To make it easier, you can convert 7/20 to a decimal, and as a decimal it is 0.35. 0.42*0.35=0.147, so .42*7/20=0.147.
Answer:
0.147
Step-by-step explanation:
0.42 * 7/20
Well, 0.42 = 42/100. Now we have both numbers as fractions.
We can simplify 42/100 to 21/50
Therefore we have 7/20 * 21/50
To multiply fractions multiply the numerators together and multiply the denominators together.
This gives: 147 / 1000
Which is equal to 0.147
Therefore 0.42 * 7/20 = 0.147
Which statement describes this system of equations? 9x – 6y = 15, 3x – 2y = 5 The equations in the system are equivalent equations. There is no solution to the system of equations. The system of equations has one solution at (3, 2). The system of equations has one solution at (5, 5).
Answer:
There is no solution to the systems of equation.
Step-by-step explanation:
Graph the system by using y=mx+b
Both systems are y=2/5x+5/2.
Answer:
that guy is wrong. its the first option.
Step-by-step explanation:
i just took it
Alex has built a garden shed in the shape shown.
(A) Alex plans to paint the outside of the shed, including the roof but not the floor. One can of paint can cover 6m^2 . How many cans of paint will Alex need.
(B)If one can of paint costs $25.50, what will the cost be including 13% tax.
Answer:
A) 22 cans required to paint
B) Including 13% tax, cost of painting = $633.93
Step-by-step explanation:
As we check the figure, we have a composite figure.
Cuboid on the base and a pyramid on the top of it.
To find the area to be painted, we have 4 rectangular faces of cuboid with dimensions 6m [tex]\times[/tex] 3m.
And 4 triangular faces of pyramid with Base = 6m and Height 5m.
So, total area to be painted = 4 rectangular faces + 4 triangular faces
Area of rectangle = Length [tex]\times[/tex] Width = 6 [tex]\times[/tex] 3 = 18 [tex]m^2[/tex]
Area of triangle = [tex]\frac{1}{2}\times Base \times Height =\frac{1}{2}\times 6 \times 5 = 15\ m^{2}[/tex]
Total area to be painted = 4 \times 18 + 4 \times 15 = 72 + 60 = 132 [tex]m^2[/tex]
A) Area painted by 1 can = 6 [tex]m^2[/tex]
Cans required to paint 132 [tex]m^2[/tex] = [tex]\frac{132}{6} = 22\ cans[/tex]
B)
Cost of 1 can = $25.50
Cost of 22 can = $25.50 [tex]\times[/tex] 22 = $561
Including tax of 13% = $561 + $561 [tex]\times \frac{13}{100}[/tex] = $561 + $72.93 = $633.93
So, the answers are:
A) 22 cans required to paint
B) Including 13% tax, cost of painting = $633.93
2. Compare the function ƒ(x) = –x^2 + 4x – 5 and the function g(x), whose graph is shown. Which function has a greater absolute maximum (vertex)?
Answer:
g(x)
Step-by-step explanation:
The vertex of g(x) as shwon in the graph is located in the point wich coordinates are (3.5,6.25) approximatively
We need to khow the coordinates of f(x) vertex
Here is a way without derivating:f(x) = -x² + 4x -5
let a be the leading factor, b the factor of x and c the constant:
a= -1b= 4c= -5The coordinates of a vertex are: ([tex]\frac{-b}{2a}[/tex] , f([tex]\frac{-b}{2a}[/tex]) )
-b/2a = -4/ (-1*2) = 4/2 = 2
f(2)= -2²+4*2-4 = -4+4-4 = -4
obviosly f(x) has a minimum wich less than g(x)'s maximum
Answer:
Step-by-step explanation:
g(x) i think
Question
Given that tan(0) =5/12
and 0 is in Quadrant III. what is cos(0)? Write your answer in exact form. Do not round.
Provide your answer below:
Answer:
cosΘ = - [tex]\frac{12}{13}[/tex]
Step-by-step explanation:
Given that Θ is in the third quadrant then cosΘ < 0
Given
tanΘ = [tex]\frac{5}{12}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]
Then 5 and 12 are the legs of a right triangle (5- 12- 13 ) with hypotenuse = 13
Thus
cosΘ = - [tex]\frac{adjacent}{hypotenuse}[/tex] = - [tex]\frac{12}{13}[/tex]
Find C and round to the nearest tenth.
Answer:
29.4 degrees
Step-by-step explanation:
i divided sin by 55 degrees
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 80% of the time if the person has the virus and 10% of the time if the person does not have the virus. (This 10% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive".
(a) Using Bayes’ Theorem, when a person tests positive, determine the probability that the person is infected.
(b) Using Bayes’ Theorem, when a person tests negative, determine the probability that the person is not infected.
Answer:
A) P(A|B) = 0.01966
B) P(A'|B') = 0.99944
Step-by-step explanation:
A) We are told that A is the event "the person is infected" and B is the event "the person tests positive".
Thus, using bayes theorem, the probability that the person is infected is; P(A|B)
From bayes theorem,
P(A|B) = [P(A) × P(B|A)]/[(P(A) x P(B|A)) + (P(A') x P(B|A'))]
Now, from the question,
P(A) = 1/400
P(A') = 399/400
P(B|A) = 0.8
P(B|A') = 0.1
Thus;
P(A|B) = [(1/400) × 0.8)]/[((1/400) x 0.8) + ((399/400) x (0.1))]
P(A|B) = 0.01966
B) we want to find the probability that when a person tests negative, the person is not infected. This is;
P(A'|B') = P(Not infected|negative) = P(not infected and negative) / P(negative) = [(399/400) × 0.9)]/[((399/400) x 0.9) + ((1/400) x (0.2))] = 0.99944
Hi I need this question please asap.
Sanjay makes souvenir pyramids by pouring liquid into a pyramid-shaped mold. The mold he uses has a square base with a side length of 10\text{ cm}10 cm10, start text, space, c, m, end text, and the height of the mold is 10\text{ cm}10 cm10, start text, space, c, m, end text. Sanjay wants to make a smaller pyramid using the same mold, so he plans to fill the mold 2\text{ cm}2 cm2, start text, space, c, m, end text from the top. What is the approximate volume of this smaller pyramid?
Answer:
170.67
Step-by-step explanation:
Answer:
171
Step-by-step explanation:
Modeling the situation
If we fill the pyramid mold 2\text{ cm}2 cm2, start text, space, c, m, end text from the top, we have a smaller pyramid that's similar to the original pyramid.
Since the pyramids are similar, we can set up a proportional equation to find the side lengths and height of the smaller pyramid, and then find its volume.
Hint #22 / 4
Base and height of smaller pyramid
The height of the smaller pyramid is 10-2=8\text{ cm}10−2=8 cm10, minus, 2, equals, 8, start text, space, c, m, end text.
We can solve for the length \blueE{\ell}ℓstart color #0c7f99, ell, end color #0c7f99 in the smaller pyramid using a proportional equation.
\begin{aligned} \dfrac{\blueE{\ell}}{10} &= \dfrac{8}{10} \\\\ \blueE{\ell} &= \blueE{8} \end{aligned}
10
ℓ
ℓ
=
10
8
=8
Hint #33 / 4
Volume of smaller pyramid
\begin{aligned} \text{volume}_{\text{pyramid}} &= \dfrac13(\text{base area})(\text{height}) \\\\ &= \dfrac13 \cdot (\blueE{\ell})^2\cdot (\text{height}) \\\\ &= \dfrac13 \cdot \blueE{8}^2\cdot(8)\\\\ &= \dfrac{512}{3}=170.\overline{6}\\\\ &\approx \purpleD{170.67} \end{aligned}
volume
pyramid
=
3
1
(base area)(height)
=
3
1
⋅(ℓ)
2
⋅(height)
=
3
1
⋅8
2
⋅(8)
=
3
512
=170.
6
≈170.67
Hint #44 / 4
To the nearest cubic centimeter, the volume of the smaller pyramid is about 171\text{ cm}^3171 cm
3
171, start text, space, c, m, end text, cubed.
For the functions f(x)=x4−x3−7x2+9x−2 and g(x)=x−1, find (f/g)(x) and (f/g)(2).
Answer:
[tex](f/g)(x)=\frac{x^4-x^3-7x^2+9x-2}{x-1} =x^3-7x+2\,\,\,for\,\,x\neq 1[/tex]
[tex](f/g)(2)=-4[/tex]
Step-by-step explanation:
[tex](f/g)(x)=\frac{x^4-x^3-7x^2+9x-2}{x-1} =x^3-7x+2\,\,\,for\,\,x\neq 1[/tex] and undefined for x = 1.
Notice that (x-1) is in fact a factor of f(x), so the quotient of the two functions introduces a "hole" for the new function at x = 1.
f(2) can be found by simply evaluating the expression for x = 2:
[tex](f/g)(2)=2^3-7(2)+2=-4[/tex]
A system of equations is shown below: Equation A: 3c = d − 8 Equation B: c = 4d + 8 Which of the following steps should be performed to eliminate variable d first?
Answer:
multiplying the equation A
Step-by-step explanation:
3c=d-8 ####### *4
+ c=4d + 8
After that you will get the value of c and d.
Answer:
Multiply equation A by -4
Step-by-step explanation:
3c = d - 8
c = 4d + 8
Multiply equation A by -4.
-12c = -4d + 32
c = 4d + 8
Add the equations.
-11c = 40
Variable d is eliminated.
g The weight of a certain type of apple is normally distributed with a mean of 10.56 ounces and standard deviation of 0.9 ounces. What is the first quartile, Q subscript 1, of the weight of this type of apple?
Answer:
First Quartile Q1 = 9.9525
Step-by-step explanation:
For a standard normal distribution,
First quartile Q1 = μ - 0.675 σ
From the question mean μ = 10.56
Standard deviation σ = 0.9
Plugging these values into the first quartile equation, we have;
Q1 = 10.56 -0.675(0.9)
Q1 = 10.56 - 0.6075
Q1 = 9.9525
Is (4,2) a solution of the system?
Answer:
No.
Step-by-step explanation:
Substitute 4 (as x) and 2 (as y) into the 2 equations to see if they fit.
y = x - 2
2 = 4 - 2
2 = 2
The first equation is true for (4,2).
Now try the 2nd one.
y = 3x + 4
2 = 3(4) + 4
2 ≠ 16
So the 2nd equation is not true for (4,2).
Either one not true makes the solution incorrect.
No, (4, 2) is not the solution for system of Equation.
What is Solution to a Equation?An assignment of values to the unknown variables that establishes the equality in the equation is referred to as a solution.
To put it another way, a solution is a value or set of values (one for each unknown) that, when used to replace the unknowns, cause the equation to equal itself.
Given:
Equations:
y= x-2 ............(1)
y= 3x+ 4.................(2)
Put the value of y from equation 1 to equation (2), we get
x- 2 = 3x+ 4
x- 3x = 4+ 2
-2x = 6
x= -3
and, y= -3 -2 = -5
So, the solution to the system is (-3, -5)
and, (4, 2) can only satisfy the Equation y= x-2 but does not satisfy y= 3x+ 4.
Learn more about Solution of Equation here:
https://brainly.com/question/545403
#SPJ2
what is this? 15.8 = d/25
Answer:
395
Step-by-step explanation:
15.8=d/25
multiply both sides by 25 to remove the denominator
25×15.8=d
d=395
Please help!! Which inequality is graphed on the coordinate plane?
Answer:
The correct answer that corresponds with that graph is B: y ≤-3x+2.
Step-by-step explanation:
1) First we need to figure out what kind of symbol the line is, greater or less than equations (< , >) then the line are dotted,and if its greater than or equal to or less than or equal to equations ( ≤, ≥) since the line are solid.
2) Now we need to figure out which side should be shaded, if the symbol is a less than or a less than or equal to then the shaded side should be on the left, if the symbol is a greater than or a greater than or equal then the shaded side should be on the right.
In this case we have a solid line and a shaded left side which mean the symbol that been used here is a less than or equal to symbol ( ≤ ).
So our answer is B: y ≤-3x+2.
Remember:
- greater or less than equations (< , >) = dotted line
- greater than or equal to or less than or equal to equations ( ≤, ≥) = solid line
- less than or a less than or equal to = shaded left side
- greater than or greater than or equal to = shaded right side
21. In the figure given below, AC is parallel to DE. Find the valuesof xy and z and hence find the 2DBE.
21-70X
509
Answer:
X= 50°
Y= 70°
Z= 30°
BDE= 30°
2BDE= 60°
Step-by-step explanation:
(2x -70 )+z+(2x+20)=180...(sum of angle on a straight line)
2x -70 = BDE... alternate angles
Y + (2x-70)+(50+x-20) = 180...(sum of angles in a triangle)
X-20 = z ... alternate and opposite angles
(2x -70 )+z+(2x-+20)=180
2x-70 + x-20 +2x +20= 180
5x -70= 180
5x = 250
X= 50°
X-20 = z
50-20= z
30° = z
2x -70 = BDE
2(50) -70 = BDE
100-70 = BDE
30°= BDE
Y + (2x-70)+(50+x-20)
Y + 100-70 +50 +50 -20 = 180
Y + 200-90=180
Y= 70°
2BDE = 2*30
2BDE= 60°
The sum of Jason’s age and his brother’s age is 55. Jason is 7 years younger than his brother. How old is Jason?
Answer:
Jason is 24 years old
Step-by-step explanation:
Lets say that Jason's age is X, and his brother's age is Y.
We know that X + Y = 55.
We also know that (X + 7) = Y.
This means (X + 7) + Y = 62 (We got the 62 by adding 55 and 7)
Anyway if X+7= Y, and X+7 + Y = 62, then X+7 = 62/2, right?
We divide the 62 by 2 and we get 31.
Alright, so X+7 = 31.
substract both sides by 7.
We get X = 24
Sorry if this seemed longer or more complicated than it should've been, I don't know how to explain it better.
HELP ASAP ALL THREE PLEASE 1. if a cyclic alkene has 12 carbon atoms, how many hydrogen atoms does it have 2.if a cyclic alkene has 12 hydrogen atoms, how many carbon atoms 3. is it possible to have an odd number of hydrogen atoms
Answer:
1. 24
2. 6
3. No
Step-by-step explanation:
The formula for cyclic alkene is [tex]C^{n} H^{2n}[/tex], so if it has 12 carbon atoms, it will have double the amount of hydrogen atoms, therefore, 24 hydrogen atoms.
The same works in reverse. If we have 12 hydrogen atoms in this, then there will be half the amount of carbon atoms, therefore 6.
Since the relationship between Carbon and Hydrogen here is double and half, odd numbers can't be divided by 2 and end up with a whole number, so an odd number of hydrogen atoms is not possible.
Hope this helped!
Simba Travel Agency arranges trips for climbing Mount Kilimanjaro. For each trip, they charge an initial fee of $100 in addition to a constant fee for each vertical meter climbed. For instance, the total fee for climbing to the Shira Volcanic Cone, which is 3000 meters above the base of the mountain, is $400.Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.Complete the equation for the relationship between the total fee and vertical distance.
Answer:
[tex]y(x)=100+0.1x[/tex]
Step-by-step explanation:
Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.
We know that there is an initial fee of $100, so we know that if we climb x=0 meters, we have a fee of y(0)=100.
[tex]y(0)=100[/tex]
As there is a constant fee (lets called it m) for each vertical meter climbed, we have a linear relationship as:
[tex]y(x)-y(0)=m(x-0)\\\\\\y(x)-100=mx\\\\\\y(x)=100+mx[/tex]
We know that for x=3000, we have a fee of $400, so if we replace this in the linear equation, we have:
[tex]y(3000)=100+m(3000)=400\\\\\\100+3000m=400\\\\3000m=400-100=300\\\\m=300/3000=0.1[/tex]
Then, we have the equation for the total fee in function of the vertical distance:
[tex]y(x)=100+0.1x[/tex]
subtract the following .1/2 from 3/5
Answer:
1/10
Step-by-step explanation:
1/2= 5/10 - make it an equivalent fraction with the same denominator as the other fraction.
3/5= 6/10
5/10-6/10- subtract
=1/10
please factor!
7x^2+27xy-4y^2
A train travels 45 feet in 1/10 if a second. How far will it travel in 3.5 seconds
Answer:
1575 ft
Step-by-step explanation:
Convert 1/10 to decimal to make the math simpler.
1/10 = 0.1
Divide 3.5 by 0.1.
3.5/0.1 = 35
Multiply 35 by 45.
35 × 45 = 1575
The train will travel 1575 feet in 3.5 seconds.
The distance covered by the train in 3.5 seconds will be 1575 feet.
What is speed?The distance covered by the particle or the body in an hour is called speed. It is a scalar quantity. It is the ratio of distance to time.
We know that the speed formula
Speed = Distance/Time
A train travels 45 feet in 1/10 in a second.
Then the speed will be
Speed = 45 / (1/10)
Speed = 45 x 10
Speed = 450 feet per second
The distance covered by the train in 3.5 seconds will be
Distance = 450 x 3.5
Distance = 1575 feet
More about the speed link is given below.
https://brainly.com/question/7359669
#SPJ2
There are three persons aged 60, 65 and 70 years old. The survival probabilities for these
three persons for another 5 years are 0.7.0.4 and 0.2 respectively. What is the probability
that at least two of them would survive another five years?
Answer:
Probability that at least two of them would survive another five years = 0.388
Step-by-step explanation:
We are given;
Probability of Survival of 60 years old for the next 5 years;
P(60 years old surviving) = 0.7
Thus;
Probability of 60 years old not surviving for the next 5 years;
P(60 years old not surviving) = 1 - 0.7 = 0.3
Also,given;
Probability of Survival of 65 years old for the next 5 years;
P(65 years old surviving) = 0.4
Thus;
Probability of 65 years old not surviving for the next 5 years;
P(65 years not surviving) = 1 - 0.4 = 0.6
Also,given;
Probability of Survival of 70 years old for the next 5 years;
P(70 years old surviving) = 0.2
Thus;
Probability of 70 years old not surviving for the next 5 years;
P(70 years not surviving) = 1 - 0.2 = 0.8
Probability that at least two survived is;
P(at least 2 surviving) = [P(60 surviving) x P(65 surviving) x P(70 not surviving)] + [P(60 surviving) x P(65 not surviving) x P(70 surviving)] + [P(60 not surviving) x P(65 surviving) x P(70 surviving)] + [P(60 surviving) x P(65 surviving) x P(70 surviving)]
P(at least 2 surviving) = [(0.7)(0.4)(0.8)] + [(0.7)(0.6)(0.2)] + (0.3)(0.4)(0.2) + [(0.7)(0.4)(0.2)]
P(at least 2 surviving) = 0.224 + 0.084 + 0.024 + 0.056
P(at least 2 surviving) = 0.388
A customer enrolled in a 1-year product purchase plan that costs $60 per month. After 6 months, the customer received a monthly discount of 20%. What is the total amount the customer will pay for the 1-year plan?
Answer:
$432
Step-by-step explanation:
60*6=360
They paid $360 for the first 6 months.
20%*60=.2*60
0.2*60=12
12*6=72
They paid $72 for the last 6 months.
360+72=432
They paid $432
$648 is the total amount the customer will pay for the 1-year plan
What is Percentage?percentage, a relative value indicating hundredth parts of any quantity.
Given that a customer enrolled in a 1-year product purchase plan that costs $60 per month.
After 6 months, the customer received a monthly discount of 20%.
We need to find the total amount the customer will pay for the 1-year plan.
Product Plan = $60 per month
Money he pay for 1 month = $ 60
Money He pay for first 6 month = 6 × 60 = $ 360
after 6 month he receives 20% discount monthly,
So, Now he pay for 1 month = 60 - 20% × 60
=60-20/100×60
=60-12=48
Money he pay for last 6 month = 6 × 48 = 288
Total Money he pay in a year = 360 + 288 = $ 648
Hence, $648 is the total amount the customer will pay for the 1-year plan
To learn more on Percentage click:
https://brainly.com/question/28269290
#SPJ2
Factories fully 18x-9
Answer:
Factor 9 out of 18x.
9(2x)−9
Factor 9 out of −9
9(2x)+9(−1)
Factor 9 out of 9(2x)+9(−1)
9(2x−1)
Answer:
9 ( 2x - 1 )
Step-by-step explanation:
→ Look for the HCF of the whole numbers
HCF of 18 and 9 is 9
→ Put 9 outside the brackets
9 ( ? - ? )
→ Perform the calculation 18x ÷ 9 to determine the first question mark
18x ÷ 9 = 2x ⇔ 9 ( 2x - ? )
→ Perform the calculation 9 ÷ 9 to determine the second question mark
9 ÷ 9 = 1 ⇔ 9 ( 2x - 1 )
Complete the table
Distance(ft)
Height(ft)
Answer:
a = 6, b = 7, c = 8, d = 7 and e = 6
Step-by-step explanation:
Let's remember that the complete revolution of the wheel is 360 degrees, and the distance traveled by a complete revolution is the length of the circumference: 2*pi*radius.
The inicial height of the point is 6 ft, and the radius of the wheel is 1 ft.
When the distance traveled is 0, the wheel turned 0 degrees, and the point will be in its inicial position (the lower position of the wheel), which is 6 feet high.
So the height will be a = 6 + 0 = 6 ft
When the distance traveled is pi/2, the wheel turned 90 degrees, and the point will be half the complete height of the wheel, which is 2 feet.
So the height will be b = 6 + 1 = 7 ft
When the distance traveled is pi, the wheel turned 180 degrees, and the point will be at the top of the wheel, which is 2 feet higher than the lower point of the wheel.
So the height will be c = 6 + 2= 8 ft
When the distance traveled is 3pi/2, the wheel turned 270 degrees, and the point will be half the complete height of the wheel, which is 2 feet.
So the height will be d = 6 + 1 = 7 ft
When the distance traveled is 2pi, the wheel turned 360 degrees, and the point will be in its inicial position (the lower position of the wheel), which is 6 feet high.
So the height will be e = 6 + 0 = 6 ft
So the answers are:
a = 6, b = 7, c = 8, d = 7 and e = 6
Answer:
6, 7, 8, 7, 6
Step-by-step explanation:
A manufacturer claims that the mean tensile strength of thread A exceeds the average tensile strength of thread B. To test his claim, 16 sample pieces of each type of thread are tested under similar conditions. Type A thread had a sample average tensile strength of 185 kg with a standard deviation of 6 kg, while type B thread had a sample average tensile strength of 178 kg with a standard of 9 kg. Assume that both populations are normally distributed and the variances are equal. Test the manufacturers claim using a = 0.05 level of significance.
The complete part of the first sentence is;
A manufacturer claims that the average tensile strength of thread A exceeds the average tensile strength of thread B by at least 12 kilograms.
Answer:
we fail to reject the null hypothesis and conclude that the difference of the average tensile strength of thread A and thread B is less than 12
Step-by-step explanation:
We are given;
n_A = 16
n_B = 16
x'_A = 185 kg
x'_B = 178 kg
s_A = 6 kg
s_B = 9 kg
Let μ_A denote the population average tensile strength of thread A
Also, Let μ_B represent the population average tensile strength of thread B
Thus;
Null Hypothesis; H0;μ_A - μ_B ≤ 12
Alternative hypothesis;H1; μ_A - μ_B > 12
From the image attached, with a significance level of 0.05, the critical value for right tailed is 1.645. So we will reject the hypothesis is z > 1.645
Formula for z is;
z = (x'_A - x'_B - d_o)/√((s_A²/n_A) + (s_B²/n_B))
Plugging in the relevant values, we have;
z = (185 - 178 - 12)/√((6²/16) + (9²/16))
z = -5/2.7041634566
z = - 1.849
Since the z-value is less than 1.645,we fail to reject the null hypothesis and conclude that the difference of the average tensile strength of thread A and thread B is less than 12
If Joe drives 50 mph for 0.5 hours and then 60 mph for 1.5 hours, then how far did he drive?
Answer:
115 mi
Step-by-step explanation:
speed = distance/time
distance = speed * time
0.5 hours at 50 mph
distance = 50 mph * 0.5 h = 25 mi
1.5 hours at 60 mph
distance = 60 mph * 1.5 h = 90 mi
total distance = 25 mi + 90 mi = 115 mi
You work at a coffee house. Roasted coffee beans retain approximately 3/5 of their initial weight. Approximately what percent of their inital weight do they retain?
Answer:
60%
Step-by-step explanation:
We need convert 3/5 into a percent in order to find the answer.
We can convert by first dividing 3 by 5 to find the decimal value.
3/5= .6
Now we need to multiply by 100 to make it a percentage
.6 x 100= 60
60%
Ash Lee bought a new Brunswick boat for $17,000. He made a $2,500 down payment on it. The bank's loan was for 60 months. Finance charges totaled $4,900. His monthly payment is:
Answer: $323.33
Step-by-step explanation:
($17,000 + $4,900 - $2,500) ÷ 60 months = $323.33 per month
↓ ↓ ↓
price finance down payment
Raquel throws darts at a coordinate grid centered at the origin. Her goal is to create a line of darts. Her darts actually hit the coordinate grid at (–5, 0), (1, –3), (4, 5), (–8, –6), (0, 2), and (9, 6). Which equation best approximates the line of best fit of the darts?
Answer:
The line of best fit
y = 0.633x + 0.561
Step-by-step explanation:
The coordinates that the dart hit include
(–5, 0), (1, –3), (4, 5), (–8, –6), (0, 2), and (9, 6)
The x and y coordinates can be written as
x | y
-5|0
1 | -3
4|5
-8|-6
0|2
9|6
So, running the analysis on a spreadsheet application, like excel, the table of parameters is obtained and presented in the first attached image to this solution.
Σxᵢ = sum of all the x variables.
Σyᵢ = sum of all the y variables.
Σxᵢyᵢ = sum of the product of each x variable and its corresponding y variable.
Σxᵢ² = sum of the square of each x variable
Σyᵢ² = sum of the square of each y variable
n = number of variables = 6
The scatter plot and the line of best fit is presented in the second attached image to this solution
Then the regression analysis is then done
Slope; m = [n×Σxᵢyᵢ - (Σxᵢ)×(Σyᵢ)] / [nΣxᵢ² - (∑xi)²]
Intercept b: = [Σyᵢ - m×(Σxᵢ)] / n
Mean of x = (Σxᵢ)/n
Mean of y = (Σyᵢ) / n
Sample correlation coefficient r:
r = [n*Σxᵢyᵢ - (Σxᵢ)(Σyᵢ)] ÷ {√([n*Σxᵢ² - (Σxᵢ)²][n*Σyᵢ² - (Σyᵢ)²])}
And -1 ≤ r ≤ +1
All of these formulas are properly presented in the third attached image to this answer
The table of results; mean of x, mean of y, intercept, slope, regression equation and sample coefficient is presented in the fourth attached image to this answer.
Hope this Helps!!!
Answer:
a. y = 0.6x + 0.6
Step-by-step explanation: