Describe the similarities and differences between circuits with resistors combined in series and circuits with resistors combined in parallel

Answers

Answer 1

Answer:

from the below explanation...  we can say that, in the series circuit, flowing current remains the same at each part of the circuit. While in parallel circuits, the voltage across two endpoints of the branches is the same as the supplied voltage.

Explanation:

1.

The components in a series circuit are arranged in a single path from one end of supply to another end. However, the multiple components in a parallel circuit are arranged in multiple paths wrt the two end terminals of the battery.

2.

In a series circuit, a common current flows through all the components of the circuit. While in a parallel circuit, a different amount of current flows through each parallel branch of the circuit.

3.

In the series circuit, different voltage exists across each component in the circuit. Whereas in the parallel circuit, the same voltage exists across the multiple components in the circuit.

4.

A fault in one of the components of the series circuit causes hindrance in the operation of a complete circuit. As against fault in a single component in a parallel network do not hinder the functioning of another part of the circuit.

5.

The detection of a fault in case of a series circuit is difficult, but it is quite easy in parallel circuits.

6.

The equivalent resistance in case of a series circuit is always more than the highest value of resistance in the series connection. While the equivalent resistance in the parallel circuit is always less than any of the individual resistances in parallel combination.


Related Questions

The following liquids are stored in a storage vessel at 1 atm and 25°C. The vessels are vented with air. Determine whether the equilibrium vapor above the liquid will be flammable. The liquids are:________.
a. Acetone
b. Benzene
c. Cyclohexane
d. Toluene Problem

Answers

Answer:

The liquids are TOLUENE because the equilibrum vapor above it will be flammable ( D )

Explanation:

Liquids stored at : 1 atm , 25⁰c  and they are vented with air

Determining whether the equilibrum vapor above the liquid will be flammable

We can determine this by using Antoine equation to calculate saturation vapor pressure also apply Dalton's law to determine the volume % concentration of air and finally we compare answer to flammable limits to determine which liquid will be flammable

A) For acetone

using the Antoine equation to calculate saturation vapor pressure

[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]

values gotten appendix E ( chemical process safety (3rd edition) )

A = 16.6513

B = 2940.46

C = -35.93

T = 298 k      input values into Antoine equation

therefore ; [tex]p^{out}[/tex] = 228.4 mg

calculate volume percentage using Dalton's law

= V% = (saturation vapor pressure / pressure ) *100

         = (228.4 mmHg / 760 mmHg) * 100 = 30.1%

The liquid is not flammable because its UFL = 12.8%

B) For Benzene

using the Antoine equation to calculate saturation vapor pressure

[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]

values gotten appendix E ( chemical process safety (3rd edition) )

A= 15.9008

B = 2788.52

C = -52.36

T = 298 k   input values into the above equation

[tex]p^{out}[/tex] = 94.5 mmHg

calculate volume percentage using Dalton's law

V% = (saturation vapor pressure / pressure ) *100

      = (94.5 / 760 ) * 100 = 12.4%

Benzene is not flammable under the given conditions because its UFL =7.1%

C) For cyclohexane

using the Antoine equation to calculate saturation vapor pressure

[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]

values gotten appendix E ( chemical process safety (3rd edition) )

A = 15.7527

B = 2766.63

c = -50.50

T = 298 k

solving the above equation using the given values

[tex]p^{out}[/tex] = 96.9 mmHg

calculate volume percentage using Dalton's law

V% = (saturation vapor pressure / pressure ) *100

      = ( 96.9 mmHg /760 mmHg) * 100 = 12.7%

cyclohexane not flammable under the given conditions because its UFL= 8%

D) For Toluene

using the Antoine equation to calculate saturation vapor pressure

[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]

values gotten from appendix E ( chemical process safety (3rd edition) )

A = 16.0137

B = 3096.52

C = -53.67

T = 298 k

solving the above equation using the given values

[tex]p^{out}[/tex] = 28.2 mmHg

calculate volume percentage using Dalton's law

V% = (saturation vapor pressure / pressure ) *100

     = (28.2 mmHg / 760 mmHg) * 100 = 3.7%

Toluene is flammable under the given conditions because its UFL= 7.1%

True or false : In improper integrals infinte intervals mean that both of the integration limits are should be infinity

Answers

Answer:

An improper integral is a definite integral that has either or both limits infinite or an integrand that approaches infinity at one or more points in the range of integration

Explanation:

A quartz window of thickness L serves as a viewing port in a furnace used for annealing steel. The inner surface (x=0) of the window is irradiated with a uniform heat flux q''o due to emission from hot gases in the furnace. A fraction, β, of this radiation may be assumed to be absorbed at the inner surface, while the remaining radiation is partially absorbed as it passes through the quartz. The volumetric heat generation due to this absorption may be described by an expression of the form q˙(x)=(1−β)q''oα^e−αx where α is the absorption coefficient of the quartz. Convection heat transfer occurs from the outer surface (x=L) of the window to ambient air at T[infinity] and is characterized by the convection coefficient h. Convection and radiation emission from the inner surface may be neglected, along with radiation emission from the outer surface.

Required:
Determine the temperature distribution in the quartz, expressing your result in terms of the foregoing parameters.

Answers

Answer:

Assuming steady state condition the temperature distribution is calculated as expressed in the attached solution below

Explanation:

Given data :

thickness : L , inner surface (x) : 0,  uniform flux : q"o

fraction : β  

volumetric heat generation :  q˙(x)=(1−β)q''oα^e−αx

determine the temperature distribution in the quartz

attached below is the detailed solution

‏What is the potential energy in joules of a 12 kg ( mass ) at 25 m above a datum plane ?

Answers

Answer:

E = 2940 J

Explanation:

It is given that,

Mass, m = 12 kg

Position at which the object is placed, h = 25 m

We need to find the potential energy of the mass. It is given by the formula as follows :

E = mgh

g is acceleration due to gravity

[tex]E=12\times 9.8\times 25\\\\E=2940\ J[/tex]

So, the potential energy of the mass is 2940 J.

Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane-strain fracture toughness of 26.0 MPa m0.5. It has been determined that fracture results at a stress of 112 MPa when the maximum internal crack length is 8.6 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

Answers

Answer:

the required stress level  at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa

Explanation:

From the given information; the objective is to compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

The Critical Stress for a maximum internal crack can be expressed by the formula:

[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]

[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]

where;

[tex]\sigma_c[/tex] = critical stress required for initiating crack propagation

[tex]K_{lc}[/tex] = plain stress fracture toughness = 26 Mpa

Y = dimensionless parameter

a = length of the internal crack

given that ;

the maximum internal crack length is 8.6 mm

half length of the internal  crack will be 8.6 mm/2 = 4.3mm

half length of the internal  crack a = 4.3 × 10⁻³ m

From :

[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]

[tex]Y= \dfrac{26}{112 \times \sqrt{\pi \times 4.3 \times 10 ^{-3}}}[/tex]

[tex]Y= \dfrac{26}{112 \times0.1162275716}[/tex]

[tex]Y= \dfrac{26}{13.01748802}[/tex]

[tex]Y=1.99731315[/tex]

[tex]Y \approx 1.997[/tex]

For this same component and alloy, we are to also compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

when the length of the internal crack a = 3mm

half  length of the internal  crack will be 3.0 mm / 2 = 1.5 mm

half length of the internal  crack a =1.5 × 10⁻³ m

From;

[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]

[tex]\sigma_c = \dfrac{26}{1.997 \sqrt{\pi \times 1.5 \times 10^{-3}}}[/tex]

[tex]\sigma_c = \dfrac{26}{0.1370877444}[/tex]

[tex]\sigma_c =189.6595506[/tex]

[tex]\sigma_c =[/tex] 189.66 MPa

Thus; the required stress level  at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa

Technician A says that proper footwear may include both leather and steel-toed shoes. Technician B says that leather-soled shoes provide slip resistance. Who is correct

Answers

Given:

We have given two statements.

Statement 1: Proper footwear may include both leather and steel-toed shoes.

Statement 2:  Leather-soled shoes provide slip resistance.

Find:

Which statement is true.

Solution:

A slip-resistant outsole is smoother and more slip-resistant than other outsole formulations when exposed to water and oil. A smoother outsole in rubber ensures a slip-resistant shoe can handle a slippery floor more effectively.

Slip resistant shoes have an interlocked tread pattern that does not close the water in, enabling the slip resistant sole to touch the floor to provide better slip resistance.

Leather-soled shoes don't provide slop resistance.

Therefore, both the Technicians are wrong.

From the statements made by both technician A and Technician B, we can say that; both technicians are wrong.

We are given the statements made by both technicians;

Technician A: Proper footwear may include both leather and steel-toed shoes.

Technician B: Leather-soled shoes provide slip resistance.

Now, they are talking about safety shoes to be worn in workshops.

A shoe that is Slip resistant will have rubber soles and tread patterns that can help to have better grip of wet or greasy floors.

This is the type of shoe that should be worn by technicians in the workshop.

Thus, Technician A is wrong because proper footwear does not include leather shoes.

Similarly, technician B is also wrong because leather shoes are not safety shoes.

Read more about slip resistant shoes at; https://brainly.com/question/17411739

In the LC-3 data path, the output of the address adder goes to both the MARMUX and the PCMUX, potentially causing two very different register transfers to take place. Why does this not happen

Answers

Answer:

no need for that

Explanation:

they are not the same at all

Describe the meaning of the different symbols and abbreviations found on the drawings/documents that they use (such as BS8888, surface finish to be achieved, linear and geometric tolerances, electronic components, weld symbols and profiles, pressure and flow characteristics, torque values, imperial and metric systems of measurement, tolerancing and fixed reference points)

Answers

Answer:

Engineering drawing abbreviations and symbols are used to communicate and detail the characteristics of an engineering drawing.

There are many abbreviations common to the vocabulary of people who work with engineering drawings in the manufacture and inspection of parts and assemblies.

Technical standards exist to provide glossaries of abbreviations, acronyms, and symbols that may be found on engineering drawings. Many corporations have such standards, which define some terms and symbols specific to them; on the national and international level, like BS8110 or Eurocode 2 as an example.

Explanation:

The system is stimulated, via the voltage source, with a pulse of height 2 and width 4 s. Determine the voltage across the resistor.

Answers

Answer:

Voltage across resistor = 2 v

Explanation:

Given data

pulse height = 2 v

pulse width = 4s

calculate voltage across resistor ( the free hand sketch attached below explains more )

pulse height is also = amplitude of voltage ) = 2v

The voltage across the resistor = 2v  Since  the voltage from the source of the circuit is equal to the amplitude voltage in the circuit ( assuming no loss of voltage )

also the graphical representation of the problem is attached below

A car radiator is a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.05 kg/s, enters the radiator at 400 K and is to leave at 330 K. The water is cooled by air that enters at 0.75 kg/s and 300 K. If the overall heat transfer coefficient is 200 W/m2-K, what is the required heat transfer surface area?

Answers

Answer:

Explanation:

Known: flow rate and inlet temperature for automobile radiator.

Overall heat transfer coefficient.

Find: Area required to achieve a prescribed outlet temperature.

Assumptions: (1) Negligible heat loss to surroundings and kinetic and

potential energy changes, (2) Constant properties.

Analysis: The required heat transfer rate is

q = (m c)h (T h,i - T h,o) = 0.05 kg/s (4209J / kg.K) 70K = 14,732 W

Using the ε-NTU method,

Cmin = Ch = 210.45 W / K

Cmax = Cc = 755.25W / K

Hence, Cmin/Cmx(Th,i - Th,o) = 210.45W / K(100K) = 21,045W

and

ε=q/qmax = 14,732W / 21,045W = 0.700

NTU≅1.5, hence

A=NTU(cmin / U) = 1.5 x 210.45W / K(200W) / m² .K) = 1.58m²

1. the air outlet is..

Tc,o = Tc,i + q / Cc = 300K + (14,732W / 755.25W / K) = 319.5K

2. using the LMTD approach ΔTlm = 51.2 K,, R=0.279 and P=0.7

hence F≅0.95 and

A = q/FUΔTlm = (14,732W) / [0.95(200W / m².K) 51.2K] = 1.51m²

A concentric tube heat exchanger is used to cool a solution of ethyl alcohol flowing at 6.93 kg/s (Cp = 3810 J/kg-K) from 65.6 degrees C to 39.4 degrees C using water flowing at 6.30 kg/s at a temperature of 10 degrees C. Assume that the overall heat transfer coefficient is 568 W/m2-K. Use Cp = 4187 J/kg-K for water.
a. What is the exit temperature of the water?
b. Can you use a parallel flow or counterflow heat exchanger here? Explain.
c. Calculate the rate of heat flow from the alcohol solution to the water.
d. Calculate the required heat exchanger area for a parallel flow configuration
e. Calculate the required heat exchanger area for a counter flow configuration. What happens when you try to do this? What is the solution?

Answers

A, I believe is correct

Determine the normal stress in a ball, which has an outside diameter of 160 mm and a wall thickness of 3.8 mm, when the ball is inflated to a gage pressure of 78 kPa.

Answers

Answer:

The normal stress is 0.7821 MPa

Explanation:

The external diameter D = 160 mm

The thickness t = 3.8 mm = 3.8 x 10^-3 m

gauge pressure P = 78 kPa = 78 x 10^3 Pa

The maximum shear stress τmax = ?

The external radius of the shell from the external surface R = D/2 = 160/2 = 80 mm

The internal radius of the shell r = R - t

==> 80 - 3.8 = 76.2 mm

Therefore the internal diameter d = 2r = 2 x 76.2 = 152.4 mm

==> d = 152.4 x 10^-3 m

The normal stress σ = [tex]\frac{Pd}{4t}[/tex] = [tex]\frac{78*10^{3}*152.4*10^{-3} }{4*3.8*10^{-3} }[/tex] = 782052.63 Pa

==>  σ = 0.7821 MPa

Some characteristics of clay products such as (a) density, (b) firing distortion, (c) strength, (d) corrosion resistance, and (e) thermal conductivity are affected by the extent of vitrification. Will they increase or decrease with increasing degree of vitrification?

1. (a) increase (b) decrease (c) increase (d) decrease (e) increase
2. (a) decrease (b) increase (c) increase (d) increase (e) decrease
3. (a) decrease (b) decrease (c) increase (d) decrease (e) decrease
4. (a) increase (b) increase (c) increase (d) increase (e) increase
5. (a) increase (b) decrease (c) decrease (d) increase (e) decrease

Answers

Explanation:

1. increase This due to increase in the pore volume.

2.increase . This is due to the fact that more liquid phase will be present at the firing.

3. Increase. This increase is because of the fact that clay on cooling forms glass.Thus, gaining more strength as the liquid phase formed fills in pore volume.

4. Increase, Rate of corrosion depends upon the surface area exposed.Since, upon vitrification surface area would increase, therefore corrosion increases.

5. Increase , glass has higher thermal conductivity than the pores it fills.

1. How many PWM generator blocks are there in LM3S1968? What are they? 2. How many independent PWM outputs can be generated on an LM3S1968? 3. List at least two applications for PWM. 4. What does NVIC in a timer stand for? Explain its significance. 5. Where does the counter/timer derive its time period from? 6. Draw the waveforms (square wave) with duty cycles (on) 25%, 50%, 75%.One of the purpose of the lab is to generate a PWM signal in one of the ports using systick timer. a. Given a signal with 1 KHz, find out the time period of each cycle. Find out the time span of the high signal and the low signal given 10%, 20%, 30% and 90% duty cycles. b. We would like to generate a signal with a certain frequency (ex. 100 Hz, 1 KHz, etc.) and certain duty cycle (10%, 20%, etc.), find out the values we need to load into the timer register? Given that the XTAL = 8 MHz.

Answers

Answer:

1) There are  three (3) PWM generator blocks in LM3S1968 and they are

PWM signal generatorADC trigger selectorPWM dead-band generator

2)  Two (2) independent  PWM outputs can be generated on an LM3S1968

3) Applications for PWM

Control Brightness of LED using  Duty Cycle controlSpeed Control of DC Motor

4) NVIC in a timer stand for ; Nested Vectored Interrupt Controller

its significance is that it is used to handle  and give priorities to exception and Interrupts

5) The counter/timer derive its time period from  counting the output pulses for one cycle which is the duration over which gate is open

Explanation:

1) There are  three (3) PWM generator blocks in LM3S1968 and they are

PWM signal generatorADC trigger selectorPWM dead-band generator

2)  Two (2) independent  PWM outputs can be generated on an LM3S1968

3) Applications for PWM

Control Brightness of LED using  Duty Cycle controlSpeed Control of DC Motor

4) NVIC in a timer stand for ; Nested Vectored Interrupt Controller

its significance is that it is used to handle  and give priorities to exception and Interrupts

5) The counter/timer derive its time period from  counting the output pulses for one cycle which is the duration over which gate is open

6) THE WAVEFORM DIAGRAMS IS ATTACHED BELOW

it can be seen  that 50 % rises and goes down at half interval. 75 % goes down at half more of 50% and 25% goes down at half less of 50%

Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to the maximum shear stress.

Answers

The shear stress at any given point y1 along the height of the cross section is calculated by: where Ic = b·h3/12 is the centroidal moment of inertia of the cross section. The maximum shear stress occurs at the neutral axis of the beam and is calculated by: where A = b·h is the area of the cross section.

In this exercise we have to calculate the formula that will be able to determine the length of the cantilevered, like this:

[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]

So to determinated the maximum tensile and compreensive stress due to bending we can describe the formula as:

[tex]\sigma_b = \frac{MC}{I}[/tex]

Where,

[tex]\sigma_b[/tex] is the compressive stress or tensile stress[tex]M[/tex] is the B.M [tex]C[/tex] is the N.A distance[tex]I[/tex] is the moment of interior

So making this formula for the max, we have:

[tex]\sigma_c=\frac{MC}{I} \\\sigma_T=-\sigma_c=-\frac{MC}{I}\\\sigma_{max}=M_{max}\\[/tex]

With all this information we can put the formula as:

[tex]\sigma_{max}C=\frac{M_{max}C}{I}[/tex]

See more about stress in the beam at brainly.com/question/23637191

A single-phase transformer has 480 turns on the primary and 90 turns on the secondary. The mean length of the flux path in the core is 1.8 m and the joints are equivalent to an airgap of 0.1 mm. The value of the magnetic field strength for 1.1 T in the core is 400 A/m, the corresponding core loss is 1.7 W/kg at 50 Hz and the density of the core is 7800 kg/m3. If the maximum value of the flux density is to be 1.1 T when a p.D. Of 2200 V at 50 Hz is applied to the primary, calculate: a. The cross-sectional area of the core; b. The secondary voltage on no load; c. The primary current and power factor on no load.

Answers

Answer:

a) cross sectional area of the core = 0.0187 m²

b) The secondary voltage on no-load = 413 V

c) The primary currency and power factor on no load is 1.21 A and 0.168 lagging respectively.

Explanation:

See attached solution.

A car travels from A, due north to a town B 4 km away. It then travels due east until it arrives town C 5 km from B. determine the distance of town C from A​

Answers

Answer:

A to C = 6.4 km

Explanation:

A to B = 4 km

B to C = 5 km

A to C =  using pythagorean theorem

a² + b² = c²

a = A to B = 4

b = B to C = 5

c = A to C

c² = 4² + 5²

c = 6.4 km (A to C)

According to the scenario, the distance between town C from town A is found to be 6.40 Km.

Which background does this question depend on?

The background that this question depends on is known as the direction-based question. These types of questions completely depend on the distance of moving bodies like cars, persons, or any other objects as well with respect to the initial position.

According to the question,

The distance between town A to town B = 4 km.

The distance between town B to town C = 5 km.

Now, according to the Pythagoras theorem, the distance between town C to town A is as follows:

[tex]AC^2[/tex] = [tex]AB^2 +BC^2[/tex].

[tex]AC^2[/tex] = [tex]4^2+5^2[/tex]

[tex]AC^2[/tex] = 16 + 25 = 41.

AC = √41 = 6.40 km.

Therefore, the distance between town C from town A is found to be 6.40 Km.

To learn more about Pythagoras' theorem, refer to the link:

https://brainly.com/question/343682

#SPJ5

If you see a red, a green, and a white light on another boat, what does this tell you?

Answers

A boat is approaching you head on.

The red and green lights are sidelights that are positioned on the port side (red) (left as facing the bow) and starboard (green) (right as facing the bow) side of the boat. Various white lights are required depending on the size of the boat, but generally, a white masthead light and stern light are required. See the US Coast Guard site in the link below for more specific information.

Hope this helps

A drilling operation is to be performed with a 12.7 mm diameter drill on cast iron. The hole depth is 60 mm and the drill point angle is 118∘. The cutting speed is 25 m/min and the feed is 0.30 mm/rev. Calculate:___________.
a) The cutting time (min) to complete the drilling operation
b) Material removal rate (mm3/min) during the operation, after the drill bit reaches full diameter.

Answers

Answer:

a. Tm = 0.3192min.

b. MRR = 396.91mm^{3}/s.

Explanation:

Given the following data;

Drill diameter, D = 12.7mm

Depth, L = 60mm

Cutting speed, V = 25m/min = 25,000m

Feed, F = 0.30mm/rev

To find the cutting time;

Cutting time, Tm =?

[tex]Tm = \frac{L}{Fr}[/tex] .......eqn 1

We would first solve for the feed rate (F);

[tex]Fr = NF[/tex] .......eqn 2

But we need to find the rotational speed (N);

[tex]N= \frac{V}{\pi *D}[/tex]

[tex]N= \frac{25000}{3.142*12.7}[/tex]

[tex]N= \frac{25000}{39.90}[/tex]

N = 626.57rev/min.

Substiting N into eqn 2;

[tex]Fr = NF[/tex]

Fr = 626.57 * 0.30

Fr = 187.97mm/min.

Substiting F into eqn 1;

[tex]Tm = \frac{L}{Fr}[/tex]

[tex]Tm = \frac{60}{187.97}[/tex]

Tm = 0.3192min.

Therefore, the cutting time is 0.3192 minutes.

For the material removal rate (MRR);

[tex]MRR = \frac{\pi *D^{2}Fr}{4}[/tex]

[tex]MRR = \frac{3.142*12.7^{2}*187.97}{4}[/tex]

[tex]MRR = \frac{3.142*161.29*187.97}{4}[/tex]

[tex]MRR = \frac{95258.16}{4}[/tex]

[tex]MRR = 23814.54mm^{3}/min[/tex]

Time in seconds, we divide by 60;

MRR = 23814.54/60 =396.91mm^{3}/s.

Therefore, the material removal rate (MRR) is 396.91mm^{3}/s.

Who plays a role in the financial activities of a company?
O A. Just employees
O B. Just managers
O C. Only members of the finance and accounting department
O D. Everyone at the company, including managers and employees

Answers

Hey,

Who plays a role in the financial activities of a company?

O D. Everyone at the company, including managers and employees

Answer:

Everyone at the company, including managers and employees

Explanation:

what's the maximum shear on a 3.0 m beam carrying 10 kN/m?

Answers

Answer:

max shear = R = V = 15 kN

Explanation:

given:

load = 10 kn/m

span = 3m

max shear = R = V = wL / 2

max shear = R = V = (10 * 3) / 2

max shear = R = V = 15 kN

An inventor claims to have developed a heat pump that produces a 200-kW heating effect for a 293 K heatedzone while only using 75 kW of power and a heat source at 273 K. Justify the validity of this claim.

Answers

Answer:

From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.

Explanation:

Heat generated Q = 200 kW

power input W = 75 kW

Temperature of heated region [tex]T_{h}[/tex] = 293 K

Temperature of heat source [tex]T_{c}[/tex] = 273 K

For this engine,

coefficient of performance COP = Q/W  = 200/75 = 2.67

The maximum theoretical COP obtainable for a heat pump is given as

COP = [tex]\frac{T_{h} }{T_{h} - T_{c} }[/tex] =  [tex]\frac{293 }{293 - 273 }[/tex] = 14.65

From the calculation, we can see that the invention's COP of 2.67 does not exceed the maximum theoretical COP of 14.65. Hence his claim is valid and could be possible.

4. ""ABC constriction Inc."" company becomes the lowest in the bed process to get a $21 million construction project for ""Northern Inc."". Now ""ABC construction Inc."" planning to make a formal contract agreement

Answers

Answer:

hello your question is incomplete here is the complete question

. “ABC construction Inc.” company becomes the lowest in the bed process to get a $21 million construction project for “Northern Inc.”. Now “ABC construction Inc.” planning to make a formal contract agreement with the “Northern Inc.”. What are the main elements of this agreement to consider it as a legal contract?

Answer : elements of the agreement

offeracceptancecapacity certaintyconsiderationintention to create legal relation

Explanation:

Offer : an offer is the beginning element for any valid agreement to be started or reached between two or more bodies. ABC construction would have to make an offer first for the agreement to be valid

Acceptance: This is part where by the company "Northern Inc" after receiving the offer from ABC construction Inc would have to consent to the approval of the offer made.

capacity : This the element of the agreement that helps to ensure that both parties have the legal and financial backings to embark on the contract agreement .

certainty : This element ensures that both parties understands the terms and conditions attached to the agreement and this to ensure that there are no bogus conditions

Consideration : This is a very vital element because the both parties have to give something in return while going into a valid agreement

Intention to create legal relation : Legal relations are applied to contract agreements whereby both parties want the contract agreement to b legally enforced and this is important in order to prevent contract breach by any party involved in the agreement

A 60-Hz 220-V-rms source supplies power to a load consisting of a resistance in series with an inductance. The real power is 1500 W, and the apparent power is 4600 VA.
a. Determine the value of the resistance.
b. Determine the value of the inductance.

Answers

Answer:

(a) The value of the resistance is 3.431 Ω

(b) The value of the inductance is 0.0264 H

Explanation:

Given;

frequency of the source, f = 60 Hz

rms voltage, V-rms = 220 V

real power, Pr = 1500 W

apparent power, Pa = 4600 VA

(a). Determine the value of the resistance

[tex]P_r = I_{rms}^2R[/tex]

where;

R is resistance

[tex]I_{rms} = \frac{Apparent \ Power}{V_{rms}} \\\\I_{rms} = \frac{P_a}{V_{rms}}\\\\I_{rms}= \frac{4600}{220} \\\\I_{rms}= 20.91 \ A[/tex]

Resistance is calculated as;

[tex]R = \frac{P_r}{I_{rms}^2} \\\\R = \frac{1500}{(20.91)^2} \\\\R = 3.431 \ ohms[/tex]

(b). Determine the value of the inductance.

[tex]Q_L = I_{rms}^2 X_L[/tex]

where;

[tex]Q_L[/tex] is reactive power

[tex]X_L[/tex] is inductive reactance

[tex]Apparent \ power = \sqrt{Q_L^2 + P_r^2} \\\\P_a^2 = Q_L^2 + P_r^2\\\\Q_L^2 = P_a^2 - P_r^2\\\\Q_L^2 = 4600^2 - 1500^2\\\\Q_L^2 = 18910000\\\\Q_L = \sqrt{18910000}\\\\Q_L = 4348.56 \ VA[/tex]

inductive reactance is calculated as;

[tex]X_L = \frac{Q_L}{I_{rms}^2} \\\\X_L = \frac{4348.56}{(20.91)^2} \\\\X_L = 9.95 \ ohms[/tex]

inductance is calculated as;

[tex]X_L = \omega L\\\\X_L = 2\pi f L\\\\L = \frac{X_L}{2\pi f} \\\\L = \frac{9.95}{2\pi *60} \\\\L = 0.0264 \ H\\\\L = 26.4 \ mH[/tex]

An exothermic reaction releases 146 kJ of heat energy and 3 mol of gas at 298 K and 1 bar pressure. Which of the following statements is correct?
A) ΔU=-138.57 kJ and ΔH=-138.57 kJ
B) ΔU=-153.43 kJ and ΔH=-153.43 kJ
C) ΔU=-138.57 kJ and ΔH=-146.00 kJ
D) ΔU=-153.43 kJ and ΔH=-146.00 kJ

Answers

Answer:

D) ΔU = -153.43 kJ and ΔH = -146.00 kJ

Explanation:

Given;

heat energy released by the exothermic reaction, ΔH = -146 kJ

number of gas mol, n = 3 mol

temperature of the gas, T = 298 K

Apply first law of thermodynamic

Change in the internal energy of the system, ΔU;

ΔU = ΔH- nRT

where;

R is gas constant = 8.314 J/mol.K

ΔU = -146kJ - (3 x 8.314 x 298)

ΔU = -146kJ - 7433 J

ΔU = -146kJ - 7.433 kJ

ΔU = -153.43 kJ

Therefore, the enthalpy change of the reaction ΔH is -146 kJ and change in the internal energy of the system is -153.43 kJ

D) ΔU = -153.43 kJ and ΔH = -146.00 kJ

The speed above which an airplane will experience structural damage when a load is applied, instead of stalling, is called the ______________ speed and varies with weight

Answers

Answer:

Maneuvering speed.

Explanation:

The speed above which an airplane will experience structural damage when a load is applied, instead of stalling, is called the maneuvering speed and varies with weight.

In aeronautical engineering, the maneuvering speed (Va) of an aircraft such as an aeroplane, helicopter, or jet is an airspeed limitation which is mainly selected by an aircraft designer.

Generally, at speeds higher or greater than the manoeuvring speed, aircraft pilots are advised not to attempt a full deflection of any flight control surface because it's capable of resulting in a damage to the structure of an aircraft.

If you're a pilot, to find the maneuvering speed of an aircraft, you should look at the flight manual of the aircraft or on the cockpit placard in the aircraft. The maneuvering speed of an aircraft is a calibrated speed and should not be exceeded by any pilot.

Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane-strain fracture toughness of 26.0 MPa m0.5. It has been determined that fracture results at a stress of 112 MPa when the maximum internal crack length is 8.6 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.

Answers

Answer: 164.2253 MPa

Explanation:

First we find the half internal crack which is  = length of surface crack /2

so α = 8.6 /2 = 4.3mm ( 4.3×10⁻³m )

Now we find the dimensionless parameter using the critical stress crack propagation equation

∝ = K / Y√πα

stress level ∝ = 112Mpa

fracture toughness K = 26Mpa

dimensionless parameter Y = ?

SO working the formula

Y = K / ∝√πα

Y = 26 / 112 (√π × 4.3× 10⁻³)

Y = 1.9973

We are asked to find stress level for internal crack length of  4m

so half internal crack is  = length of surface crack /2

4/2 = 2mm ( 2 × 10⁻³)

from the previous formula critical stress crack propagation equation

∝ = K / Y√πα

∝ = 26 / 1.9973 √(π × 2 × 10⁻³)

∝ = 164.2253 Mpa

Given the unity feedback system

G(s)= K(s+4)/s(s+1.2)(s+2)

Find:

a. The range of K that keeps the system stable
b. The value of K that makes the system oscillate
c. The frequency of oscillation when K is set to the value that makes the system oscillate

Answers

Answer:

A.) 0 > K > 9.6

B.) K = 9.6

C.) w = +/- 2 sqrt (3)

Explanation:

G(s)= K(s+4)/s(s+1.2)(s+2)

For a closed loop stability, we can analyse by using Routh - Horwitz analysis.

To make the pole completely imaginary, K must be equal to 9.6 Because for oscillations. Whereas, one pair of pole must lie at the imaginary axis.

Please find the attached files for the solution

. A belt drive is desired to couple the motor with a mixer for processing corn syrup. The 25-hp electric motor is rated at 950 rpm and the mixer must operate as close to 250 rpm as possible. Select an appropriate belt size, commercially available sheaves, and a belt for this application. Also calculate the actual belt speed and the center distance.

Answers

Answer:

Hello the table which is part of the question is missing and below are the table values

For a 5V belt the available diameters are : 5.5, 5.8, 5.9, 6.2, 6.3, 6.6, 12.5, 13.9, 15.5, 16.1, 18.5, 20.1

Answers:

belt size = 140 in with diameter of 20.1n

actual speed of belt = 288.49 in/s

actual center distance = 49.345 in

Explanation:

Given data :

Electric motor (driver sheave) speed (w1) = 950 rpm

Driven sheave speed (w2) = 250 rpm

pick D1 ( diameter of driver sheave)  = 5.8 in  ( from table )

To select an appropriate belt size we apply the equation for the velocity ratio to get the diameter first

VR = [tex]\frac{w1}{w2}[/tex] = 950 / 250

also since the speed of  belt would be constant then ;

Vb = w1r1 = w2r2 ------- equation 1

r = d/2

substituting the value of r into equation 1

equation 2 becomes : [tex]\frac{w1}{w2} = \frac{d2}{d1}[/tex]    = VR

Appropriate belt size ( d2) can be calculated as

d2 = [tex]\frac{w1d1}{w2}[/tex] = [tex]\frac{950 * 5.8}{250}[/tex] = 22.04

From the given table the appropriate belt size would be : 20.1 because it is the closest to the calculated value

next we have to determine the belt length /size

[tex]L = 2C + \frac{\pi }{2} ( d1+d2) + \frac{(d2-d1)^2}{4C}[/tex]

inputting  all the values into the above equation including the value of C as calculated below

L ≈ 140 in

Calculating the center distance

we use this equation to get the ideal center distance

[tex]d2< C_{ideal} < 3( d1 +d2)[/tex]

22.04 < c < 3 ( 5.8 + 20.1 )

22.04 < c < 77.7

the center distance is between 22.04 and 77.7  but taking an average value

ideal center distance would be ≈ 48 in

To calculate the actual center distance we use

[tex]C = \frac{B+\sqrt{B^2 - 32(d2-d1)^2} }{16}[/tex] -------- equation 3

B = [tex]4L -2\pi (d2 + d1 )[/tex]

inputting all the values into (B)

B = 140(4) - 2[tex]\pi[/tex]( 20.01 + 5.8 )

B ≈ 399.15 in

inputting all the values gotten Back to equation 3 to get the actual center distance

C = 49.345 in ( actual center distance )

Calculating the actual belt speed

w1 = 950 rpm = 99.48 rad/s

belt speed ( Vb) = w1r1 = w1 * [tex]\frac{d1}{2}[/tex]

                           = 99.48 * 5.8 / 2 = 288.49 in/s

steep safety ramps are built beside mountain highway to enable vehichles with fedective brakes to stop safely. a truck enters a 1000 ft ramps at a high speed vo and travels 600ft in 7 s at constant deceleration before its speed is reduced to uo/2. Assuming the same constant deceleration.

Determine:
a. The additional time required for the truck to stop.
b. The additional distance traveled by the truck.

Answers

Answer:

a. 6 seconds

b. 180 feet

Explanation:

Images attached to show working.

a. You have the position of the truck so you integrate twice. Use the formula and plug in the time t = 7 sec. Check out uniform acceleration. The time at which the truck's velocity is zero  is when it stops.

b. Determine the initial speed. Plug in the time calculated in the previous step. From this we can observe that the truck comes to a stop before the end of the ramp.

Other Questions
What is the sum of a 54-term arithmetic sequence where the first term is 6 and the last term is 377? (1 point) 10,341 10,388 10,759 11,130 Please Help! Two lines, A and B, are represented by the following equations: Line A: y = x 1 Line B: y = 3x + 11 Which of the following options shows the solution to the system of equations and explains why? (3, 2), because the point does not lie on any axis (3, 2), because one of the lines passes through this point (3, 2), because the point lies between the two axes (3, 2), because both lines pass through this point A current of 2.5 A delivers 3.5 of charge Which equation represents the function graphedcoordinate plane? URGENT It is given that a regular n-sided polygon has 5 sides more than aregular m-sided polygon. If the sum of interior angles of the regularn-sided polygon is twice that of the latter, find the values of m and n. What is displayed in the alert dialog box after the following code is executed? var scores = [70, 20, 35, 15]; scores[scores.length] = 40; alert("The scores array: " + scores); Read the advertisement. For vim and vigor, drink VitaSip! This amazing new sports drink will make you feel energetic, clear-headed, and ready to face the world. VitaSip is chock full of the vitamins and minerals your body needs for optimum health. Whats more, VitaSip tastes good. So sip your way to better health. Drink VitaSipIts sip-ly delicious! Which revision would make the advertisement more persuasive? A monopolistically competitive industry is characterized by a. many firms selling products that are similar but not identical. b. many firms selling identical products. c. a few firms selling products that are similar but not identical. d. a few firms selling highly different products. Explain Harriet Tubmans role in the Underground Railroad.Please and thank you What is the graph of the solution to the following compound inequality? 6x 1 < 25 or 3x + 4 5 (Math never got easier!) No seriously help:) Find the volume of the region enclosed by the cylinder x squared plus y squared equals 36 and the planes z equals 0 and y plus z equals 36. Write a balanced equation for the single-replacement oxidation-reduction reaction described, using the smallest possible integer coefficients. The reaction that takes place when chlorine gas combines with aqueous potassium bromide. (Use the lowest possible coefficients. Omit states of matter.) put the events in order a. The stock market crashed. b. President Franklin Roosevelt was elected. c. The Reconstruction Finance Corporation was created. d. The bank holiday was declared. e. The Twentieth Amendment was ratified. Which factor most contributed to hernan Cortess victory over the Aztec empire A certain mixture of paint contains 5 parts white paint for every 4 parts blue paint. If a can of paint contains 75 ounces of white paint, how many ounces of blue paint are in the can? Which of the following processes requires energy from the cell?A.OsmosisB.Active transportC.DiffusionD.Passive transport quadratic equation grade :910 points;) You are given a mixture of sand, sugar and sulphur. Give the method you will use to separate the three constituents. ___________ If you wanted to find a local Google expert who could come to your school to do specific training around Google for Education tools with teachers, you would search for which of the following? (Select all that apply.) A) Google for Education Certified Trainer B) Google for Education Certified Innovator C) Google for Education Partner D) Reference School