Answer:
23 dimes; 32 nickel
Step-by-step explanation:
Let n = number of nickels.
Let d = number of dimes.
A nickel is worth $0.05; n nickels are worth 0.05n.
A dime is worth $0.10; d dimes are worth 0.1d.
Number of coins:
d + n = 55
Value of the coins:
0.1d + 0.05n = 3.9
Solve d + n = 55 for d:
d = 55 - n
Substitute 55 - n for d in second equation.
0.1(55 - n) + 0.05n = 3.9
5.5 - 0.1n + 0.05n = 3.9
-0.05n = -1.6
n = 32
Substitute 32 for n in d + n = 55 and solve for d.
d + 32 = 55
d = 23
Answer: 23 dimes; 32 nickel
PLEASEEEEE HELPPOO
For Individual or Group Explorations
Maximizing the Total Profit
Payles at The Christmas Store very periodically with a high ef 550.000 in December
the Christmas Stove also comes the Powe, where profits reach a high of $80,000
in Aurust and a few of $20,000 in February Assume that the profit function for
Crm Store
Save
40
20
10
1 2 3 4 5 6 7 8 9 10 11 12
Month
a) Write the profit function for The Christmas Store as a function of the month
and sketch its graph
b)
Write the profit function for The Pool Store as a function of the month and
sketch its graph.
are are length
Write the total profit as a function of the month and sketch its graph. What is
the period?
are inside the
est enth of a
Use the maximum feature of a graphing calculator to find the owner's maxi-
mum total profit and the month in which it occurs.
Find the owner's minimum total profit and the month in which it occurs.
We know that y -a sin x + bcos x is a sine function. However, the sum of
two arbitrary sine or cosine functions is not necessarily a sine function. Find an
example in which the graph of the sum of two sine functions does not look like
a sine curve.
Explain.
is tangent to one
Answer:
what
Step-by-step explanation:
An unbiased coin is tossed 14 times. In how many ways can the coin land tails either exactly 9 times or exactly 3 times?
Answer
[tex]P= 0.144[/tex] ways
the coin can land tails either exactly 8 times or exactly 5 times in
[tex]0.144[/tex] ways
Step by step explanation:
THis is a binomial distribution
Binomial distribution gives summary of the number of trials as well as observations as each trial has the same probability of attaining one particular value.
P(9)=(14,9).(0.5)⁹.(0.5)¹⁴⁻⁹
p(3)=(14,3).(0.5)⁹.(0.5)¹⁴⁻³
p=(9)+p(3)
p=C(14,9)(0.5)¹⁴ + C(14,3). (0.5)¹⁴
P= (0.5)¹⁴ [C(14,9) + C(14,3)]
P= (0.5)¹⁴ [2002 * 364]
P= 1/16384 * (2002 +364)
P= 91091/2048
P= 0.144
Hence,the coin can land tails either exactly 8 times or exactly 5 times in
[tex] 0.144[/tex] ways
Classify the polynomial 2x^3+6x^2-4 by the number of terms. binomial. trinomial. cubic. quadratic.
Answer:
monomial
Step-by-step explanation:
magazine provided results from a poll of adults who were asked to identify their favorite pie. Among the respondents, % chose chocolate pie, and the margin of error was given as percentage points. What values do , , n, E, and p represent? If the confidence level is %, what is the value of ?
Complete Question
A magazine provided results from a poll of 500 adults who were asked to identify their favorite pie. Among the 500 respondents, 12 % chose chocolate pie, and the margin of error was given as plus or minus 5 percentage points.What values do [tex]\r p , \ \r q[/tex], n, E, and p represent? If the confidence level is 90%, what is the value of [tex]\alpha[/tex] ?
Answer:
a
[tex]\r p[/tex] is the sample proportion [tex]\r p = 0.12[/tex]
[tex]n[/tex] is the sample size is [tex]n = 500[/tex]
[tex]E[/tex] is the margin of error is [tex]E = 0.05[/tex]
[tex]\r q[/tex] represents the proportion of those that did not chose chocolate pie i.e [tex]\r q = 1- \r p[/tex]
b
[tex]\alpha = 10\%[/tex]
Step-by-step explanation:
Here
[tex]\r p[/tex] is the sample proportion [tex]\r p = 0.12[/tex]
[tex]n[/tex] is the sample size is [tex]n = 500[/tex]
[tex]\r q[/tex] represents the proportion of those that did not chose chocolate pie i.e
[tex]\r q = 1- \r p[/tex]
[tex]\r q = 1- 0.12[/tex]
[tex]\r q = 0.88[/tex]
[tex]E[/tex] is the margin of error is [tex]E = 0.05[/tex]
Generally [tex]\alpha[/tex] is the level of significance and it value is mathematically evaluated as
[tex]\alpha = ( 100 - C )\%[/tex]
Where [tex]C[/tex] is the confidence level which is given in this question as [tex]C = 90 \%[/tex]
So
[tex]\alpha = ( 100 - 90 )\%[/tex]
[tex]\alpha = 10\%[/tex]
What is the best way to remember the 6 trigonometric ratios?
Answer:
SOHCAHTOA
Step-by-step explanation:
Usually, in American schools, the term "SOHCAHTOA" is used to remember them. "SOH" is sine opposite hypotenuse, "CAH" is cosine adjacent hypotenuse, and "TOA" is tangent opposite adjacent. There is also Csc which is hypotenuse/opposite, Sec which is hypotenuse/adjacent, and Cot is adjacent/opposite.
Answer: SOHCAHTOA
Step-by-step explanation:
The pneumonic I learned is SOH-CAH-TOA. it says that Sin = opposite/hypotenuse. Cos = adjacent/hypotenuse. Tan = opposite/adjacent.
Hope it helps <3
in the life of a car engine, calculatedin miles, is normally distributed, with a mean of 17,000 miels and a standard deviation of 16,500 miles, what should be the guarantee period if the company wants less than 2% of the engines to fail while under warranty g
Answer:
the guarantee period should be less than 136010 miles
Step-by-step explanation:
From the given information;
Let consider Y to be the life of a car engine
with a mean μ = 170000
and a standard deviation σ = 16500
The objective is to determine what should be the guarantee period T if the company wants less than 2% of the engines to fail.
i.e
P(Y < T ) < 0.02
For the variable of z ; we have:
[tex]z = \dfrac{x - \mu }{\sigma}[/tex]
[tex]z = \dfrac{x - 170000 }{16500}[/tex]
Now;
[tex]P(Y < T ) = P( Z < \dfrac{T- 170000}{16500})[/tex]
[tex]P( Z < \dfrac{T- 170000}{16500})< 0.02[/tex]
From Z table ;
At P(Z < -2.06) ≅ 0.0197 which is close to 0.02
[tex]\dfrac{T- 170000}{16500}<- 2.06[/tex]
[tex]{T- 170000}<- 2.06({16500})[/tex]
[tex]{T- 170000}< - 33990[/tex]
[tex]{T}< - 33990+ 170000[/tex]
[tex]{T}<136010[/tex]
Thus; the guarantee period should be less than 136010 miles
Two jokers are added to a $52$ card deck and the entire stack of $54$ cards is shuffled randomly. What is the expected number of cards that will be strictly between the two jokers?
Answer:
52/3.
Step-by-step explanation:
There are (54·53)/2 = 1431 ways the 2 jokers can be placed in the 54-card deck. We can consider those to see how the number of cards between them might work out.
Suppose we let J represent a joker, and - represent any other card. The numbers of interest can be found as follows:
For jokers: JJ---... there are 0 cards between. This will be the case also for ...
-JJ---...
--JJ---...
and so on, down to ...
...---JJ
The first of these adjacent jokers can be in any of 53 positions. So, the probability of 0 cards between is 53/1431.
__
For jokers: J-J---..., there is 1 card between. The first of these jokers can be in any of 52 positions, so the probability of 1 card between is 52/1431.
__
Continuing in like fashion, we find the probability of n cards between is (53-n)/1431. So, the expected number of cards between is ...
[tex]E(n)=\sum\limits_{n=0}^{53}{\dfrac{n(53-n)}{1431}}=\dfrac{53}{1431}\sum\limits_{n=0}^{53}{n}-\dfrac{1}{1431}\sum\limits_{n=0}^{53}{n^2}\\\\=\dfrac{53(53\cdot 54)}{1431(2)}-\dfrac{1(53)(54)(107)}{1431(6)}=53-\dfrac{107}{3}\\\\\boxed{E(n)=\dfrac{52}{3}}[/tex]
What is the value of x in the equation 5 (4 x minus 10) + 10 x = 4 (2 x minus 3) + 2 (x minus 4)?
Answer:
x = 1.5
Step-by-step explanation:
5(4x-10)+10x=4(2x-3)+2(x-4)
Distribute(5)
20x-50+10x=4(2x-3)+2(x-4)
Distribute(4)
20x-50+10x=8x-12+2(x-4)
Distribute(2)
20x-50+10x=8x-12+2x-8
Combine like terms
30x-50=10x-20
Subtract(10x)
20x-50=-20
Add(50)
20x=30
Divide(20)
x = 1.5
Hope it helps <3
Answer:
x = 3/2Step-by-step explanation:
5 ( 4x - 10) + 10x = 4(2x - 3) + 2(x - 4)
Expand the terms
That's
20x - 50 + 10x = 8x - 12 + 2x - 8
Simplify
30x - 50 = 10x - 20
Group the constants at the right side of the equation
That's
30x - 10x = - 20 + 50
20x = 30
Divide both sides by 20
x = 3/2
Hope this helps you
Write 3 expressions containing exponents so that each expression equals 81
Answer:
9x9= 81
3x3x3x3=81
81 to the first power.
Step-by-step explanation:
I hope this helps in any way:)
Ifx + iy = 1
1+i/
1-i
prove that, x² + y² = 1
HI MATE
What is the missing term that makes these ratios equivalent? 1.5:3, 31.5:____
=========================================
Work Shown:
1.5/3 = 31.5/x
1.5x = 3*31.5 cross multiply
1.5x = 94.5
x = 94.5/1.5 dividing both sides by 1.5
x = 63
-----------
An alternative equation to solve is
1.5/31.5 = 3/x
1.5x = 31.5*3
1.5x = 94.5
The remainder of the steps are the same as in the previous section above.
Need help finding the length
Answer:
27
Step-by-step explanation:
First, we need to find x. We are given the perimeter, which is 2l + 2w, so from there, we have an equation of 2(4x-1) + 2(3x+2) = 100. By working through it, we get that x = 7. We're asked to find WX, so plug 7 into 4x - 1 and get 27.
Answer:
27 unitsStep-by-step explanation:
Perimeter of rectangle is 2(l) + 2(w).
The perimeter is given 100 units.
2(4x-1) + 2(3x+2) = 100
Solve for x.
8x-2+6x+4=100
14x+2=100
14x=98
x=7
Plug x as 7 for the side WX.
4(7) - 1
28-1
= 27
Find the smallest positive integer that is greater than $1$ and relatively prime to the product of the first 20 positive integers. Reminder: two numbers are relatively prime if their greatest common divisor is 1.
Answer:
23
Step-by-step explanation:
since the number is relatively prime to the product of the first 20 positive numbers
It number must not have factor of (1-20)
Therefore the smallest possible number is the next prime after 20
Answer is 23
The smallest positive integer that is greater than 1 and relatively prime to the product of the first 20 positive integers is,
⇒ 23
What is Greatest common factors?The highest number that divides exactly into two more numbers, is called Greatest common factors.
Since, The number is relatively prime to the product of the first 20 positive numbers means a number which must not have factor of (1 - 20).
Hence, The smallest possible number is the next prime after 20 is, 23
Therefore, The smallest positive integer that is greater than 1 and relatively prime to the product of the first 20 positive integers is,
⇒ 23
Learn more about the Greatest common factors visit:
https://brainly.com/question/219464
#SPJ2
simplify (3+3 / x(x+1) )(x-3 / x(x-1) )
Answer:
I think it is [tex]\frac{6x-18}{x^{4} }[/tex]
Step-by-step explanation:
Find three consecutive even integers such that the square of the third is 60 more that the square of the second
Answer:
-4,4,16
Step-by-step explanation:
They are all even integers.
-4^2=16
4^2=16
16^2=256
the square of the third,16 is 256 which is more than the square of the second,4=16
The three consecutive even integers such that the square of the third is 60 more than the square of the second are -18, -16 and -14.
What are integers?Any positive or negative number without fractions or decimal places is known as an integer, often known as a "round number" or "whole number."
Given:
Let the three even consecutive integers are 2n-2, 2n and 2n + 2.
According to the question,
So,
(2n + 2)² = (2n)² - 60
4n² + 4 + 8n = 4n² -60
8n = -64
n = -8
That means, the integers are -18, -16 and -14.
Therefore, the required even integers are -18, -16 and -14.
To learn more about the integers;
brainly.com/question/1768254
#SPJ5
What is a3 if an=64(12)n−1
Answer:
[tex]\huge\boxed{a_3=9,216}[/tex]
Step-by-step explanation:
[tex]a_n=64(12)^{n-1}\\\\\text{substitute}\ n=3:\\\\a_3=64(12)^{3-1}=64(12)^2=64(144)=9,216[/tex]
At the start of 2010 karim had rm5000
Step-by-step explanation:
Tell the whole question please
f(x)= x^2– 3x + 9
g(x) = 3x^3+ 2x^2– 4x – 9
Find (f - g)(x).
Answer:
[tex]\large \boxed{\sf \ \ -3x^3-x^2+x+18 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
[tex](f-g)(x)=f(x)-g(x)=x^2-3x+9-(3x^3+2x^2-4x-9)\\\\=x^2-3x+9-3x^3-2x^2+4x+9\\\\=\boxed{-3x^3-x^2+x+18}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
5/12 +( 5/12 + 3/4 ) =
Answer:
Proper: 15/4
Improper: 3 3/4
Step-by-step explanation:
Well to solve the following question,
5/12 + (5/12 + 3/4)
We solve the part in the parenthesis first,
5/12 + 3/4 = 14/4
Simplified -> 7/2
5/12 + 7/2
= 45/12
Simplified -> 15/4
Thus,
the answer is 15/4 or 3 3/4.
Hope this helps :)
Answer:
19/12= [tex]1 \frac{7}{12}[/tex]Step-by-step explanation:
[tex]\frac{5}{12}+\left(\frac{5}{12}+\frac{3}{4}\right)\\\\=\frac{5}{12}+\frac{5}{12}+\frac{3}{4}\\\\\mathrm{Add\:similar\:elements:}\:\frac{5}{12}+\frac{5}{12}=2\times \frac{5}{12}\\=2\times \frac{5}{12}+\frac{3}{4}\\\\=\frac{5\times \:2}{12}\\\\=\frac{10}{12}\\\\=\frac{10}{12}\\\\=\frac{5}{6}+\frac{3}{4}\\L.C.M =12\\\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}\\\\\frac{5}{6}=\frac{5\cdot \:2}{6\times \:2}=\frac{10}{12}\\\\\frac{3}{4}=\frac{3\times \:3}{4\times \:3}=\frac{9}{12}\\[/tex]
[tex]\\=\frac{10}{12}+\frac{9}{12}\\\mathrm{Since\:the\:denominators\:are\:equal\\\:combine\:the\:fractions}:\\\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}\\\\=\frac{10+9}{12}\\\\=\frac{19}{12}[/tex]
Given p(x) = x4 + x3 - 13x2 - 25x - 12
1. What is the remainder when p(x) is divided by X - 4?
2. Describe the relationship between the linear expression and the polynomial?
How do we describe the relationship?
Construct a 90% confidence interval for the true mean using the FPCF. (Round your answers to 4 decimal places.) The 90% confidence interval is from to
Answer:
The answer is below
Step-by-step explanation:
Twenty-five blood samples were selected by taking every seventh blood sample from racks holding 187 blood samples from the morning draw at a medical center. The white blood count (WBC) was measured using a Coulter Counter Model S. The mean WBC was 8.636 with a standard deviation of 3.9265. (a) Construct a 90% confidence interval for the true mean using the FPCF. (Round your answers to 4 decimal places.) The 90% confidence interval is from to
Answer:
Given:
Mean (μ) = 8.636, standard deviation (σ) = 3.9265, Confidence (C) = 90% = 0.9, sample size (n) = 25
α = 1 - C = 1 - 0.9 = 0.1
α/2 = 0.1/2 = 0.05
From the normal distribution table, The z score of α/2 (0.05) corresponds to the z score of 0.45 (0.5 - 0.05) which is 1.645
The margin of error (E) is given by:
[tex]E=z_{\frac{\alpha}{2} }*\frac{\sigma}{\sqrt{n} }\\ \\E=1.645*\frac{3.9265}{\sqrt{25} }=1.2918[/tex]
The confidence interval = μ ± E = 8.636 ± 1.2918 = (7.3442, 9.9278)
The 90% confidence interval is from 7.3442 to 9.9278
The equations x + 5 y = 10, 3 x minus y = 1, x minus 5 y = 10, and 3 x + y = 1 are shown on the graph below. On a coordinate plane, there are 4 lines. Green line goes through (0, negative 1) and (1, 2). Blue line goes through (0, 1) and (1, negative 2). Pink line goes through (0, 2), and (2, 1.5). Orange line goes through (negative 2, negative 2.5) and (2, negative 1.5). Which is the approximate solution for the system of equations x + 5 y = 10 and 3 x + y = 1? (–0.3, 2.1) (–0.3, –2.1) (0.9, –1.8) (0.9, 1.8)
Answer:
A: (–0.3, 2.1)
Answer:a
Step-by-step explanation:
10=12-x what would match this equation
Answer:
x=2
Step-by-step explanation:
12-10=2
Answer:
x=2
Step-by-step explanation:
10=12-x
Subtract 12 from each side
10-12 = 12-12-x
-2 =-x
Multiply by -1
2 = x
WHY CAN'T ANYONE HELP ME :( Solve the formula for the specified variable. tex]D=\frac{1}{4}fk for f.
Answer:
4d/k or [tex]\frac{4d}{k}[/tex]
Step-by-step explanation:
first multiply both sides by four
you will have 4d=fk
then divide by k
4d/k=f
Find the measure of the indicated angle to the nearest degree. Thanks.
Answer:
θ ≈ 40°
Step-by-step explanation:
Since, sinθ = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
cosθ = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
tanθ = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
In the picture attached,
Measures of adjacent side and opposite side of the triangle have been given. Therefore, tangent rule will be applied in the given triangle.
tanθ = [tex]\frac{19}{23}[/tex]
θ = [tex]\text{tan}^{-1}(\frac{19}{23})[/tex]
θ = 39.56
θ ≈ 40°
a hardware store ordered cartons of hammers at 100$ per carton and cartons wrenches at 150$ per carton if there were a total of 25 cartons in this order And the total cost of the order was 3,000$ how many cartons of hammers were ordered
Answer:
15 cartons of Hammers were ordered
Step-by-step explanation:
Cost per carton of Hammer = $100
Cost per carton of Wrenches = $150
Total Carton = 25
Total Cost = $3,000
Required
Determine the numbers of Hammer and Wrenches
Represent the hammers with H and the wrenches with W
So;
[tex]H + W = 25[/tex]
and
[tex]100H + 150W = 3000[/tex]
Make W the subject of formula in the first equation:
[tex]H + W = 25[/tex]
[tex]W = 25 - H[/tex]
Substitute 25 - H for W in the second equation
[tex]100H + 150(25 - H) = 3000[/tex]
[tex]100H + 3750 - 150H = 3000[/tex]
Collect Like Terms
[tex]100H - 150H = 3000 - 3750[/tex]
[tex]-50H = -750[/tex]
Divide both sides by -50
[tex]\frac{-50H}{=50} = \frac{-750}{-50}[/tex]
[tex]H = \frac{-750}{-50}[/tex]
[tex]H = 15[/tex]
Hence, 15 cartons of Hammers were ordered
Does the mean represent the center of the data? A. The mean represents the center. B. The mean does not represent the center because it is the smallest data value. C. The mean does not represent the center because it is the largest data value. D. The mean does not represent the center because it is not a data value. E. There is no mean age.
Answer:
A. The mean represents the center.
A. The median represents the center.
B. The mode does not represent the center because it is the smallest data value.
Step-by-step explanation:
Mean
(9 + 9 + 12 + 12 + 9 + 8 + 8 + 8 + 10 + 8 + 8 + 8 + 11)/13 = 120/13 = 9.2
The mean 9.2 and it represents the center of data.
Median
By arranging the set of data, the median, the median is the center number
8,8,8,8,8,8,(9),9,9,10,11,12,12
The median is 9 and it represents the center of data.
Mode
The mode is the number that appears most in the set of data.
The number that appears most in the set of data is 8 and does not represent the set of data.
Given the data set, 9, 9, 12, 12, 9, 8, 8, 8, 10, 8, 8, 8,11:
the mean is: 9.2the median is: 9the mode is: 8A. The mean does represents the center of the data set
Given the following data set:
9, 9, 12, 12, 9, 8, 8, 8, 10, 8, 8, 8, 11
Let's find the mean, median, and mode.
Mean of the data set:
Mean = sum of all values / number of values
Mean = [tex]\frac{9 + 9 + 12 + 12 + 9 + 8 + 8 + 8 + 10 + 8 + 8 + 8 + 11}{13}[/tex]
Mean = [tex]\frac{120}{13} = 9.2[/tex]
Median of the data set:
Order the data from the least to the greatest then find the middle value.
Thus:8, 8, 8, 8, 8, 8, (9,) 9, 9, 10, 11, 12, 12
The middle value is 9.
The median = 9Mode of the data set:
The mode = the data value that appears most
8 appeared the most, therefore, the mode = 8
If you observe, you will note that the mean and median of the data set are similar. We can as well conclude that the mean represents the center of the data set.
In summary, given the data set, 9, 9, 12, 12, 9, 8, 8, 8, 10, 8, 8, 8,11:
the mean is: 9.2the median is: 9the mode is: 8A. The mean does represents the center of the data set
Learn more here:
https://brainly.com/question/16882439
what are the coordinates of point b on ac such that ab=2/5ac
Answer:
[tex](-\frac{36}{7},\frac{40}{7})[/tex]
Step-by-step explanation:
Coordinates of points A and C are (-8, 6) and (2, 5).
If a point B intersects the segment AB in the ratio of 2 : 5
Then coordinates of the point B will be,
x = [tex]\frac{mx_2+nx_1}{m+n}[/tex]
and y = [tex]\frac{my_2+ny_1}{m+n}[/tex]
where [tex](x_1, y_1)[/tex] and [tex](x_2,y_2)[/tex] are the coordinates of the extreme end of the segment and a point divides the segment in the ratio of m : n.
For the coordinates of point B,
x = [tex]\frac{2\times 2+(-8)\times 5}{2+5}[/tex]
= [tex]-\frac{36}{7}[/tex]
y = [tex]\frac{2\times 5+5\times 6}{2+5}[/tex]
= [tex]\frac{40}{7}[/tex]
Therefore, coordinates of pint B will be,
[tex](-\frac{36}{7},\frac{40}{7})[/tex]
A sample of bacteria is growing at an hourly rate of 10% compounded continuously. The sample began with 4 bacteria. How many bacteria will be in the sample after 18 hours?
Answer:
24
Step-by-step explanation:
The computation of the number of bacteria in the sample after 18 hours is shown below:
We assume the following things
P = 4 = beginning number of bacteria
rate = r = 0.1
Now
We applied the following formula
[tex]A = Pe^{rt}[/tex]
[tex]= 4\times e^{18\times0.1}[/tex]
[tex]=4e^{1.8}[/tex]
[tex]= 4\times6.049647464[/tex]
= 24
We simply applied the above formula to determine the number of bacteria after the 18 hours
Adam is going to cook a turkey for 14 people
Answer:
they divied the turkey into 14 pices
Step-by-step explanation: