Answer: The probability that a value is less than 36.8 is 0.9993.
Step-by-step explanation:
Let X be the random variable that normally distributed.
Given: [tex]\mu=32,\sigma=1.5[/tex]
The probability that a value is less than 36.8 = [tex]P(X<36.8)[/tex]
[tex]=P(\frac{X-\mu}{\sigma}<\frac{36.8-32}{1.5})\\\\=P(Z<3.2)\ \ \ [Z=\frac{X-\mu}{\sigma}]\\\\=0.9993[/tex][Using P-value calculator]
Therefore, The probability that a value is less than 36.8 is 0.9993.
Which of the following CANNOT be true for a triangle?
A. A triangle can be equilateral and obtuse at the same time.
B. A triangle can be equilateral and equiangular at the same time.
C. A triangle can be isosceles and right at the same time.
D. A triangle can be scalene and obtuse at the same time.
Answer:
A. A triangle can be equilateral and obtuse at the same time
Step-by-step explanation:
All angles in an equilateral triangle are 60° therefore they cannot be above 90° and less than 180°
Can anyone help me find the function for this trig graph ? i need a specific answer for the function , not just telling me how to find it . 80 pts
Answer:
y = 5 sin (2x) + 4
Step-by-step explanation:
this is sines function,
the amplitude is [9 - (-1)]/2 = 10/2 = 5
the period is 2πx/π = 2x
the x-axis of actual function is at y = 4
so, the function is :
y = 5 sin (2x) + 4
I neeeddddd help on this I’m failing
Answer:
AB = 9
Step-by-step explanation:
Here is a simple case of a proportion.
We see that:
3:4
x:12
what can we do to make 4 into 12?
we multiply it by 3
so we do the same to 3
3*3=9
What is the growth factor for 233% growth
Answer:
Here is what you do. Make it into vertex form and then whatever the x factor is is the growth factor
A distance of 400 km is represented in the map by 3 cm. What is the distance between two towns if they are 7.5 cm apart in the map?
Answer:
The distance between the two towns is of 1000 km.
Step-by-step explanation:
This question is solved by proportions, using a rule of three.
We have that:
3 cm represents a distance of 400 km.
What is the distance represented by 7.5 cm?
3 cm - 400 km
7.5 cm - x km
Applying cross multiplication:
[tex]3x = 400*7.5[/tex]
[tex]x = \frac{400*7.5}{3}[/tex]
[tex]x = 1000[/tex]
The distance between the two towns is of 1000 km.
A teacher is comparing the quarter grades between two of her classes. She takes a random sample of 8 students from each class and lists the grades as shown. Find the mean for Class A.
Class A: 80, 83, 74, 91, 76, 87, 93, 72
Class B: 90, 75, 82, 86, 73, 85, 79, 94
If 1=3
2=3
3=5
4=4
5=4, then 6=?
Answer:
six equal to eight?????
What’s the measure of angle B? It’s not 64.
Answer:
65 degrees
Step-by-step explanation:
Angles in a triangle add to 180°.
A math recap workshop is provided to the first year students entering a city college. To evaluate the workshop effectiveness, a study is conducted as following: 20 students with similar math backgrounds are randomly selected for the study. Of the 20 students, 10 of them are selected to attend the workshop and the other 10 do not attend the workshop. After the workshop has taken place a test is given to all 20 students. What is the appropriate inference test to use in this situation
Answer:
Independent sample t test
Step-by-step explanation:
The Independent sample t test could be explained as a statistical test carried out in other to establish or examine if significant difference exists between two independent samples. That is the outcome of the samples do not depend on one another. Using the scenario described above, the difference between the same variable is measured for two different groups which is the ideal set up for an independent sample t test. The difference between test score for two independent samples (those who attended the workshop and those who did not) is being compared.
0.009 divided by 0.001
Answer:
9
Step-by-step explanation:
0.001 · 9 = 0.009
2. Suppose over several years of offering AP Statistics, a high school finds that final exam scores are normally distributed with a mean of 78 and a standard deviation of 6. A. What are the mean, standard deviation, and shape of the distribution of x-bar for n
Answer:
By the Central Limit Theorem, the mean is 78, the standard deviation is [tex]s = \frac{6}{\sqrt{n}}[/tex] and the shape is approximately normal.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean of 78 and a standard deviation of 6
This means that [tex]\mu = 78, \sigma = 6[/tex]
Samples of n:
This means that the standard deviation is:
[tex]s = \frac{\sigma}{\sqrt{n}} = \frac{6}{\sqrt{n}}[/tex]
What are the mean, standard deviation, and shape of the distribution of x-bar for n?
By the Central Limit Theorem, the mean is 78, the standard deviation is [tex]s = \frac{6}{\sqrt{n}}[/tex] and the shape is approximately normal.
HELLLPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Five friends take a maths test
Adam, Brandon, Chen together scored 200 marks
Brandon, Chen and Damion together scored 215
Chen, Damion, Erica together scored 224
Damion and Erica scored more than Chen
The five of them together scored 350 marks
What are their individual scores?
Answer:
Adam scored 60, Brandon scored 66, Chen scored 74, Damion scored 75, and Erica scored 75.
Step-by-step explanation:
Since five friends took the maths test, and Adam, Brandon, and Chen together together scored 200 marks; Brandon, Chen and Damion together scored 215; Chen, Damion and Erica together scored 224; and Damion and Erica scored more than Chen; While the five of them together scored 350 marks, to determine what are their individual scores the following calculations must be done:
Adam + Brandon + Chen = 200
Damion + Erica = 150
Brandon + Chen + Damion = 215
Adam + Erica = 135
Chen + Damion + Erica = 224
Adam + Brandon = 126
Adam + Brandon = 126 + Chen = 200
Chen = 200 - 126
Chen = 74
Damion and Erica scored more than Chen
Chen + Damion + Erica = 224
74 + Damion + Erica = 224
Damion + Erica = 150
Damion = 75
Erica = 75
Brandon + Chen + Damion = 215
Brandon + 74 + 75 = 215
Brandon = 215 - 74 - 75
Brandon = 66
Adam = 350 - 75 - 75 - 74 - 66
Adam = 60
Therefore, Adam scored 60, Brandon scored 66, Chen scored 74, Damion scored 75, and Erica scored 75.
The time spent waiting in the line is approximately normally distributed. The mean waiting time is 55 minutes and the variance of the waiting time is 11. Find the probability that a person will wait for more than 33 minutes. Round your answer to four decimal places.
Answer:
1 = 100% probability that a person will wait for more than 33 minutes.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean waiting time is 55 minutes and the variance of the waiting time is 11.
This means that [tex]\mu = 55, \sigma = \sqrt{11}[/tex]
Find the probability that a person will wait for more than 33 minutes.
This is 1 subtracted by the p-value of Z when X = 33. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{33 - 55}{\sqrt{11}}[/tex]
[tex]Z = -6.63[/tex]
[tex]Z = -6.63[/tex] has a p-value of 0.
1 - 0 = 1
1 = 100% probability that a person will wait for more than 33 minutes.
How do you solve the equation 3 1/5 +n=9?
Answer:
n = [tex]5\frac{4}{5}[/tex]
Step-by-step explanation:
You obviously have to solve for n
Ive been stuck on this problem for an hour, help pleaseee.
The graph of the function is given below. Give all y-intercepts and x-intercepts shown.
Answer:
y intercept: [tex]y = 1[/tex]
x intercept: [tex]x = -1[/tex] and [tex]x = -3[/tex]
Step-by-step explanation:
Given
The attached graph
Solving (a): The y intercepts
This is the point where [tex]x = 0[/tex]
From the attached graph, [tex]x = 0[/tex] when
[tex]y = 1[/tex]
Hence, the y intercept is 1
Solving (b): The x intercepts
This is the point where [tex]y = 0[/tex]
From the attached graph, [tex]y = 0[/tex] when
[tex]x = -1[/tex] and [tex]x = -3[/tex]
Hence, the x intercept are -1 and -3
brainliest for answer
Answer:
what is the question?
Step-by-step explanation:
Answer:
i answered
Step-by-step explanation:
Given the set of data below, which measure(s) will change if the outlier is removed? (Check all that apply.) 1,6,8,8,8
mean
range
median
mode
The mean, range, and median will vary if the outlier is eliminated. Options A, B, and C are correct.
What is mean?The arithmetic mean is a term used to describe the average. It's the ratio of the total number of observations to the sum of the observations.
The data set is;
1,6,8,8,8
Outliers in a dataset or graph are extreme values that stand out significantly from the main pattern of values.
There is an aberration in the graph below, on the far left. The value in January is much lower than the value in the other months.
If the outlier is removed mean, range, and median will changes.
Hence options A, B and C are correct.
To learn more about mean refer:
https://brainly.com/question/13451489
#SPJ2
Sum of 4x^3+6x^2+2x^2-3 and 3x^3+3x^2-5x-5 is
9514 1404 393
Answer:
7x^3 +11x^2 -5x -8
Step-by-step explanation:
Combine like terms.
(4x^3+6x^2+2x^2-3) + (3x^3+3x^2-5x-5)
= (4 +3)x^3 +(6 +2 +3)x^2 +(-5)x + (-3 -5)
= 7x^3 +11x^2 -5x -8
_____
Noting that the first expression contains two x^2 terms, we wonder if you actually want the sum ...
(4x^3+6x^2+2x-3) + (3x^3+3x^2-5x-5)
= (4 +3)x^3 +(6 +3)x^2 +(2 -5)x +(-3 -5)
= 7x^3 +9x^2 -3x -8
Order the following units of a capacity families to greatest gallon paint cup quart
Answer:
7 yards
Step-by-step explanation:
1. How much salt and baking powder together is needed to make 36 cup cakes?
Answer:
too much salt will not bring taste to the cup cakes
Step-by-step explanation:
ellus
Find the surface area of the composite figure.
2 cm
7 cm
2 cm
12 cm
12 cm
7 cm
7 cm
SA = [?] cm2
Answer:
SA = 484 cm²
Step-by-step explanation:
Surface area of the composite figure = surface area of the larger rectangular prism + (surface area of the smaller rectangular prism - base area of the smaller rectangular prism)
✔️Surface are of the larger rectangular prism = 2(LW + LH + WH)
L = 7 cm
W = 7 cm
H = 12 cm
S.A = 2(7*7 + 7*12 + 7*12) = 434 cm²
✔️Surface are of the smaller rectangular prism = 2(LW + LH + WH)
L = 7 cm
W = 2 cm
H = 2 cm
S.A = 2(7*2 + 7*2 + 2*2) = 64 cm²
✔️Base area of the smaller rectangular prism = L*W
L = 7 cm
W = 2 cm
Area = 7*2 = 14 cm²
✅Surface area of the composite figure = 434 + (64 - 14)
= 434 + 50
= 484 cm²
Divide the following complex numbers:
(4-i)/(3+4i)
A.-8/7 + 19/7i
B. 16/25 - 19/25i
C. 8/25 - 19/25i
D. -16/7 + 19/7i
Answer:
C. 8/25 - 19/25i
Step-by-step explanation:
Given that:
[tex]\dfrac{4-i}{3+4i}[/tex]
[tex]= \dfrac{(4-i) (3-4i)}{(3+4i)(3-4i)}[/tex]
[tex]= \dfrac{(4-i) (3-4i)}{(3+4i)(3-4i)} \\ \\ =\dfrac{12 -16i -3i+4i^2}{9 - 12i +12i -16i^2} \\ \\ = \dfrac{12-19i+4i^2}{9-16i^2} \\ \\ = \dfrac{8-19i}{25}[/tex]
[tex]=\dfrac{8}{25}- \dfrac{19i}{25}[/tex]
The vertices of a rectangle in the coordinate plane are located at (4, -3), (4,5), (-5,5), and (-5, -3).
In order to determine if there is a significant difference between campuses and pass rate, the chi-square test for association and independence should be performed. What is the expected frequency of West Campus and failed
Answer:
57.5
Step-by-step explanation:
The expected frequency of West Campus and Failed :
Let :
Failed = F
East Campus = C
West Campus = W
Passed = P
Frequency of FnW :
[(FnE) + (FnW) * (PnW) + (FnW)] / total samples
[(52 + 63) * (63 + 37)] / 200
[(115 * 100)] / 200
11500 / 200
= 57.5
n(Failed n East campus)
Answer:
57.5
Step-by-step explanation:
Got it right on the test.
An experimenter is studying the effects of temperature, pressure, and type of catalyst on yield from a certain chemical reaction. She considers 6 different temperatures, 5 different pressures, and 4 different catalysts are under consideration.
a. If any particular experimental run involves the use of a single temperature, pressure, and catalyst, how many experimental runs are possible?
b. How many experimental runs are there that involve use of the lowest temperature and two lowest pressures?
c. Suppose that five different experimental runs are to be made on the first day of experimentation. If the five are randomly selected from among all the possibilities, so that any group of five has the same probability of selection, what is the probability that a different catalyst is used on each run?
Answer:
a) 120 possible experimental runs
b) 8 possible experimental runs
c) 0
Step-by-step explanation:
a. For the experiment, there are 6 different temperatures (T), 5 different pressures (P), and 4 different catalysts (C). We can find the total number of combinations using the product rule.
N = T × P × C
N = 6 × 5 × 4 = 120
b) If we use only the lowest temperature, we have T = 1, and if we use the two lowest pressures, we have P = 2. We can find the total number of combinations using the product rule.
N = T × P × C
N = 1 × 2 × 4 = 8
c) If we perform 5 experimental runs with 4 possible catalysts, it is not possible to use a different catalyst each time. At least, 1 catalyst must be repeated twice. Then, the event "a different catalyst is used on each run" has a probability of 0.
Quadrilateral ABCD is inscribed. The measure of ∠A=67°. What is the measure of ∠C?
Answer:
angle C =113 degree
Step-by-step explanation:
angle A + angle C =180 degree
angle C = 180 degree - angle A
angle C = 180 degree - 67 degree
=113 degree
2) Use the law of sines to find the length of SR
sin(A)/a=sin(B)/b=sin(C)/c
Answer:
take 28 degree as reference angle
using sine angle
sin28=p/h
0.46=10/h
0.46h=10
h=10/0.46
h=21.73
therefore hypotenuse =21.73
again using sine rule
take 25 degree as reference angle
sin 25=p/h
0.42=SR/21.73
0.42*21.73=SR
9.12=SR
9.1=SR
Step-by-step explanation:
I need help on this question
Answer:
C. y = 8x
Step-by-step explanation:
Using the slope formula, we can calculate the rate of Marisol's and Timothy's Machines.
[tex]m = \frac{y_1-y_2}{x_1-x_2}[/tex]
Marisol:
[tex]m = \frac{18-12}{3-2} \\m=6[/tex]
Timothy:
[tex]m=\frac{54-36}{6-4} \\m=\frac{18}{2} \\m=9[/tex]
Now that we know the rate of their machines, we need to choose a rate that is between 6 and 9. Therefore, the rate of Zorian's machine needs to be y = 8x.
Need the answer ASAP!! 20 points
Answer:
I think C. is it
Step-by-step explanation:
In a small metropolitan area, annual losses due to storm, fire, andtheft are assumed to be independent, exponentially distributed random variableswith respective means 1.0, 1.5, 2.4. Determine the probability that the maximumof these losses exceeds 3.
Answer:
[tex]0.4138[/tex]
Step-by-step explanation:
Given
[tex]x \to storm[/tex]
[tex]\mu_x = 1.0[/tex]
[tex]y \to fire[/tex]
[tex]\mu_y = 1.5[/tex]
[tex]z \to theft[/tex]
[tex]\mu_z = 2.4[/tex]
Let the event that the above three factors is greater than 3 be represented as:
[tex]P(A > 3)[/tex]
Using complement rule, we have:
[tex]P(A > 3) = 1 - P(A \le 3)[/tex]
This gives:
[tex]P(A > 3) = 1 - P(\{x \le 3\}\ n\ \{y \le 3\}\ n \{z \le 3\}\)[/tex]
-----------------------------------------------------------------------------------------------------------
The exponential distribution formula of each is:
[tex]P(x \le k) = 1 - e^{-\frac{k}{\mu}}[/tex]
So, we have:
[tex]k = 3; \mu_x = 1[/tex]
[tex]P(x \le 3) = 1 - e^{-\frac{3}{1}} = 1 - e^{-3} = 0.9502[/tex]
[tex]k=3; \mu_y = 1.5[/tex]
[tex]P(y \le 3) = 1 - e^{-\frac{3}{1.5}} = 1 - e^{-2} = 0.8647[/tex]
[tex]k = 3; \mu_z = 2.4[/tex]
[tex]P(z \le 3) = 1 - e^{-\frac{3}{2.4}} = 1 - e^{-1.25} = 0.7135[/tex]
-----------------------------------------------------------------------------------------------------------
[tex]P(A > 3) = 1 - P(\{x \le 3\}\ n\ \{y \le 3\}\ n \{z \le 3\}\)[/tex]
[tex]P(A > 3) = 1 - (0.9502 * 0.8647 *0.7135)[/tex]
[tex]P(A > 3) = 1 - 0.5862[/tex]
[tex]P(A > 3) = 0.4138[/tex]