Answer:
= $ [tex] \mathsf{1125}[/tex]Step-by-step explanation:
[tex] \mathrm{Given}[/tex],
[tex] \mathrm{Discount\% = 20\%}[/tex]
[tex] \mathrm{Marked \: price = 1250}[/tex]
[tex] \mathrm{Now \: let's \: find \: the \: discount \: amount}[/tex]
[tex] \mathrm{discount \: amount = dis\% \: of \: MP}[/tex]
[tex] \mathrm { = 20\% \: of \: 1250}[/tex]
[tex] \mathrm{ = 250}[/tex]
[tex] \mathrm{let's \: find \: the \: selling \: price}[/tex]
[tex] \mathrm{ = MP \: - \: discount \: amount}[/tex]
[tex] \mathrm{ = 1250 - 250}[/tex]
= $ [tex] \mathrm{1000}[/tex]
[tex] \mathrm{lets \: find \: the \: Vat \: amount}[/tex]
[tex] \mathrm{vat \: amount = vat\% \: of \: sp}[/tex]
[tex] \mathrm{ = 12.5\% \: of \: 1000}[/tex]
= $ [tex] \mathrm{ 125}[/tex]
[tex] \mathrm{Now \: finally \: let's \: find \: the \: selling \: price \: with \: vat}[/tex]
[tex] \mathrm{selling \: price \: + \: vat \: amount}[/tex]
[tex] \mathrm{ = 1000 + 125}[/tex]
= $ [tex] \mathrm{1125}[/tex]
Therefore, The final sale of the necklace is $ 1125
Hope I helped
Best regards!
HELLPPPPPPPPPPPPP Solve x2 - 16x + 60 = -12 by completing the steps. First, subtract 60 from each side of the equation. Next, add 64 to each side of the equation to complete the square. Now, write x² - 16x + 64 = -8 as ✔ (x - 8)² = -8
Answer:
x = 8 ± 2i[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Given
x² - 16x + 60 = - 12 ( subtract 60 from both sides )
x² - 16x = - 72
To complete the square
add ( half the coefficient of the x- term )² to both sides
x² + 2(- 8)x + 64 = - 72 + 64, thus
(x - 8)² = - 8 ( take the square root of both sides )
x - 8 = ± [tex]\sqrt{-8}[/tex] = ± 2i[tex]\sqrt{2}[/tex] ( add 8 to both sides )
x = 8 ± 2i[tex]\sqrt{2}[/tex]
The solution of the given expression is ±2√2i+8
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Given that
x² - 16x + 60 = - 12
Then subtract 60 from both sides;
x² - 16x = - 72
To complete the square then add ( half the coefficient of the x- term )² to both sides
x² + 2(- 8)x + 64 = - 72 + 64,
(x - 8)² = - 8 ( take the square root of both sides )
x = ±2√2i+8
Learn more about equations here;
https://brainly.com/question/25180086
#SPJ2
The resale value of a certain industrial machine decreases over a 8-year period at a rate that changes with time. When the machine is x years old, the rate at which its value is changing is 200(x - 8) dollars per year. By how much does the machine depreciate during the fifth year
Answer: The machine depreciates during the fifth year by $4000.
Step-by-step explanation:
Given: The resale value of a certain industrial machine decreases over a 8-year period at a rate that changes with time.
When the machine is x years old, the rate at which its value is changing is 200(x - 8) dollars per year.
Then, the machine depreciates A(x) during the fifth year as
[tex]A(x) =\int^{5}_1200(x - 8)\ dx\\\\=200|\frac{x^2}{2}-8x|^{5}_1\\\\=200[\frac{5^2}{2}-\frac{1^2}{2}-8(5)+8(1)]\\\\=200 [12-32]\\\\=200(-20)=-4000[/tex]
Hence, the machine depreciates during the fifth year by $4000.
The half-life of a radioactive isotope is the time it takes for a quantity of the Isotope to be reduced to half its initial mass. Starting with 210 grams of a
radioactive isotope, how much will be left after 6 half-lives?
Round your answer to the nearest gram
Answer:
after 6 half lives: 210(1/2)^6= 3.28125
Step-by-step explanation:
isotope to be reduced to half its initial mass at first:
210(1/2)=105 half it is original weight
after second life: 210(1/2)^2=105(1/2)=52.5
after third : 210(1/2)^3=52.5/2=26.25
after fourth : 26.25/2=12.125
after fifth : 13.125/2
after 6 half lives: 210(1/2)^6= 3.28125
if 5x - 17 = -x +7, then x =
Answer:
x=4
Step-by-step explanation:
5x - 17 = -x +7
Add x to each side
5x+x - 17 = -x+x +7
6x -17 = 7
Add 17 to each side
6x-17+17 = 7+17
6x =24
Divide each side by 6
6x/6 = 24/6
x = 4
Answer:
4
Step-by-step explanation:
5x - 17 = -x + 7
Add x on both sides.
5x - 17 + x = -x + 7 + x
6x - 17 = 7
Add 17 on both sides.
6x - 17 + 17 = 7 + 17
6x = 24
Divide both sides by 6.
(6x)/6 = 24/6
x = 4
At noon a passenger train leaves the Dupont Railway station and travels due east for 2 hours. At 12:45 pm the same day a second passenger train leaves the same railway station and travels due west for 1 hour and 15 minutes at a speed 10 kilometers per hour slower than the first passenger train. At 2pm the two trains were 215 kilometers apart. How fast had each train been traveling
Answer:
The speed of the first train is 70 km/hr
The speed of the second train is 60 km/hr
Step-by-step explanation:
For the first train:
Travel time = 2 hours
The speed = ?
we designate the speed as V
For the second train:
The travel time = 1 hr 15 min = 1.25 hrs (15 minutes = 15/60 hrs)
speed = 10 km/hr slower than that of the first train, we can then say
the speed = V - 10
The total distance traveled by both trains in the opposite direction of one another is 215 km
we can put this problem into an equation involving the distance covered by the trains.
we know that distance = speed x time
the distance traveled by the first train will be
==> 2 hrs x V = 2V
the distance traveled by the second train will be
==> 1.25 hrs x (V - 10) = 1.25(V - 10)
Equating the above distances to the total distance between the trains, we'll have
2V + 1.25(V - 10) = 215
2V + 1.25V - 12.5 = 215
3.25V = 215 + 12.5
3.25V = 227.5
V = 227.5/3.25 = 70 km/hr this is the speed of the first train
Recall that the speed of the second train is 10 km/hr slower, therefore
speed of the second train = 70 - 10 = 60 km/hr
The speed of the trains are 70km/hr and 60km/hr respectively.
The distance of the first train will be represented by: = 2 × D = 2D
The distance of the second train will be represented by: = 1.25 × (D - 10) = 1.25(D - 10).
Based on the information given in the question, the equation to solve the question will be:
2D + 1.25(D - 10) = 215
Collect like terms
2D + 1.25D - 12.5 = 215
3.25D = 215 + 12.5
3.25D = 227.5
D = 227.5/3.25
D = 70km/hour
The speed of the second train will be:
= 70 - 10 = 60km per hour.
Read related link on:
https://brainly.com/question/24720712
Determine whether the following statement is true or false. If it is false, rewrite it as a true statement. A double-blind experiment is used to increase the placebo effect. Choose the correct answer below. A. The statement is false. Double blinding has no effect on the placebo effect. B. The statement is false. Double blinding is used to increase the randomization. C. The statement is true. D. The statement is false. Double blinding is used to decrease the placebo effect.
Answer:
D. The statement is false. Double blinding is used to decrease the placebo effect.
Step-by-step explanation:
In a double blind study, neither researchers nor the participants know which group is receiving the placebo. If the researchers do not know which group took the medication, they cannot influence the behavior of this group, knowingly or nor, by suggesting how they should behave.
Therefore, a double-blind experiment is used to decrease the placebo effect.
Use the minimum and maximum data entries and the number of classes to find the class width, the lower class limits, and the upper class limits. min = 14, max = 121, 8 classes
Answer:
The class width is [tex]C_w \approx 13[/tex]
Step-by-step explanation:
From the question we are told that
The upper class limits is [tex]max = 121[/tex]
The lower class limits is [tex]min = 14[/tex]
The number of classes is [tex]n = 8 \ classes[/tex]
The class width is mathematically represented as
[tex]C_w = \frac{max - min}{n }[/tex]
substituting values
[tex]C_w = \frac{121 - 14}{8 }[/tex]
[tex]C_w = 13.38[/tex]
[tex]C_w \approx 13[/tex]
Since
What is the slope of the line
described by -4X + 2Y = 16?
A. -2
B. -4
C. 4
D. 2
E. 16
Answer: THe slope is 2
SO answer d
Step-by-step explanation:
-4X + 2Y = 16 add 4x to the other side so equation is
2y=16+4x divided by 2
y=8+2x
A restaurant gat an average of 14 calls in a 2 hr time period. What is the probability that at most 2 calls in 45 min period
Answer:
0.10512
Step-by-step explanation:
Given the following :
Mean number of calls(μ) in 2 hours = 14
2 hours = 60 * 2 = 120 minutes
Average number of calls in 45 minutes :
= (45 / 120) * 14
= 0.375 * 14
= 5.25
Now find P( x ≤ 2) = p(x = 0) + p( x = 1) + p(x = 2)
Using the poisson probability formula:
P(x, μ) = [(e^-μ) * (μ^x)] / x!
Where :
e = euler's constant
μ = 5.25
x = 0, 1, 2
Using the online poisson probability calculator :
P(x, 5.25) = P( x ≤ 2) = p(x = 0) + p(x = 1) + p(x = 2)
P(x, 5.25) = P( x ≤ 2) = 0.00525 + 0.02755 + 0.07232 = 0.10512
Use an appropriate series to find Taylor series of the given function centered at the indicated value of a. Write your answer in summation notation.
sinx, a= 2π
Answer:
The Taylor series is [tex]$$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
Step-by-step explanation:
From the question we are told that
The function is [tex]f(x) = sin (x)[/tex]
This is centered at
[tex]a = 2 \pi[/tex]
Now the next step is to represent the function sin (x) in it Maclaurin series form which is
[tex]sin (x) = \frac{x^3}{3! } + \frac{x^5}{5!} - \frac{x^7}{7 !} +***[/tex]
=> [tex]sin (x) = $$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
Now since the function is centered at [tex]a = 2 \pi[/tex]
We have that
[tex]sin (x - 2 \pi ) = (x-2 \pi ) - \frac{(x - 2 \pi)^3 }{3 \ !} + \frac{(x - 2 \pi)^5 }{5 \ !} - \frac{(x - 2 \pi)^7 }{7 \ !} + ***[/tex]
This above equation is generated because the function is not centered at the origin but at [tex]a = 2 \pi[/tex]
[tex]sin (x-2 \pi ) = $$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x - 2 \pi)^{2n+1}][/tex]
Now due to the fact that [tex]sin (x- 2 \pi) = sin (x)[/tex]
This because [tex]2 \pi[/tex] is a constant
Then it implies that the Taylor series of the function centered at [tex]a = 2 \pi[/tex] is
[tex]$$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
√9m^2n^2 + 2√m^2n^2 - 3mn
Answer:
I think it is
Step-by-step explanation:
Answer:
5n√2m^ - 3mn
Step-by-step explanation:
mark wants to invest $10,000 for his daughter’s wedding. Some will go into a short term CD that pays 12% and the rest in a money market savings account that pays 5% interest. How much should he invest at Each rate if he wants to earn $1095.00 in interest in one year.
solve the rational equation 5/x = 4x+1/x^2
Answer:
x = 1
Step-by-step explanation:
Set up the rational expression with the same denominator over the entire equation.
Since the expression on each side of the equation has the same denominator, the numerators must be equal
5x =4x+1
Move all terms containing x to the left side of the equation.
Hope this can help you
A rectangle is to be inscribed in a right triangle having sides of length 6 in, 8 in, and 10 in. Find the dimensions of the rectangle with greatest area assuming the rectangle is positioned as in Figure 1. Figure1
Answer: width = 2.4 in, length = 5
Step-by-step explanation:
The max area of a right triangle is half the area of the original triangle.
Area of the triangle = (6 x 8)/2 = 24
--> area of rectangle = 24 ÷ 2 = 12
Next, let's find the dimensions.
The length is adjacent to the hypotenuse. Since we know the area is half, we should also know that the length will be half of the hypotenuse.
length = 10 ÷ 2 = 5
Use the area formula to find the width:
A = length x width
12 = 5 w
12/5 = w
2.4 = w
The dimensions of the rectangle with greatest area is length is 3 inch and the width is 4 inch.
Let the length and width of the rectangle be x and y.
Then Area of the rectangle = xy
Now, from the triangle we can conclude that
[tex]\frac{6-x}{y} =\frac{6}{8} \\y=8(\frac{6-x}{6} ).[/tex]
Put the value of y in Area we get
[tex]A(x)=x\frac{8}{6} (6-x)\\A(x)=\frac{8}{6}(6x-x^{2} )\\[/tex]
Differentiating it w.r.t x we get
[tex]A'(x)=\frac{8}{6}(6-2x )\\A''(x)=\frac{8}{6}(0-2 )\\A''(x)=\frac{-8}{3}[/tex]
Put A'(x)=0 for maximum /minimum value
[tex]A'(x)=0\\\frac{8}{6}(6-2x)=0\\x=3[/tex]
Now, [tex]A''(3)=-\frac{8}{3} <0[/tex]
Therefore the area of the rectangle is maximum for x=3 inch
Now,
[tex]y=\frac{8}{6} (6-3)\\y=4[/tex]
Thus the dimensions of the rectangle with greatest area is 3 inch by 4 inch.
Learn more:httpshttps://brainly.com/question/10678642
In the equation, the value of a is:
Answer:
Please check if the answer is a = 4 or not
67.805 what is the value of the 0 help please asap!
Answer:
hundreths
Step-by-step explanation:
After the decimal there is tenths, hundreths thousandnths, tens of thousands e.t.c
Answer:
Hello! The answer will be hundredths.
Step-by-step explanation:
The 5 means the thousandths.
The 0 means the hundredths.
The 8 means the tenths.
The 7 means the ones
And the 6 means the tens.
Hope this helps! :)
( below I attached a picture, which might be helpful.)
Betty has $33 to buy plants for her greenhouse. Each plant costs $8. How
many plants can she buy? Do not include units in your answer.
Answer:
4 plants
Step-by-step explanation:
If betty has $33 dollars and each plant is $8, than 33/8 ≈ 4
(8 * 4 is 32)
She will have one dollar left but she can't buy another plant since that's not enough.
Answer:
4 plants
Step-by-step explanation:
Take the amount of money she has and divide by the cost per plant
33/8
The amount is 4 with 1 dollar left over
4 plants
144 + h^2 = 225 WHAT THE HECK DOES ^ MEAN!???
Answer:
h^2 means h²
(h squared)
Step-by-step explanation:
Step 1: Write equation
144 + h² = 225
Step 2: Subtract 144 on both sides
h² = 81
Step 3: Take square root
√h² = √81
h = 9
Which table represents the inverse of the function defined above?
Hello!
Answer:
Table B.
Step-by-step explanation:
An inverse of a function means that the x and y values are swapped in comparison to the original function. For example:
We can use points on the table:
[tex]f(x)[/tex] = (7, 21)
The inverse of this function would 7 as its y value, and 21 as its x value:
[tex]f^{-1} (x)[/tex] = (21, 7)
The only table shown that correctly shows this relationship is table B.
Use Bayes' theorem to find the indicated probability 5.8% of a population is infected with a certain disease. There is a test for the disease, however the test is not completely accurate. 93.9% of those who have the disease test positive. However 4.1% of those who do not have the disease also test positive (false positives). A person is randomly selected and tested for the disease. What is the probability that the person has the disease given that the test result is positive?
a. 0.905
b. 0.585
c. 0.038
d. 0.475
Answer:
b. 0.585
Step-by-step explanation:
According to Bayes' theorem:
[tex]P(A|B)=\frac{P(B|A)*P(A)}{P(B)}[/tex]
Let A = Person is infected, and B = Person tested positive. Then:
P(B|A) = 93.9%
P(A) = 5.8%
P(B) = P(infected and positive) + P(not infected and positive)
[tex]P(B) = 0.058*0.939+(1-0.058)*0.041\\P(B)=0.09308[/tex]
Therefore, the probability that a person has the disease given that the test result is positive, P(A|B), is:
[tex]P(A|B)=\frac{0.939*0.058}{0.09308}\\P(A|B)=0.585[/tex]
The probability is 0.585.
pleaseeee helppppp meeeee pleaseeeeee
Answer:
(28/33+28 ) *100
Step-by-step explanation:
(28/33+28 ) *100
(28/61)*100
Answer:
it's 2
Step-by-step explanation:
I did it before
Con proceso por favor
Answer:se
Step-by-step explanation:
What are the next three terms in the sequence -27, -19, -11, -3, 5, ...?
Answer:
13, 21
Step-by-step explanation:
Add 8 to the next number from the left to the right.
Answer:
The next three numbers in the sequence are: 13, 21, 29.
Step-by-step explanation:
Common Pattern: +8
-27 +8 = -19
-19 + 8 = -11
-3 + 8 = 5
5 + 8 = 13
13 + 8 = 21
21 + 8 = 29
Sketch the region that corresponds to the given inequality. HINT [See Example 1.] 2x + y ≤ 10 Say whether the region is bounded or unbounded. The region is bounded. The region is unbounded. Find the coordinates of all corner points (if any). (If an answer does not exist, enter DNE.)
Answer:
See the attachment for sketch
Thr region is unbounded
DNE
Step-by-step explanation:
y≤ -2x + 10
The inequality is a straight line and region marked by the inequality. It has no boundaries. The boundaries extend to infinity. So the region is unbounded. Unbounded region has no corner points.
People start waiting in line for the release of the newest cell phone at 5\text{ a.m.}5 a.m.5, start text, space, a, point, m, point, end text The equation above gives the number of people, PPP, in line between the hours, hhh, of 6\text{ a.m.}6 a.m.6, start text, space, a, point, m, point, end text and 11\text{ a.m.}11 a.m.11, start text, space, a, point, m, point, end text, when the doors open. Assume that 6\text{ a.m.}6 a.m.6, start text, space, a, point, m, point, end text is when time h = 1h=1h, equals, 1. What does the 232323 mean in the equation above?
Answer:
There are 23 people in line at 6:00 A.M
Step-by-step explanation:
When you plug in h=1, we get 23 people
h corresponds with the time 6:00 am, as a result there are 23 people in line
The equation represents how many people will come as the hour increases.
23 represents the initial amount of people in line.
(got this from Khan academy too:))
Determine the measure of the unknown variables.
Answer:
75
Step-by-step explanation:
x = 75°
yes x = 75°(OPPOSITE ANGLES ARE EQUAL)
..
The smaller of two numbers is one-half the larger, and their sum is 27. Find the numbers. Answer: The numbers are ___ ___ ___
Answer:
the smaller is 9 while the digger is 18
A theater is presenting a program on drinking and driving for students and their parents or other responsible adults. The proceeds will be donated to a local alcohol information center. Admission is $6.00 for adults and $3.00 for students. However, this situation has two constraints: The theater can hold no more than 240 people and for every two adults, there must be at least one student. How many adults and students should attend to raise the maximum amount of money?
Answer:
160 adults and 80 students
Step-by-step explanation:
With the information from the exercise we have the following system of equations:
Let x = number of students; y = number of adults
I want to maximize the following:
z = 3 * x + 6 * y
But with the following constraints
x + y = 240
y / 2 <= x
As the value is higher for adults, it is best to sell as much as possible for adults.
So let's solve the system of equations like this:
y / 2 + y = 240
3/2 * y = 240
y = 240 * 2/3
y = 160
Which means that the maximum profit is obtained when there are 160 adults and 80 students, so it is true that added to 240 and or every two adults, there must be at least one student.
PLLZZZZ help me find x you are AWSOME!! I need this ASAP
Answer:
27°
Step-by-step explanation:
D is 72° because it alternates with B, alternate angles are equal.
2x+72°+2x= 180° because it is a straight line.
4x+72°=180°
4x=108°
x=27°
Find the value of annuity if the periodic deposit is $250 at 5% compounded quarterly for 10 years
Answer:
The value of annuity is [tex]P_v = \$ 7929.9[/tex]
Step-by-step explanation:
From the question we are told that
The periodic payment is [tex]P = \$ 250[/tex]
The interest rate is [tex]r = 5\% = 0.05[/tex]
Frequency at which it occurs in a year is n = 4 (quarterly )
The number of years is [tex]t = 10 \ years[/tex]
The value of the annuity is mathematically represented as
[tex]P_v = P * [1 - (1 + \frac{r}{n} )^{-t * n} ] * [\frac{(1 + \frac{r}{n} )}{ \frac{r}{n} } ][/tex] (reference EDUCBA website)
substituting values
[tex]P_v = 250 * [1 - (1 + \frac{0.05}{4} )^{-10 * 4} ] * [\frac{(1 + \frac{0.05}{4} )}{ \frac{0.08}{4} } ][/tex]
[tex]P_v = 250 * [1 - (1.0125 )^{-40} ] * [\frac{(1.0125 )}{0.0125} ][/tex]
[tex]P_v = 250 * [0.3916 ] * [\frac{(1.0125)}{0.0125} ][/tex]
[tex]P_v = \$ 7929.9[/tex]