Answer:
3
Step-by-step explanation:
let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room
A living room is two times as long as the bedroom, so:
A = 2X
A living room is one and one-half times as wide as a bedroom, so:
B = 1.5Y
The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y
So, AB in terms of XY is:
A*B = (2X)*(1.5Y) = 3(X*Y)
It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the bedroom.
Question 10 of 10
Which set of polar coordinates are plotted in the graph below?
Answer:
(-2, -(2pi)/3)
Step-by-step explanation:
a p ex
In da pic :)))))))))
Bart bought a digital camera with a list price of $219 from an online store offering a 6 percent discount. He needs to pay $7.50 for shipping. What was Bart's total cost? A. $205.86 B. $211.50 C. $213.36
Answer:
Barts total cost is (c)213.36
Step-by-step explanation:
First, you subtract 6% from $219
=204.92
add shipping,
+7.50
=213.36
Hope this helps <3
Answer:
C. $213.36
Step-by-step explanation:
The original price is $219 and the discount is 6% which is equal to $13.14
$219 - $13.14 + $7.50 (shipping cost) = $213.36
The average weight of a person is 160.5 pounds with a standard deviation of 10.4 pounds. 1. What is the probability a person weighs more than 150.2 pounds
Answer:
0.8390
Step-by-step explanation:
From the question,
Z score = (Value-mean)/standard deviation
Z score = (150.2-160.5)/10.4
Z score = -0.9904.
P(x>Z) = 1- P(x<Z)
From the Z table,
P(x<Z) = 0.16099
Therefore,
P(x>Z) = 1-0.16099
P(x>Z) = 0.8390
Hence the probability that a person weighs more than 150.2 pounds = 0.8390
Use Newton's method to approximate the indicated root of the equation correct to six decimal places. The negative root of ex = 4 − x2
Answer:
x = -1.964636
Step-by-step explanation:
Given equation;
eˣ = 4 - x²
This can be re-written as;
eˣ - 4 + x² = 0
Let
f(x) = eˣ - 4 + x² -----------(i)
To use Newton's method, we need to get the first derivative of the above equation as follows;
f¹(x) = eˣ - 0 + 2x
f¹(x) = eˣ + 2x -----------(ii)
The graph of f(x) has been attached to this response.
As shown in the graph, the curve intersects the x-axis twice - around x = -2 and x = 1. These are the approximate roots of the equation.
Since the question requires that we use the negative root, then we start using the Newton's law with a guess of x₀ = -2 at n=0
From Newton's method,
[tex]x_{n+1} = x_n + \frac{f(x_{n})}{f^1(x_{n})}[/tex]
=> When n=0, the equation becomes;
[tex]x_{1} = x_0 - \frac{f(x_{0})}{f^1(x_{0})}[/tex]
[tex]x_{1} = -2 - \frac{f(-2)}{f^1(-2)}[/tex]
Where f(-2) and f¹(-2) are found by plugging x = -2 into equations (i) and (ii) as follows;
f(-2) = e⁻² - 4 + (-2)²
f(-2) = e⁻² = 0.13533528323
And;
f¹(2) = e⁻² + 2(-2)
f¹(2) = e⁻² - 4 = -3.8646647167
Therefore
[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]
[tex]x_{1} = -2 - \frac{0.13533528323}{-3.8646647167}[/tex]
[tex]x_{1} = -2 - -0.03501863503[/tex]
[tex]x_{1} = -2 + 0.03501863503[/tex]
[tex]x_{1} = -1.9649813649[/tex]
[tex]x_{1} = -1.96498136[/tex] [to 8 decimal places]
=> When n=1, the equation becomes;
[tex]x_{2} = x_1 - \frac{f(x_{1})}{f^1(x_{1})}[/tex]
[tex]x_{2} = -1.96498136 - \frac{f(-1.9649813)}{f^1(-1.9649813)}[/tex]
Following the same procedure as above we have
[tex]x_{2} = -1.96463563[/tex]
=> When n=2, the equation becomes;
[tex]x_{3} = x_2 - \frac{f(x_{2})}{f^1(x_{2})}[/tex]
[tex]x_{3} = -1.96463563- \frac{f( -1.96463563)}{f^1( -1.96463563)}[/tex]
Following the same procedure as above we have
[tex]x_{3} = -1.96463560[/tex]
From the values of [tex]x_2[/tex] and [tex]x_3[/tex], it can be seen that there is no change in the first 6 decimal places, therefore, it is safe to say that the value of the negative root of the equation is approximately -1.964636 to 6 decimal places.
Newton's method of approximation is one of the several ways of estimating values.
The approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]
The equation is given as:
[tex]\mathbf{e^x = 4 - x^2}[/tex]
Equate to 0
[tex]\mathbf{4 - x^2 = 0}[/tex]
So, we have:
[tex]\mathbf{x^2 = 4}[/tex]
Take square roots of both sides
[tex]\mathbf{ x= \pm 2}[/tex]
So, the negative root is:
[tex]\mathbf{x = -2}[/tex]
[tex]\mathbf{e^x = 4 - x^2}[/tex] becomes [tex]\mathbf{f(x) = e^x - 4 + x^2 }[/tex]
Differentiate
[tex]\mathbf{f'(x) = e^x +2x }[/tex]
Using Newton's method of approximation, we have:
[tex]\mathbf{x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}}[/tex]
When x = -2, we have:
[tex]\mathbf{f'(-2) = e^{(-2)} +2(-2) = -3.86466471676}[/tex]
[tex]\mathbf{f(-2) = e^{-2} - 4 + (-2)^2 = 0.13533528323}[/tex]
So, we have:
[tex]\mathbf{x_{1} = -2 - \frac{0.13533528323}{-3.86466471676}}[/tex]
[tex]\mathbf{x_{1} = -2 + \frac{0.13533528323}{3.86466471676}}[/tex]
[tex]\mathbf{x_{1} = -1.96498136}[/tex]
Repeat the above process for repeated x values.
We have:
[tex]\mathbf{x_{2} = -1.96463563}[/tex]
[tex]\mathbf{x_{3} = -1.96463560}[/tex]
Up till the 6th decimal places,
[tex]\mathbf{x_2 = x_3}[/tex]
Hence, the approximated value of [tex]\mathbf{e^x = 4 - x^2}[/tex] to 6 decimal places is [tex]\mathbf{ -1.964636}[/tex]
Read more about Newton approximation at:
https://brainly.com/question/14279052
Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?
Answer:
0.0668 or 6.68%
Step-by-step explanation:
Variance (V) = 10,000
Standard deviation (σ) = √V= 100
Mean score (μ) = 500
The z-score for any test score X is:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
For X = 650:
[tex]z=\frac{650-500}{100}\\z=1.5[/tex]
A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]
The probability is 0.0668 or 6.68%
The probability that he or she will make a score of 650 or more is 0.0668.
Let X = Scores made on a certain aptitude test by nursing students
X follows normal distribution with mean = 500 and variance of 10,000.
So, standard deviation = [tex]\sqrt{10000}=100[/tex].
z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].
The probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]
Learn more: https://brainly.com/question/14109853
PLEASE HELP QUICK! Determine x value of: sqrt x + 8 - sqrt x - 4 = 2
Answer:
x=8
Step-by-step explanation:
[tex]\sqrt{x+8}-\sqrt{x-4}=2\\\sqrt{x+8}=2+\sqrt{x-4}\\\left(\sqrt{x+8}\right)^2=\left(2+\sqrt{x-4}\right)^2\\x+8=x+4\sqrt{x-4}\\8=4\sqrt{x-4}\\8^2=\left(4\sqrt{x-4}\right)^2\\64=16x-64\\x=8[/tex]
plzzzzz helpp j + 9 - 3 < 8
Answer:
j < 2
Step-by-step explanation:
Simplify both sides of the inequality and isolating the variable would get you the answer
Please answer this correctly without making mistakes
Simplify the correct answer
Answer:
7/44
Step-by-step explanation:
First find the total number of presidents.
2 + 7 + 13 + 12 + 7 + 3 = 44
There were 7 presidents that were 45-49 when elected. Divide this number by the total number of presidents to find the fraction.
7/44 ≈ 0.159
Please answer this correctly without making mistakes.Please simplify the correct answer
Answer:
19/70 of NASA shuttle missions were carried out by Discovery.
9/140 of NASA shuttle missions were carried out by Challenger.
17/70 of NASA shuttle missions were carried out by Endeavour.
Step-by-step explanation:
Adding the number of missions carried out by NASA gives us 140 in total.
Discovery's total amount of missions simplified is 19/70.
Challenger's total amount of missions is already in the simplest form.
Endeavour's total amount of missions simplified is 17/70.
Answer:
81/140
Step-by-step explanation:
Well to find the fraction we first need to total amount of NASA missions.
38 + 32 = 70
70 + 34 = 104
104 + 27 = 131
131 + 9 = 140
Now we need to find out the amount of Discovery, Challenger, and Endeavour missions.
38 + 9 + 34 = 81
Now we can make the following fraction,
81/140
This is already in simplest form.
Thus,
the answer is 81/140.
Hope this helps :)
convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.
Answer:
Standard form: [tex]12x+3y-2=0[/tex]
A = 12, B = 3 and C = -2
Step-by-step explanation:
Given:
The equation:
[tex]y= -4x + \dfrac{2}3[/tex]
To find:
The standard form of given equation and find A, B and C.
Solution:
First of all, let us write the standard form of an equation.
Standard form of an equation is represented as:
[tex]Ax+By+C=0[/tex]
A is the coefficient of x and can be positive or negative.
B is the coefficient of y and can be positive or negative.
C can also be positive or negative.
Now, let us consider the given equation:
[tex]y= -4x + \dfrac{2}3[/tex]
Multiplying the whole equation with 3 first:
[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]
Now, let us take all the terms on one side:
[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]
Now, let us compare with [tex]Ax+By+C=0[/tex].
So, A = 12, B = 3 and C = -2
Please help. I’ll mark you as brainliest if correct!
Answer:
CDs: $30,000bonds: $90,000stocks: $50,000Step-by-step explanation:
You can let c, b, s represent the investments in CDs, bonds, and stocks, respectively.
c + b + s = 170000 . . . . . . total invested
0.0325c +0.038b +0.067s = 7745 . . . . . . . annual income
-c + b = 60000
You can solve this set of equations using any of a number of methods, including on-line calculators, graphing calculators, scientific calculators, Cramer's Rule, substitution, elimination, and more. The solution is ...
c = 30,000
b = 90,000
s = 50,000
Maricopa's Success invested $30,000 in CDs, $90,000 in bonds, and $50,000 in stocks.
15x - 30 x 0 + 40 = 89
Answer:
x = 49/15
Step-by-step explanation:
15x - 30 x 0 + 40 = 89 PEMDAS
15x + 40 = 89 Isolate the variable
15x = 49
x = 49/15
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 49/15 or 3 4/15 or 3.26
▹ Step-by-Step Explanation
15x - 30 * 0 + 40 = 89
15x - 0 + 40 = 89
15x + 40 = 89
15x = 89 - 40
15x = 49
x = 49/15 or 3 4/15 or 3.26
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
write and equation to represent the following statement 28 is 12 less thank K. solve for K K =
Answer:
K = 40
Step-by-step explanation:
As they said that 28 is 12 less than K , it means that you've to add them to get the answer. So , 28 + 12 = 40 which is represented by the variable "K"
Hope it helps and pls mark as brainliest : )
Answer:
Equation : 28 = k - 12K = 40Step-by-step explanation:
28 is 12 less than k
Let's create an equation:
[tex]28 = k - 12[/tex]
Now, let's solve:
[tex]28 = k - 12[/tex]
Move variable to L.H.S and change its sign
Similarly, Move constant to R.H.S and change its sign
[tex] - k = - 12 - 28[/tex]
Calculate the difference
[tex] - k = - 40[/tex]
Change the signs on both sides of the equation
[tex]k = 40[/tex]
Hope this helps...
Best regards!!
Which linear inequality is represented by the graph?
Answer:
A. y ≤ 1/2x + 2
Step-by-step explanation:
Well look at the graph,
It is a solid line with it shaded down,
meaning it is y ≤,
So we can cross out B. and D.
So the y intercept is 2, we know this because the y intercept is the point on the line that touches the y axis.
now the slope can be found by seeing how far away each points are from each other,
Hence, the answer is A. y ≤ 1/2x + 2
Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )
Answer:
[tex]\boxed{x = 9}[/tex]
Step-by-step explanation:
m = -1/3
b = 7
And y = 4 (Given)
Putting all of the givens in [tex]y = mx+b[/tex] to solve for x
=> 4 = (-1/3) x + 7
Subtracting 7 to both sides
=> 4-7 = (-1/3) x
=> -3 = (-1/3) x
Multiplying both sides by -3
=> -3 * -3 = x
=> 9 = x
OR
=> x = 9
Answer:
x = 9
Step-by-step explanation:
m = -1/3
b = 7
Using slope-intercept form:
y = mx + b
m is slope, b is y-intercept.
y = -1/3x + 7
Solve for x:
Plug y as 4
4 = 1/3x + 7
Subtract 7 on both sides.
-3 = -1/3x
Multiply both sides by -3.
9 = x
Harry is trying to complete his hill walking scouts badge. He is using a map with a scale of 1 cm : 2 km. To earn the badge he needs to walk 14 km. What is the distance he needs to walk on the map?
Answer:
7 cm
Step-by-step explanation:
14 / 2 = 7 cm
7cm is the distance Harry needs to walk on the map?
What is Distance?Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are.
Given that,
Harry is trying to complete his hill walking scouts badge.
He is using a map with a scale of 1 cm : 2 km.
To earn the badge he needs to walk 14 km.
Let the distance he needs to walk on the map is x.
By given data we write an equation
1/2=x/14
Apply Cross Multiplication
14/2=x
7=x
Hence, 7cm is the distance he needs to walk on the map.
To learn more on Distance click:
https://brainly.com/question/15172156
#SPJ5
WILL MARK BRAINLIEST If Alan and Zack can clean a room in 30 minutes when working together, and Alan cleans twice as fast as Zack, how long would it take Alan to clean the room by himself?
Answer:
45 min
Step-by-step explanation:
Here,
the we take the work as W and Alan's speed as A and Zack's speed as Z.
A = 2Z
W = 30 ( A+Z)
if the time for Alan to done cleaning alone is t then t = W ÷ A
t = ( 30 (A+(A÷2)))÷ A
t = 45 min
I am done .
A company studied the number of lost-time accidents occurring at its Brownsville, Texas, plant. Historical records show that 8% of the employees suffered lost-time accidents last year. Management believes that a special safety program will reduce such accidents to 4% during the current year. In addition, it estimates that 15% of employees who had lost-time accidents last year will experience a lost-time accident during the current year.
a. What percentage of the employees will experience lost-time accidents in both years?
b. What percentage of the employees will suffer at least one lost-time accident over the two-year period?
Answer:
a) percentage of the employees that will experience lost-time accidents in both years = 1.2%
b) percentage of the employees that will suffer at least one lost-time accident over the two-year period = 10.8%
Step-by-step explanation:
given
percentage of lost time accident last year
P(L) = 8% = 0.08 of the employees
percentage of lost time accident current year
P(C) = 4% = 0.04 of the employees
P(C/L) = 15% = 0.15
using the probability
P(L ∩ C) = P(C/L) × P(L)
= 0.08 × 0.15 = 0.012 = 1.2%
percentage of the employees will experience lost-time accidents in both years = 1.2%
b) Using the probability of the event
P(L ∪ C) = P(L) + P(C) - P(L ∩ C)
= 0.08 + 0.04 -0.012 = 0.108 = 10.8%
percentage of the employees will suffer at least one lost-time accident over the two-year period = 10.8%
A recipe for 1 batch of muffins used 2/3 of blueberries. Amir made 2 1/2 batches of muffins. How many cups of blueberries did he use? A. 1 4/6 B. 1 5/6 C. 2 2/6 D. 3 1/6. Please show your work.
Answer:
A. 1 4/6 cups of blueberries
Step-by-step explanation:
1 -- 2/3
Proportion, Batches to Blueberries
1*(2 1/2) -- (2/3)( 2 1/2)
Because we are now multiplying the 1 batch to 2 1/2 batches. So to keep the proportion balanced/equal we are using the same operation on the right side of the proportion
2 1/2 -- (2/3)( 5/2 )
2 1/2 -- 5/3
2 1/2 -- 1 2/3
Simplify
On the right side shows the blueberries for 2 1/2 batches. 1 2/3 = 1 4/6
Hope that helps! Tell me if you need more info
For each of the following, state the equation of a perpendicular line that passes through (0, 0). Then using the slope of the new equation, find x if the point P(x, 4) lies on the new line. y=3x-1 y=1/4 x+2
Answer:
The answer is below
Step-by-step explanation:
a) y=3x-1
The standard equation of a line is given by:
y = mx + c
Where m is the slope of the line and c is the intercept on the y axis.
Given that y=3x-1, comparing with the standard equation of a line, the slope (m) = 3, Two lines with slope a and b are perpendicular if the product of their slope is -1 i.e. ab = -1. Let the line perpendicular to y=3x-1 be d, to get the slope of the perpendicular line, we use:
3 × d = -1
d = -1/3
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=d(x-x_1)\\d\ is\ the \ slope:\\y-0=-\frac{1}{3} (x-0)\\y=-\frac{1}{3}x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-\frac{1}{3}x\\ 4=-\frac{1}{3}x\\-x=12\\x=-12[/tex]
b) y=1/4 x+2
Given that y=1/4 x+2, comparing with the standard equation of a line, the slope (m) = 1/4. Let the line perpendicular to y=1/4 x+2 be f, to get the slope of the perpendicular line, we use:
1/4 × f = -1
f = -4
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=f(x-x_1)\\f\ is\ the \ slope:\\y-0=-4 (x-0)\\y=-4x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-4}x\\ 4=-4x\\x=-1[/tex]
Construct a polynomial function with the stated properties. Reduce all fractions to lowest terms. Second-degree, with zeros of −7 and 6, and goes to −∞ as x→−∞.
Answer:
Step-by-step explanation:
Hello, because of the end behaviour it means that the leading coefficient is negative so we can construct such polynomial function as below.
[tex]\large \boxed{\sf \bf \ \ -(x+7)(x-6) \ \ }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The polynomial function will be f ( x ) = - x² - x + 42
What is Quadratic Equation?
A quadratic equation is a second-order polynomial equation in a single variable x , ax²+ bx + c = 0. with a ≠ 0. Because it is a second-order polynomial equation, the fundamental theorem of algebra guarantees that it has at least one solution. The solution may be real or complex.
Given data ,
The polynomial function is of second degree with zeros of -7 and 6
So , x = -7 and x = 6
Let the function be f ( x ) where f ( x ) = ( x + 7 ) ( x - 6 )
Now , as x tends to infinity , the negative makes no such difference on the zeros of the function f ( x ) ,
And , f ( x ) = - ( x + 7 ) ( x - 6 )
Therefore , to find the polynomial function , f ( x ) = - ( x + 7 ) ( x - 6 )
f ( x ) = - [ x² - 6 x + 7 x - 42 ]
= - [ x² + x - 42 ]
= - x ² - x + 42
Hence , the polynomial function f ( x ) = - x ² - x + 42
To learn more about polynomial function click :
https://brainly.com/question/25097844
#SPJ2
Find the probability of each event. A six-sided die is rolled seven times. What is the probability that the die will show an even number at most five times?
Answer:
[tex]\dfrac{15}{16}[/tex]
Step-by-step explanation:
When a six sided die is rolled, the possible outcomes can be:
{1, 2, 3, 4, 5, 6}
Even numbers are {2, 4, 6}
Odd Numbers are {1, 3, 5}
Probability of even numbers:
[tex]\dfrac{\text{Favorable cases}}{\text{Total cases }} = \dfrac{3}{6} = \dfrac{1}{2}[/tex]
This is binomial distribution.
where probability of even numbers, [tex]p =\frac{1}{2}[/tex]
Probability of not getting even numbers (Getting odd numbers) [tex]q =\frac{1}{2}[/tex]
Probability of getting r successes out of n trials:
[tex]P(r) = _nC_r\times p^r q^{n-r}[/tex]
Probability of getting even numbers at most 5 times out of 7 is given as:
P(0) + P(1) +P(2) + P(3) +P(4) + P(5)
[tex]\Rightarrow _7C_0\times \frac{1}{2}^0 \frac{1}{2}^{7}+_7C_1\times \frac{1}{2}^1 \frac{1}{2}^{6}+_7C_2\times \frac{1}{2}^2 \frac{1}{2}^{5}+_7C_3\times \frac{1}{2}^3 \frac{1}{2}^{4}+_7C_4\times \frac{1}{2}^4 \frac{1}{2}^{3}+_7C_5\times \frac{1}{2}^5 \frac{1}{2}^{2}[/tex]
[tex]\Rightarrow (\dfrac{1}{2})^7 (_7C_0+_7C_1+_7C_2+_7C_3+_7C_4+_7C_5)\\[/tex]
[tex]\Rightarrow (\dfrac{1}{2})^7 (1+7+\dfrac{7 \times 6}{2}+\dfrac{7 \times 6 \times 5}{3\times 2}+\dfrac{7 \times 6 \times 5}{3\times 2}+\dfrac{7 \times 6}{2})\\\Rightarrow \dfrac{120}{128} \\\Rightarrow \dfrac{15}{16}[/tex]
The exact heights of different elephants Choose the correct answer below. A. The data are continuous because the data can only take on specific values. B. The data are discrete because the data can take on any value in an interval. C. The data are discrete because the data can only take on specific values. D. The data are continuous because the data can take on any value in an interval.
Answer:
Option d: The data are continuous because the data can take on any value in an interval.
Step-by-step explanation:
The data are continuous if they can take on any value within a range. In this case study, there are different elephants including small/young ones and big ones/old ones.
Thus, their heights will vary and can take on any value within a particular range.
Could someone answer the question with the photo linked below? Then explain how to solve it?
Answer:
b = sqrt(57)
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2 where a and b are the legs and c is the hypotenuse
8^2 + b^2 = 11^2
64+ b^2 = 121
Subtract 64
b^2 = 121-64
b^2 =57
Take the square root of each side
b = sqrt(57)
aryn needs enough mulch to cover a rectangle flower bed measuring 2 1/4 yd by 3 1/2yd each bag cover 3 square yds and cost $4 how many bags does she need and how much money she need
Answer:
cars are dum
Step-by-step explanation:
Mia agreed to borrow a 3 year loan with 4 percent interest to buy a motorcycle if Mia will pay a total of $444 in interest how much money did she borrow how much interest would Mia pay if the simple interest rate was 5 percent
Answer:
a) $3700
b) $555
Step-by-step explanation:
The length of the loan is 3 years.
The interest after 3 years is $444.
The rate of the Simple Interest is 4%.
Simple Interest is given as:
I = (P * R * T) / 100
where P = principal (amount borrowed)
R = rate
T = length of years
Therefore:
[tex]444 = (P * 3 * 4) / 100\\\\444 = 12P / 100\\\\12P = 444 * 100\\\\12P = 44400\\\\P = 44400 / 12\\[/tex]
P = $3700
She borrowed $3700
b) If the simple interest was 5%, then:
I = (3700 * 5 * 3) / 100 = $555
The interest would be $555.
Please help. I’ll mark you as brainliest if correct!
Answer:
8lb of the cheaper Candy
17.5lb of the expensive candy
Step-by-step explanation:
Let the cheaper candy be x
let the costly candy be y
X+y = 25.5....equation one
2.2x +7.3y = 25.5(5.7)
2.2x +7.3y = 145.35.....equation two
X+y = 25.5
2.2x +7.3y = 145.35
Solving simultaneously
X= 25.5-y
Substituting value of X into equation two
2.2(25.5-y) + 7.3y = 145.35
56.1 -2.2y +7.3y = 145.35
5.1y = 145.35-56.1
5.1y = 89.25
Y= 89.25/5.1
Y= 17.5
X= 25.5-y
X= 25.5-17.5
X= 8
which of the following descriptions represent the transformation shown in the image? Part 1d
Answer:
(C) Translation of 2 units right, 1 up, and a reflection over the y-axis.
Step-by-step explanation:
Ideally, we are looking for a reflection of the red image over the y-axis, and to do that, we can see how we need to move the black image.
In order for points Q and Q' to be a reflection of each other, they need to have the same y value, and be the exact same distance from the y axis, so the point that Q has to be at is (-1,-3).
Q is right now at (-3,-4) so we can translate this.
To get from -3 to -1 in the x-axis, we go right by 2 units.
To get from -4 to -3 in the y-axis, we go up one unit.
Now, if we reflect it, the triangles will be the same.
Hope this helped!
Answer:
C.
Step-by-step explanation:
When you study the images, it is clear that the black triangle has to be reflected over the y-axis to face the same direction as the red triangle. So, choice A is eliminated.
Once you reflect the black triangle across the y-axis, you have points at (-1, -1), (3, -4), and (3, -2). Meanwhile, the red triangle's coordinates are at (-3, 0), (1, -3), and (1, -1). From these points, you can tell that the x-values differ by 2 units and the y-values differ by 1 unit.
All of these conditions match the ones put forth in option C, so that is your answer.
Hope this helps!
Determine the t critical value for a lower or an upper confidence bound in each of the following situations. (Round your answers to three decimal places.)
a. Confidence level = 95%, df = 10
b. Confidence level = 95%, df = 15
c. Confidence level = 99%, df = 15
d. Confidence level = 99%, n = 5
e. Confidence level = 98%, df = 23
f. Confidence level = 99%, n = 32
Answer:
A. 1.812
B. 1.753
C. 2.602
D. 3.747
E. 2.069
F. 2.453
Step-by-step explanation:
A. 95% confidence level, the level of significance = 5% or 0.05
Using t-table, the critical value for a lower or an upper confidence bound at 0.05 significance level with 10 degrees of freedom = 1.182
B. 95% confidence interval = 0.05 level of significance
Using t-table, the critical value for a lower or an upper confidence bound at 0.05 significance level with 15 degrees of freedom = 1.753
C. 99% confidence interval = 0.01 level of significance
Using t-table, the critical value for a lower or an upper confidence bound at 0.01 significance level with 15 degrees of freedom = 2.602
D. 99% confidence interval = 0.01 level of significance; DF (n - 1) = 5- 1 = 4
Using t-table, the critical value for a lower or an upper confidence bound at 0.01 significance level with 4 degrees of freedom = 3.747
E. 98% confidence interval = 0.02 level of significance
Using t-table, the critical value for a lower or an upper confidence bound at 0.02 significance level with 23 degrees of freedom = 2.069
F. 99% confidence interval = 0.01 level of significance; df (n - 1) = 32 - 1 = 31
Using t-table, the critical value for a lower or an upper confidence bound at 0.01 significance level with 31 degrees of freedom = 2.453
Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value
Answer:
z(c) = - 1,64
We reject the null hypothesis
Step-by-step explanation:
We need to solve a proportion test ( one tail-test ) left test
Normal distribution
p₀ = 63 %
proportion size p = 51 %
sample size n = 114
At 5% level of significance α = 0,05, and with this value we find in z- table z score of z(c) = 1,64 ( critical value )
Test of proportion:
H₀ Null Hypothesis p = p₀
Hₐ Alternate Hypothesis p < p₀
We now compute z(s) as:
z(s) = ( p - p₀ ) / √ p₀q₀/n
z(s) =( 0,51 - 0,63) / √0,63*0,37/114
z(s) = - 0,12 / 0,045
z(s) = - 2,66
We compare z(s) and z(c)
z(s) < z(c) - 2,66 < -1,64
Therefore as z(s) < z(c) z(s) is in the rejection zone we reject the null hypothesis