Answer:
0.1Ns
Explanation:
Impulse is the product of Force and time
Impulse = Force * Time
Given
Force = 10N
Time = 0.01s
Substitute into the formula
Impulse = 10 * 0.01
Impulse = 10 * 1/100
Impulse = 10/100
Impulse = 0.1Ns
hence the impulse of the hammer is 0.1Ns
A 22.0 kg child is riding a playground merry-go- round that is rotating at 40.0 rev/min. What centripetal force must
Answer:
F = 482.51 N
Explanation:
Given that,
Mass of a child, m = 22 kg
Angular velocity of the merry-go-round, [tex]\omega=40\ rev/min[/tex]
Let the radius of the path, r = 1.25 m
We need to find the centripetal force acting on the child. The formula for the centripetal force is given by :
[tex]F=m\omega^2r\\\\=22\times (4.18879)^2\times 1.25\\\\=482.51\ N[/tex]
So, the required centripetal force is 482.51 N.
Allen and Jason are chucking a speaker around. On one particular throw, Allen throws the speaker, which is playing a pure tone of frequency f, at a speed of 10 m/s directly towards Jason, but his aim is a bit off. As a result, Jason runs forward towards the speaker at a speed of 6 m/s before catching it. Then, the frequency that Jason hears while running can be written as (m/n)f Hz, where m and n are relatively prime positive integers. Compute m n.
Answer:
Explanation:
We shall apply Doppler's effect of sound .
speaker is the source , Jason is the observer . Source is moving at 10 m /s , observer is moving at 6 m/s .
apparent frequency = [tex]f_o\times\frac{V+v_o}{ V-v_s}[/tex]
V is velocity of sound , v₀ is velocity of observer and v_s is velocity of source and f_o is real frequency of source .
Here V = 340 m/s , v₀ is 6 m/s , v_s is 10 m/s . f_o = f
apparent frequency = [tex]f\times \frac{340+6}{340-10}[/tex]
= [tex]f\times \frac{346}{330}[/tex]
So m = 346 , n = 330 .