Answer:
C. Gas
Explanation:
Segment CD represents gaseous phase of matter as segment CD shows highest energy which is in case of gas.
What is matter?
Matter in chemistry, is defined as any kind of substance that has mass and occupies space that means it has volume .Matter is composed up of atoms which may or not be of same type.
Atoms are further made up of sub atomic particles which are the protons ,neutrons and the electrons .The matter can exist in various states such as solids, liquids and gases depending on the conditions of temperature and pressure.
The states of matter are inter convertible into each other by changing the parameters of temperature and pressure.The intermolecular forces of attraction are different in different states of matter.Particles of matter have different sizes.
Learn more about matter,here:
https://brainly.com/question/5243081
#SPJ2
define alpha and beta
alpha is the excess return on an investment after adjusting for market related volatility and random fluctuations.
beta is a measure of volatility relative to a benchmark ,such as the S&P 500.
Explanation:
alpha and beta are two different parts of an equation used to explain the performance of stocks and investments funds. But in maths alpha and beta is the Greek alphabet
1. Add 17.35 g, 25.6 g and 8.498 g. chaper 1 physical quantity 11class .physic
51.448 g is the required answer!
How does temperature rise and impurities affect the surface tension of water
(2 mks)
Answer:
Surface tension is the downward force acting on the surface of liquid due to presence of inter molecular forces or cohesive forces between the particles of liquid.
Surface tension decreases with increase in temperature as the forces among particles decrease due to increase in kinetic energy and thus the cohesive nature decreases and thus surface tension also decreases.
Surface tension may decrease or increase with increase in soluble impurities .Insoluble impurities decrease the surface tension.
A 15.0kg block is dragged over a rough, horizontal surface by a 70.0-N force acting at 20.0 degrees above the horizontal. The block is displaced 5.0 m, and the coefficient of kinetic friction is 0.3.
a. Draw a free body diagram. Draw your coordinate system and label the axes.
b. Calculate the work done on the block by the 70 N force.
c. Calculate the work done on the block by the normal force.
d. Calculate the work done on the block by the gravitational force.
e. Calculate the work done on the block by the force of friction.
Answer:
[tex]W=70 * 5cos20 = 328.89 J[/tex]
[tex]W_n = 0[/tex]
[tex]W_g=0[/tex]
[tex]W_f= -184.59J[/tex]
Work done is 0
Explanation:
From the question we are told that
Weight of block =15.0kg
Force acting on the block = 70.0N
At an angle of 20 degree
Displacement of block is 5m
Coefficient of kinetic friction 0.3
b) Generally work done by force is give by [tex]W=fdcos \theta[/tex]
therefore
[tex]W=70 * 5cos20 = 328.89 J[/tex]
c) there is no work done by the normal force in this scenario because
normal force in this case is perpendicular to the displacement of the motion
[tex]W_n = 0[/tex]
d) The displacement in the vertical direction is 0
Therefore the gravitational work done is 0 [tex]W_g=0[/tex]
e)Generally in finding work done by friction we first find frictional force
Mathematically the equation for frictional force is given [tex]f = \alpha N[/tex]
Given that
[tex]N=mg-Fsin20[/tex]
[tex]N= 15.0*9.8 - 70 sin20[/tex]
[tex]N=123 N[/tex]
[tex]f=0.3* 123.06 = 36.92N[/tex]
Mathematically solving to get work done by frictional force [tex]W_f[/tex]
[tex]W_f= -fd\\W_f = -36.92 * 5[/tex]
[tex]W_f= -184.59J[/tex]
the frictional force work done is [tex]W_f= -184.59J[/tex]
derive an expression for torque experiend by an electric dipole placed in a uniform electric field
Answer:
The torque τ on an electric dipole with dipole moment p in a uniform electric field E is given by τ = p × E where the "X" refers to the vector cross product. Ref: Wikipedia article on electric dipole moment.
Explanation:
A thin-walled vessel of volume V contains N particles which slowly leak out of a small hole of area A. No particles enter the volume through the hole. Find the time required for the number of particles to decrease to N/2. Express your answer in terms of A, V, and v.
Answer:
[tex]\frac{V}{2av}[/tex]
Explanation:
From the question we are told that
Volume V
Contains N particles
Leaks from a small hole of area A
Generally the equation for Flow rate is given as
Volume Flow Rate [tex]V_r = A * v[/tex]
Mathematically we find the time taken to flow half way which is given by
[tex]\frac{(V/2)}{A*v}[/tex]
Therefore the time taken is
[tex]\frac{V}{2av}[/tex]
In a test run, a certain car accelerates uniformly from zero to 20.4 m/s in 2.60 s.
Required:
a. What is the magnitude of the cars acceleration?
b. How long does it take the car to change speed from 10.0 m/s to 20 m/s.
c. Will doubling the time always double the change in speed? why?
Answer:
(a) The acceleration is 7.85 m/s²
(b) It takes the car to change speed from 10.0 m / s to 20 m / s in a time of 1.27 seconds.
(c) Doubling the time will double the change in velocity if the acceleration is kept constant.
Explanation:
(a) Acceleration is the physical quantity that measures the rate of change of velocity with time. That is, acceleration relates changes in speed with the time in which they occur, that is, it measures how fast the changes in speed are.
The average acceleration is calculated using the following expression:
[tex]a=\frac{vf-vi}{t}[/tex]
where a is the acceleration, vf is the final velocity, vi is the initial velocity and t is the time.
In this case:
vf= 20.4 m/svi=0 m/st= 2.60 sReplacing:
[tex]a=\frac{20.4 \frac{m}{s} - 0\frac{m}{s} }{2.60 s}[/tex]
a= 7.85 m/s²
The acceleration is 7.85 m/s²
(b) In this case you know:
a= 7.85 m/s²vf= 20 m/svi= 10 m/sReplacing:
[tex]7.85 \frac{m}{s^{2} } =\frac{20 \frac{m}{s} - 10\frac{m}{s} }{t}[/tex]
and solving you get:
[tex]t=\frac{20 \frac{m}{s} - 10\frac{m}{s} }{7.85 \frac{m}{s^{2} } }[/tex]
t=1.27 s
It takes the car to change speed from 10.0 m / s to 20 m / s in a time of 1.27 seconds.
(c) Being:
[tex]a=\frac{vf-vi}{t}[/tex]
Then:
a*t= vf - vi
vf - vi represents the change in velocity. You can see that, if a (acceleration) is constant, then (vf - vi) is directly proportional to the time t: therefore, if t doubles, the change in velocity doubles as well.
In other words, doubling the time will double the change in velocity if the acceleration is kept constant.
For the following types of electromagnetic radiation, how do the wavelength, frequency, and photon energy change as one goes from the top of the list to the bottom?
a. radio waves
b. infared radiation
c. visible light
d. ultraviolet radiation
e. gamma radiation
Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
What is a
physical
property of
snowflakes?
What was your train of thought as you navigated the picture of the candle?
Answer:
Where is the picture
Explanation:
WHERE IS THE PICTURE
A woman exerts a horizontal force of 113 N on a crate with a mass of 31.2 kg.
a. If the crate doesn't move, what's the magnitude of the static friction force (in N)?
b. What is the minimum possible value of the coefficient of static friction between the crate and the floor?
Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate doesn't move (static), acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = Fm - Ff = 0.
Fm is the applied force
Ff is the frictional force
Since Fm - Ff = 0
Fm = Ff
This means that the applied force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
R = 31.2 × 9.8
R = 305.76N
From the formula
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
If the Earth were flat, then the shadows of two towers at two different places on the Earth would:__________.
A. be different lengths with the one further South being longer
B. be different lengths with the one further North being longer
C. be different lengths with the one further East being longer
D. be the exact same length
You work at a garden store for the summer. You lift a bag of fertilizer with a force of 112 N, and it moves upward with an acceleration of 0.790 m/s^2.
a. What is the mass of the fertilizer bag?
b. How much does the fertilizer bag weigh?
Given :
Force provided, F = 112 N.
Acceleration of the bag, a = 0.79 m/s².
To Find :
a. What is the mass of the fertilizer bag?
b. How much does the fertilizer bag weigh?
Solution :
We know, force is given by :
F = ma
m = F/a
m = 112/0.79 kg
m = 141.77 kg
Now, weight is given by :
W = mg
W = 141.77 × 9.8 N
W = 1389.35 N
Therefore, the mass of fertilizer bag is 141.77 kg and weight us 1389.35 N.
A 20-kg object sitting at rest is struck elastically in a head-on collision with a 10-kg object initially moving at 3.0 m/s. Find the final velocity
Answer:
1 m/s
Explanation:
Using law of conservation of momentum
m1v1 + m2v2 = (m1 + m2)vf , where
m1 = mass of object at rest, 20 kg
v1 = initial velocity of object at rest, 0 m/s
vf = final velocity of the bodies
m2 = mass of object in motion, 10 kg
v2 = initial velocity of object in motion, 3 m/s
On substituting, we have
(20 * 0) + (10 * 3) = (20 + 10) vf
0 + 30 = 30 vf
vf = 30 / 30
vf = 1 m/s
Therefore, the velocity of the bodies after hitting each other is 1 m/s
An astronaut weighing 190 lbs on Earth is on a mission to the Moon and Mars.
Required:
a. What would he weigh in newtons when he is on the Moon?
b. How much would he weigh in newtons when he is on Mars, where the acceleration due to gravity is 0.38 times that on Earth?
Answer:
The weight is defined as:
W = m*g
where:
m = mass
g = gravitational acceleration.
We know that in Earth the astronaut weights 190 lb-f (this is force, not mass, the correct unit here is 190 lb*m/s^2)
then:
190 lb*m/s^2 = m*9.8m/s^2
(190 lb*m/s^2)/(9.8m/s^2) = 19.39 lb
Now we know the mass of the astronaut.
a) wieght on the moon in Newtons.
Newtons uses kilograms as the units of mass, then we need to rewrite the mass of the astronaut in kg.
we know that 1lb = 0.454 kg
Then 19.39 lb is equal to: 19.39*0.454 kg = 8.8 kg
We know that the acceleration due to gravity on the Moon is one-sixth that on Earth.
then: g = (9.8m/s^2)/6
And the weight of the astronaut in the moon will be:
W = 8.8 kg*(9.8m/s^2)/6 = 14.37 N
b) The weight on mars, where the acceleration due to gravity is 0.38 times that on Earth, we have:
g = (9.8m/s^2)*0.38
then the weight will be:
W = 8.8kg*(9.8m/s^2)*0.38 = 32.77 N
For an object like a planet, with a typical temperature of a few hundred kelvin, what kind of blackbody radiation would it principally emit
Answer:
Low-temperature blackbody
Explanation:
There are 3 types of blackbody temperatures.
Low-temperature blackbody
High temperature extended area blackbody
High-temperature cavity blackbody
A Low-temperature blackbody is a type of black body radiation that has the range of -40° C to 175° C, typically between 233 K and 448 K. A perfect fit for the temperature range mentioned in the question, "a few hundred Kelvin". Therefore, it's the kind of blackbody temperature that the object would emit.
A truck covers 40.0 m in 9.50 s while uniformly slowing down to a final velocity of 2.75 m/s.
a. Find its original speed.
b. Find its acceleration.
Explanation:
Given that,
Distance covered, d = 40 m
Time, t = 9.5 s
Final velocity, v = 2.75 m/s
(a) Let u be the original speed of the truck. We can find it using first equation of motion.
[tex]v=u+at\\\\2.75=u+2.75\times 9.5\\\\2.75-26.125=u\\\\u=-23.375\ m/s[/tex]
(b) Acceleration = rate of change of velocity
[tex]a=\dfrac{v-u}{t}\\\\a=\dfrac{2.75-(-23.375)}{9.5}\\\\=2.75\ m/s^2[/tex]
So, the original speed is -23.375 and acceleration is 2.75 m/s².
Two particles are separated by 0.38 m and have charges of -6.25 x 10-°C and 2.91 x 10-°C. Use Coulomb's law to predict the force between the particles if the distance is cut in half. The equation for Coulomb's law is F = kqi 42, and the constant, k, equals 9.00 x 109 Nm2/C2 2
Answer:
-4.35 × 10^-6 N
Explanation:
i just answered it on ap3x :)
Two identical blocks fall a distance H. One falls directly down, the other slides down a frictionless incline. Which has the larger speed at the bottom?
The question incomplete, the complete question is;
Two identical blocks fall a distance H. One falls directly down, the other slides down a frictionless incline.
(A)the one falling vertically
(B)the one on the incline
(C)Both have the same speed.
(D)cannot be determined
Answer:
(C)Both have the same speed.
Explanation:
When we consider the question closely, we will discover that an object falling down a frictionless incline is comparable to an object falling freely under gravity.
In both instances, the acceleration of objects is just the same irrespective of mass.
Hence, the object falling vertically and the object sliding down a frictionless plane will have the same speed at the bottom.
A child blows a leaf from rest straight up in the air. the leaf has a constant upward acceleration of magnitude 1.0 m by s square. how much time does it take the leaf to displace 1.0m upwards?
Answer:
√2
Explanation:
From the question, we're given that the
Acceleration of the leaf is 1 m/s²
Change in displacement of the leaf is 1 m/s.
Again, from the question, we can tell that the initial velocity u = 0, since the object starts at rest
Now, to solve this, we don't the equation of motion to ur
S = ut + 1/2at², substituting the whole parameters, we then have
1 = 0 * t + 1/2 * 1 * t²
1 = 1/2 * t²
t²/2 = 1
t² = 2
t = √2 seconds
Therefore the time it takes the leaf to dislodge is 2 seconds
An ideal gas is confined to a container with constant volume. The number of moles is constant. By what factor will the pressure change if the absolute temperature triples
Answer:
1/3
Explanation:
Gay Lusaac's law states that "the pressure of a given mass of gas is directly proportional with the absolute temperature of the gas, provided that the volume is kept constant."
In formula, we say that
P/T = k
Where
P = pressure at different points
T = temperature at different points
k = constant of proportionality
From the stated formula, if we multiply the temperature by 3, we have
P/3T = k
P * 1/3T = k
And from this, we see the pressure will change by a value of 1/3
An object has a mass of 19 kg. Attached to the end of a spring, if the spring constant is 486 N/m, what is the maximum frequency?
Answer:
The frequency [tex]f = 0.8048 \ Hz[/tex]
Explanation:
From the question we are told that
The mass of the object is [tex]m = 19 \ kg[/tex]
The spring constant is [tex]k = 486 \ N/ m[/tex]
Generally the maximum frequency is mathematically represented as
[tex]f = \frac{1}{2 \pi } * \sqrt{ \frac{k}{m } }[/tex]
=> [tex]f = \frac{1}{2 * 3.142 } * \sqrt{ \frac{486}{ 19 } }[/tex]
=> [tex]f = 0.8048 \ Hz[/tex]
My dad gifted me a calculator. I have observed that very small cells are used in a calculator. What are these cells called and what are their main advantage?
Tell me the max amount you should owe on this card.
Your credit limit is $1,000.
What is the max you should ever owe on this card?
$
Your credit limit is $2,500.
What is the max you should ever owe on this card?
$
Answer:
the max is 2,500 or less
Explanation:
because you cant owe anymore
The energy of a photon is ________ proportional to its wavelength.
Answer:
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
Explanation:
Plz mark brainliest thanks
If a net horizontal force of 0.8 N is applied to a toy whose mass is 1.2 kg, acceleration is?
Hello!
[tex]\large\boxed{a = \frac{2}{3}m/s^{2}}[/tex]
Use the equation F = m · a to solve. We are given the force (N) and mass (kg), so we can solve for the acceleration by plugging in the given values:
0.8 = 1.2a
0.8 / 1.2 = a
a = 2/3 m/s²
Why do we perform stork stand test
Answer:
umm becuase it is a test and you need them
Explanation:
Plants that respond to light are responding
to an:
a. internal stimulus
b. external stimulus
please answer
Answer:
The answer would be a
Explanation:
A woman exerts a horizontal force of 113 N on a crate with a mass of 31.2 kg.
Required:
a. If the crate doesn't move, what's the magnitude of the static friction force (in N)?
b. What is the minimum possible value of the coefficient of static friction between the crate and the floor?
Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate is not moving then its acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = 0
Fm - Ff = 0.
Fm is the moving force
Ff is the frictional force
Fm = Ff
This means that the moving force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
m is the mass of the crate = 31.2kg
g is the acceleration due to gravity = 9.8m/s²
R = 31.2 × 9.8
R = 305.76N
Recall that;
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
30 points? I have no clue
Answer:
The second graph, B
Explanation