupon bonds with a face value of $1000, a coupon rate of 6.4%, and 11 years until the bond matures. If the YTM of the bonds is 7.5%, what is the total market value of the bonds for Rocket corp? Sales promotion aimed at intermediaries, often emphasizing price reduction, is called ______ promotion. a. Private b. Trade c. Supplier d. Channel Interpret the probability. In 100 trials of this experiment, it is expected about (Round to the nearest whole number as needed.) to result in exactly 15 flights being on time A project has the following cash flows :Year Cash Flows0 $12,000 1 5,410 2 7,810 3 5,200 4 1,540 Assuming the appropriate interest rate is 10 percent, what is the MIRR for this project using the discounting approach?19.21%15.23%13.96%11.63%17.77% if nominal gdp in 2010 is greater than real gdp in 2011 (using 2010 prices), then Kiran swims z laps in the pool. Clare swims 18 laps, which is 9/5times as many laps as Kiran. How many laps did Kiran swim?Equation: Solution: z= if a country is facing an economic downturn, then how will an appropriate fiscal policy affect interest rates and the value of the country's currency? after acclimatizing to high altitude for several days, humans produce more 2,3 dpg. how does this help our bodies restore homeostasis? Which of the following reasons best explains why the Capitol holds the reaping and the Hunger Games every year?A. It's a way for the Capitol to show off its power.B. It helps the Capitol to keep track of the population in each of the districts.C. Neither A nor B.D. Both A and B. You are in charge of planning a concert for Beyonc at NRGstadium. You need to pay Beyonc $2 million for the show, $50,000for the technical crew, $50,000 to the back up dancers, and$200,000 to r ent the stadium. You know you can sell tickets for $200 each. What is the breakeven number of tickets you must sell?A) 10,000B) 11,500C) 12,500D) 13,000 you roll a 6-sided dice. what is the probability that you rolled a 5, given that the number rolled was greater than 3? dollar amounts stated are in thousands. a. compute trend percentages for the above items taken from the financial statements of lopez plumbing over a five-year period. treat 2017 as the base year. b. state whether the trends are favorable or unfavorable. During the Harlem Renaissance,Ablack entertainers no longer faced discrimination.Bblack performers pioneered new genres of music.Cwhite Americans stopped listening to jazz and blues.Dthe south desegregated all schools and public places. If species are competing for the same resource, one species is likely to go extinct through competitive exclusion, or natural selection will drive the evolution of:-prezygotic isolating mechanisms.-character displacement.-polyploid individuals.-hybrids. a client reports pain with iv insertion what should the nurse do The records of Blue Spruce Company at the end of the current year show Accounts Receivable $63,900, Credit Sales $664,200; and Sales Returns and Allowances $32,800. (a) If Blue Spruce uses the direct write-off method to account for uncollectible accounts and Blue Spruce determines that Matisse's $738 balance is uncollectible, what will Blue Spruce record as bad debt expense? (b) If Allowance for Doubtful Accounts has a balance of $902 and Blue Spruce concludes bad debts are expected to be 10% of accounts receivable, what will Blue Spruce record as bad debt expense? eTextbookand Media How many grams are contained in 2.709 x 10 ^24 atoms of MgCl2?