Answer:
x is approximately 53°
Answer:52.64°
Step-by-step explanation:
opp=31
hyp=39
sin x° =[tex]\frac{opp}{hyp}[/tex]
sin x°=31/39
sin x°=0.7949
x=[tex]sin^{-1} (0.7949)\\[/tex]
x=52.64
A coin is thrown at random into the rectangle below.
A rectangle is about 90 percent white and 10 percent green.
What is the likelihood that the coin will land in the green region?
It is certain.
It is impossible.
It is likely.
It is unlikely.
Answer:
It is unlikely.
Step-by-step explanation:
Certain = 100%
Impossible = 0%
Likely = more than 50%
Unlikely = less than 50%
It is less than 50%, so it is unlikely.
Answer:
(A) it is likely
Step-by-step explanation:
i took the test on edge
1000 randomly selected Americans were asked if they believed the minimum wage should be raised. 600 said yes. Construct a 95% confidence interval for the proportion of Americans who believe that the minimum wage should be raised.
a. Write down the formula you intend to use with variable notation).
b. Write down the above formula with numeric values replacing the symbols.
c. Write down the confidence interval in interval notation.
Answer:
a. p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]
b.0.6 ± 1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]
c. { -1.96 ≤ p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ≥ 1.96} = 0.95
Step-by-step explanation:
Here the total number of trials is n= 1000
The number of successes is p` = 600/1000 = 0.6. The q` is 1 - p`= 1- 0.6 = 0.4
The degree of confidence is 95 % therefore z₀.₀₂₅ = 1.96 ( α/2 = 0.025)
a. The formula used will be
p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ( z with the base alpha by 2 (α/2 = 0.025))
b. Putting the values
0.6 ± 1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]
c. Confidence Interval in Interval Notation.
{ -1.96 ≤ p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ≥ 1.96} = 0.95
{ -z( base alpha by 2) ≤ p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ≥ z( base alpha by 2) } = 1- α
PLEASE HELP I DO NOT UNDERSTAND AT ALL ITS PRECALC PLEASE SERIOUS ANSWERS
You want to end up with [tex]A\sin(\omega t+\phi)[/tex]. Expand this using the angle sum identity for sine:
[tex]A\sin(\omega t+\phi)=A\sin(\omega t)\cos\phi+A\cos(\omega t)\sin\phi[/tex]
We want this to line up with [tex]2\sin(4\pi t)+5\cos(4\pi t)[/tex]. Right away, we know [tex]\omega=4\pi[/tex].
We also need to have
[tex]\begin{cases}A\cos\phi=2\\A\sin\phi=5\end{cases}[/tex]
Recall that [tex]\sin^2x+\cos^2x=1[/tex] for all [tex]x[/tex]; this means
[tex](A\cos\phi)^2+(A\sin\phi)^2=2^2+5^2\implies A^2=29\implies A=\sqrt{29}[/tex]
Then
[tex]\begin{cases}\cos\phi=\frac2{\sqrt{29}}\\\sin\phi=\frac5{\sqrt{29}}\end{cases}\implies\tan\phi=\dfrac{\sin\phi}{\cos\phi}=\dfrac52\implies\phi=\tan^{-1}\left(\dfrac52\right)[/tex]
So we end up with
[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]
Answer:
y(t) = √29·sin(4πt +1.1903)amplitude: √29angular frequency: 4πphase shift: 1.1903 radiansStep-by-step explanation:
In the form ...
y(t) = Asin(ωt +φ)
you have ...
Amplitude = Aangular frequency = ωphase shift = φThe translation from ...
y(t) = 2sin(4πt) +5cos(4πt)
is ...
A = √(2² +5²) = √29 . . . . the amplitude
ω = 4π . . . . the angular frequency in radians per second
φ = arctan(5/2) ≈ 1.1903 . . . . radians phase shift
Then, ...
y(t) = √29·sin(4πt +1.1903)
_____
Comment on the conversion
You will notice we used "2" and "5" to find the amplitude and phase shift. In the generic case, these are "coefficient of sin( )" and "coefficient of cos( )". When determining phase shift, pay attention to whether your calculator is giving you degrees or radians. (Set the mode to what you want.)
If you have a negative coefficient for sin( ), you will need to add 180° (π radians) to the phase shift value given by the arctan( ) function.
A newsletter publisher believes that 71q% of their readers own a personal computer. Is there sufficient evidence at the 0.010.01 level to refute the publisher's claim.
Required:
State the null and alternative hypotheses for the above scenario.
Answer:
Null - p= 71%
Alternative - p =/ 71%
Step-by-step explanation:
The null hypothesis is always the default statement in an experiment. While the alternative hypothesis is always tested against the null hypothesis.
Null hypothesis: 71% of their readers own a personal computer- p = 71%
Alternative hypothesis: Not 71% of their readers own a personal computer - p =/ 71%
Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value
Answer:
z(c) = - 1,64
We reject the null hypothesis
Step-by-step explanation:
We need to solve a proportion test ( one tail-test ) left test
Normal distribution
p₀ = 63 %
proportion size p = 51 %
sample size n = 114
At 5% level of significance α = 0,05, and with this value we find in z- table z score of z(c) = 1,64 ( critical value )
Test of proportion:
H₀ Null Hypothesis p = p₀
Hₐ Alternate Hypothesis p < p₀
We now compute z(s) as:
z(s) = ( p - p₀ ) / √ p₀q₀/n
z(s) =( 0,51 - 0,63) / √0,63*0,37/114
z(s) = - 0,12 / 0,045
z(s) = - 2,66
We compare z(s) and z(c)
z(s) < z(c) - 2,66 < -1,64
Therefore as z(s) < z(c) z(s) is in the rejection zone we reject the null hypothesis
A triangle has interior measures of 32° and 90°. What is the measure of the third angle?
Answer:
58°Step-by-step explanation:
Let the measure of third angle be X
The sum of interior angle of triangle = X
Let's create an equation
[tex]x + 32 + 90 = 180[/tex]
Add the numbers
[tex]x + 122 = 180[/tex]
Move constant to R.H.S and change its sign
[tex]x = 180 - 122[/tex]
Subtract the numbers
[tex]x = 58[/tex] °
Hope this helps...
Best regards!!
what is the answer to 100×338
Answer:
33800
Step-by-step explanation:
100 x 338 = 33800
Answer:
33800
Step-by-step explanation:
338x10=3380 then 3380x10=33800
-------------------------------------------------------
Good luck with your assignment...
In which table does y vary inversely with x? A. x y 1 3 2 9 3 27 B. x y 1 -5 2 5 3 15 C. x y 1 18 2 9 3 6 D. x y 1 4 2 8 3 12
Answer:
In Table C, y vary inversely with x.
1×18 = 18
2×9 = 18
3×6 = 18
18 = 18 = 18
Step-by-step explanation:
We are given four tables and asked to find out in which table y vary inversely with x.
We know that an inverse relation has a form given by
y = k/x
xy = k
where k must be a constant
Table A:
x | y
1 | 3
2 | 9
3 | 27
1×3 = 3
2×9 = 18
3×27 = 81
3 ≠ 18 ≠ 81
Hence y does not vary inversely with x.
Table B:
x | y
1 | -5
2 | 5
3 | 15
1×-5 = -5
2×5 = 10
3×15 = 45
-5 ≠ 10 ≠ 45
Hence y does not vary inversely with x.
Table C:
x | y
1 | 18
2 | 9
3 | 6
1×18 = 18
2×9 = 18
3×6 = 18
18 = 18 = 18
Hence y vary inversely with x.
Table D:
x | y
1 | 4
2 | 8
3 | 12
1×4 = 4
2×8 = 16
3×12 = 36
4 ≠ 16 ≠ 36
Hence y does not vary inversely with x.
A car travels 133 mi averaging a certain speed. If the car had gone 30 mph faster, the trip would have taken 1 hr less. Find the car's average speed.
Answer:
49.923 mph
Step-by-step explanation:
we know that the car traveled 133 miles in h hours at an average speed of x mph.
That is, xh = 133.
We can also write this in terms of hours driven: h = 133/x.
If x was 30 mph faster, then h would be one hour less.
That is, (x + 30)(h - 1) = 133, or h - 1 = 133/(x + 30).
We can rewrite the latter equation as h = 133/(x + 30) + 1
We can then make a system of equations using the formulas in terms of h to find x:
h = 133/x = 133/(x + 30) + 1
133/x = 133/(x + 30) + (x + 30)/(x + 30)
133/x = (133 + x + 30)/(x + 30)
133 = x*(133 + x + 30)/(x + 30)
133*(x + 30) = x*(133 + x + 30)
133x + 3990 = 133x + x^2 + 30x
3990 = x^2 + 30x
x^2 + 30x - 3990 = 0
Using the quadratic formula:
x = [-b ± √(b^2 - 4ac)]/2a
= [-30 ± √(30^2 - 4*1*(-3990))]/2(1)
= [-30 ± √(900 + 15,960)]/2
= [-30 ± √(16,860)]/2
= [-30 ± 129.846]/2
= 99.846/2 ----------- x is miles per hour, and a negative value of x is neglected, so we'll use the positive value only)
= 49.923
Check if the answer is correct:
h = 133/49.923 = 2.664, so the car took 2.664 hours to drive 133 miles at an average speed of 49.923 mph.
If the car went 30 mph faster on average, then h = 133/(49.923 + 30) = 133/79.923 = 1.664, and 2.664 - 1 = 1.664.
Thus, we have confirmed that a car driving 133 miles at about 49.923 mph would have arrive precisely one hour earlier by going 30 mph faster
Which of the following is best described as sets of three whole numbers (a, b, and c) that satisfy the equation ?
A.
The Pythagorean theorem
B.
Prime numbers
C.
Pythagorean triples
D.
Perfect squares
Answer:
Option C
Step-by-step explanation:
The whole numbers a,b and c such that [tex]a^2+b^2 = c^2[/tex] are Pythagorean triples satisfying the Pythagorean theorem.
Answer:
C
Step-by-step explanation:
a, b, and c are side lengths of the triangle.
The three side lengths that make up a right triangle are most commonly known as Pythagorean triples.
What does it mean to say "correlation does not imply causation"? Choose the correct answer below. A. Two variables can only be strongly correlated if there existed a cause-and-effect relationship between the variables. B. The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables. C. The fact that two variables are strongly correlated implies a cause-and-effect relationship between the variables. D. Two variables that have a cause-and-effect relationship are never correlated.
Answer:
B. The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables.
Step-by-step explanation:
The term "correlation does not imply causation", simply means that because we can deduce a link between two factors or sets of data, it does not necessarily prove that there is a cause-and-effect relationship between the two variables. In some cases, there could indeed be a cause-and-effect relationship but it cannot be said for certain that this would always be the case.
While correlation shows the linear relationship between two things, causation implies that an event occurs because of another event. So the phrase is actually saying that because two factors are related, it does not mean that it is as a result of a causal factor. It could simply be a coincidence. This occurs because of our effort to seek an explanation for the occurrence of certain events.
Answer: B. The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables.
Step-by-step explanation:
Sam weights 51kg. What is this weight to the nearest stone?. Use this conversion, 1kg= 2.2 pounds and 14 pounds= 1 stone
Sam's weight to the nearest stone is equal to 8.0 stone.
Given the following data:
Sam's weight = 51 kg.1 kg = 2.2 pounds.14 pounds = 1 stone.To determine Sam's weight to the nearest stone:
How to convert the units of measurement.In this exercise, you're required to determine Sam's weight to the nearest stone. Thus, we would convert his weight in kilograms to pounds and lastly to stone as follows:
Conversion:
1 kg = 2.2 pounds.
51 kg = [tex]51 \times 2.2[/tex] = 112.2 pounds.
Next, we would convert the value in pounds to stone:
14 pounds = 1 stone.
112.2 pounds = X stone.
Cross-multiplying, we have:
[tex]14X = 112.2\\\\X=\frac{112.2}{14}[/tex]
X = 8.01 ≈ 8.0 stone.
Read more on weight here: brainly.com/question/13833323
the value of 4^-1+8^-1÷1/2/3^3
Answer:
1.9375.
Step-by-step explanation:
To solve this, we must use PEMDAS.
The first things we take care of are parentheses and exponents.
Since there are no parentheses, we do exponents.
4^-1+8^-1÷1/2/3^3
= [tex]\frac{1}{4} +\frac{1}{8} / 1/ 2/ 27[/tex]
= 1/4 + (1/8) / 1 * (27 / 2)
= 1/4 + (27 / 8) / 2
= 1/4 + (27 / 8) * (1 / 2)
= 1/4 + (27 / 16)
= 4 / 16 + 27 / 16
= 31 / 16
= 1.9375.
Hope this helps!
A regression model between sales (y in $1000), unit price (x1 in dollars), and television advertisement (x2 in dollars) resulted in the following function: Ŷ = 7 - 3x1 + 5x2 For this model, SSR = 3500, SSE = 1500, and the sample size is 18. If we want to test for the significance of the regression model, the critical value of F at the 5% level of significance is a. 3.29. b. 3.24. c. 3.68. d. 4.54.
Answer: C. 3.68
Step-by-step explanation:
Given that;
Sample size n = 18
degree of freedom for numerator k = 2
degree of freedom for denominator = n - k - 1 = (18-2-1) = 15
level of significance = 5% = 5/100 = 0.05
From the table values,
the critical value of F at 0.05 significance level with (2, 18) degrees of freedom is 3.68
Therefore option C. 3.68 is the correct answer
please help all i need is the slope in case the points are hard to see here they are problem 1. (-2,2) (3,-3) problem 2. (-5,1) (4,-2) problem 3. (-1,5) (2,-4)
Answer: 1. [tex]-\dfrac{5}{6}[/tex] 2. [tex]-\dfrac{1}{3}[/tex] . 3. [tex]-3[/tex]
Step-by-step explanation:
Formula: Slope[tex]=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
1. (-2,2) (3,-3)
Slope [tex]=\dfrac{-3-2}{3-(-2)}[/tex]
[tex]=\dfrac{-5}{3+2}\\\\=\dfrac{-5}{6}[/tex]
Hence, slope of line passing through (-2,2) (3,-3) is [tex]-\dfrac{5}{6}[/tex] .
2. (-5,1) (4,-2)
Slope [tex]=\dfrac{-2-1}{4-(-5)}[/tex]
[tex]=\dfrac{-3}{4+5}\\\\=\dfrac{-3}{9}\\\\=-\dfrac{1}{3}[/tex]
Hence, slope of line passing through (-2,2) and (3,-3) is [tex]-\dfrac{1}{3}[/tex] .
3. (-1,5) (2,-4)
Slope [tex]=\dfrac{-4-5}{2-(-1)}[/tex]
[tex]=\dfrac{-9}{2+1}\\\\=\dfrac{-9}{3}\\\\=-3[/tex]
Hence, slope of line passing through (-1,5) and (2,-4) is -3.
A gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else. A random sample of 600 18-29 year-olds is obtained today. What is the probability that no more than 70% would prefer to start their own business?
Answer:
The probability that no more than 70% would prefer to start their own business is 0.1423.
Step-by-step explanation:
We are given that a Gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else.
Let [tex]\hat p[/tex] = sample proportion of people who prefer to start their own business
The z-score probability distribution for the sample proportion is given by;
Z = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, p = population proportion who would prefer to start their own business = 72%
n = sample of 18-29 year-olds = 600
Now, the probability that no more than 70% would prefer to start their own business is given by = P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%)
P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%) = P( [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{0.70-0.72}{\sqrt{\frac{0.70(1-0.70)}{600} } }[/tex] ) = P(Z [tex]\leq[/tex] -1.07) = 1 - P(Z < 1.07)
= 1 - 0.8577 = 0.1423
The above probability is calculated by looking at the value of x = 1.07 in the z table which has an area of 0.8577.
If w'(t) is the rate of growth of a child in pounds per year, what does 7 w'(t)dt 4 represent? The change in the child's weight (in pounds) between the ages of 4 and 7. The change in the child's age (in years) between the ages of 4 and 7. The child's weight at age 7. The child's weight at age 4. The child's initial weight at birth.
Complete Question
If w'(t) is the rate of growth of a child in pounds per year, what does
[tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex] represent?
a) The change in the child's weight (in pounds) between the ages of 4 and 7.
b) The change in the child's age (in years) between the ages of 4 and 7.
c) The child's weight at age 7.
d) The child's weight at age 4. The child's initial weight at birth.
Answer:
The correct option is option a
Step-by-step explanation:
From the question we are told that
[tex]w'(t)[/tex] represents the rate of growth of a child in [tex]\frac{pounds}{year}[/tex]
So [tex]{w'(t)} \, dt[/tex] will be in [tex]pounds[/tex]
Which then mean that this [tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex] the change in the weight of the child between the ages of [tex]4 \to 7[/tex] years
Compute the following values when the log is defined by its principal value on the open set U equal to the plane with the positive real axis deleted.
a. log i
b. log(-1)
c. log(-1 + i)
d. i^i
e. (-i)^i
Answer:
Following are the answer to this question:
Step-by-step explanation:
The principle vale of Arg(3)
[tex]Arg(3)=-\pi+\tan^{-1} (\frac{|Y|}{|x|})[/tex]
The principle value of the [tex]\logi= \log(0+i)\ \ \ \ \ _{where} \ \ \ x=0 \ \ y=1> 0[/tex]
So, the principle value:
a)
[tex]\to \log(i)=\log |i|+i Arg(i)\\\\[/tex]
[tex]=\log \sqrt{0+1}+i \tan^{-1}(\frac{1}{0})\\\=\log 1 +i \tan^{-1}(\infty)\\\=0+i\frac{\pi}{2}\\\=i\frac{\pi}{2}[/tex]
b)
[tex]\to \log(-i)= \log(0-i ) \ \ \ x=0 \ \ \ y= -1<0\\[/tex]
Principle value:
[tex]\to \log(-i)= \log|-i|+iArg(-i) \\\\[/tex]
[tex]=\log \sqrt{0+1}+i(-\pi+\tan^{-1}(\infty))\\\\=\log1 + i(-\pi+\frac{\pi}{2})\\\\=-i\frac{\pi}{2}[/tex]
c)
[tex]\to \log(-1+i) \ \ \ \ x=-1, _{and} y=1 \ \ \ x<0 and y>0[/tex]
The principle value:
[tex]\to \log(-1+i)=\log |-1+i| + i Arg(-1+i)[/tex]
[tex]=\log \sqrt{1+1}+i(\pi+\tan^{-1}(\frac{1}{1}))\\\\=\log \sqrt{2} + i(\pi-\tan^{-1}\frac{\pi}{4})\\\\=\log \sqrt{2} + i\tan^{-1}\frac{3\pi}{4}\\\\[/tex]
d)
[tex]\to i^i=w\\\\w=e^{i\log i}[/tex]
The principle value:
[tex]\to \log i=i\frac{\pi}{2}\\\\\to w=e^{i(i \frac{\pi}{2})}\\\\=e^{-\frac{\pi}{2}}[/tex]
e)
[tex]\to (-i)^i\\\to w=(-i)^i\\\\w=e^{i \log (-i)}[/tex]
In this we calculate the principle value from b:
so, the final value is [tex]e^{\frac{\pi}{2}}[/tex]
f)
[tex]\to -1^i\\\\\to w=e^{i log(-1)}\\\\\ principle \ value: \\\\\to \log(-1)= \log |-1|+iArg(-i)[/tex]
[tex]=\log \sqrt{1} + i(\pi-\tan^{-1}\frac{0}{-1})\\\\=\log \sqrt{1} + i(\pi-0)\\\\=\log \sqrt{1} + i\pi\\\\=0+i\pi\\=i\pi[/tex]
and the principle value of w is = [tex]e^{\pi}[/tex]
g)
[tex]\to -1^{-i}\\\\\to w=e^(-i \log (-1))\\\\[/tex]
from the point f the principle value is:
[tex]\to \log(-1)= i\pi\\\to w= e^{-i(i\pi)}\\\\\to w=e^{\pi}[/tex]
h)
[tex]\to \log(-1-i)\\\\\ Here x=-1 ,<0 \ \ y=-1<0\\\\ \ principle \ value \ is:\\\\ \to \log(-1-i)=\log\sqrt{1+1}+i(-\pi+\tan^{-1}(1))[/tex]
[tex]=\log\sqrt{2}+i(-\pi+\frac{\pi}{4})\\\\=\log\sqrt{2}+i(-\frac{3\pi}{4})\\\\=\log\sqrt{2}-i\frac{3\pi}{4})\\[/tex]
Write the following numbers in increasing order: −1.4; 2; −3 1 2 ; −1; − 1 2 ; 0.25; −10; 5.2
Answer:
-12,-10,-3,-1.4,-1,0.25,2,5.2,12
Step-by-step explanation:
The following number −1.4; 2; −3 1 2 ; −1; − 1 2 ; 0.25; −10; 5.2 in increasing order
-12,-10,-3,-1.4,-1,0.25,2,5.2,12
It's arranged this way starting from the negative sign because positive it's greater than negative and if the negative gets to approach zero it's get smaller
Answer:
-10 ; -3 1/2 ; -1.4 ; -1 ; -1/2 ; 0.25 ; 2 ; 5.2
Please help. I’ll mark you as brainliest if correct!
Answer:
8lb of the cheaper Candy
17.5lb of the expensive candy
Step-by-step explanation:
Let the cheaper candy be x
let the costly candy be y
X+y = 25.5....equation one
2.2x +7.3y = 25.5(5.7)
2.2x +7.3y = 145.35.....equation two
X+y = 25.5
2.2x +7.3y = 145.35
Solving simultaneously
X= 25.5-y
Substituting value of X into equation two
2.2(25.5-y) + 7.3y = 145.35
56.1 -2.2y +7.3y = 145.35
5.1y = 145.35-56.1
5.1y = 89.25
Y= 89.25/5.1
Y= 17.5
X= 25.5-y
X= 25.5-17.5
X= 8
Crime and Punishment: In a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.
(A) If one of the study subjects is randomly selected, find the probability of getting someone who was not sent to prison.
(B) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, find the probability that this person was not sent to prison.
Answer:
(a) The probability of getting someone who was not sent to prison is 0.55.
(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is 0.63.
Step-by-step explanation:
We are given that in a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.
Let the probability that subjects studied were sent to prison = P(A) = 0.45
Let G = event that subject chose to plead guilty
So, the probability that the subjects chose to plead guilty given that they were sent to prison = P(G/A) = 0.40
and the probability that the subjects chose to plead guilty given that they were not sent to prison = P(G/A') = 0.55
(a) The probability of getting someone who was not sent to prison = 1 - Probability of getting someone who was sent to prison
P(A') = 1 - P(A)
= 1 - 0.45 = 0.55
(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is given by = P(A'/G)
We will use Bayes' Theorem here to calculate the above probability;
P(A'/G) = [tex]\frac{P(A') \times P(G/A')}{P(A') \times P(G/A') +P(A) \times P(G/A)}[/tex]
= [tex]\frac{0.55 \times 0.55}{0.55\times 0.55 +0.45 \times 0.40}[/tex]
= [tex]\frac{0.3025}{0.4825}[/tex]
= 0.63
What is the simplified expression for 3 y squared minus 6 y z minus 7 + 4 y squared minus 4 y z + 2 minus y squared z?
WILL MARK BRAINLEST
Answer:
7y⁴- 10yz - y²z - 5
Step-by-step explanation:
First collect like terms
3y²+ 4y²- 6yz - 4yz - y²z - 7+2
7y⁴-10yz - y²z - 5
Answer:
Its C
Step-by-step explanation:
What is the slope of the line shown below (3,9) (1,1)
Answer:
slope m = 4Step-by-step explanation:
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points
[tex](3;\ 9)\to x_1=3;\ y_1=9\\(1;\ 1)\to x_2=1;\ y_2=1[/tex]
Substitute:
[tex]m=\dfrac{1-9}{1-3}=\dfrac{-8}{-2}=4[/tex]
Answer:
m=4
Step-by-step explanation:
Slope can be found using the following formula:
[tex]m=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]
where [tex](x_{1},y_{1})[/tex] and [tex](x_{2},y_{2})[/tex] are points on the line.
We are given the points (3,9) and (1,1). Therefore,
[tex]x_{1}=3\\y_{1}=9 \\x_{2}=1\\y_{2}=1[/tex]
Substitute each value into the formula.
[tex]m=\frac{1-9}{1-3}[/tex]
Subtract in the numerator first.
[tex]m=\frac{-8}{1-3}[/tex]
Subtract in the denominator.
[tex]m=\frac{-8}{-2}[/tex]
Divide.
[tex]m=4[/tex]
The slope of the line is 4.
g The average salary in this city is $45,600. Is the average different for single people? 53 randomly selected single people who were surveyed had an average salary of $46,356 and a standard deviation of $15,930. What can be concluded at the α α = 0.05 level of significance?
Answer:
Step-by-step explanation:
The average salary in this city is $45,600.
Using the formula
z score = x - u /(sd/√n)
Where x is 46,356, u is 45,600 sd is 15,930 and n is 53.
z = 46,356 - 45600 / (15930/√53)
z = 756/(15930/7.2801)
z = 756/(2188.1568)
z = 0.3455
To draw a conclusion, we have to determine the p value, at 0.05 level of significance for a two tailed test, the p value is 0.7297. The p value is higher than the significance level, thus we will fail to reject the null and can conclude that there is not enough statistical evidence to prove that the average is any different for single people.
a 12- inch ruler is duvided into 3 parts. the large part is 3 times longer than the small. the meddium part is times longer than then small, the medium part is 2 times long as the smallest .how long is the smallest part?
Answer:
2 inches
Step-by-step explanation:
x= smallest
3x=largest
2x=medium
x+3x+2x=12
6x=12
x=2
so smallest is 2
largest is 6 (3x)
medium is 4 (2x)
2+6+4=12
Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?
Answer:
0.0668 or 6.68%
Step-by-step explanation:
Variance (V) = 10,000
Standard deviation (σ) = √V= 100
Mean score (μ) = 500
The z-score for any test score X is:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
For X = 650:
[tex]z=\frac{650-500}{100}\\z=1.5[/tex]
A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]
The probability is 0.0668 or 6.68%
The probability that he or she will make a score of 650 or more is 0.0668.
Let X = Scores made on a certain aptitude test by nursing students
X follows normal distribution with mean = 500 and variance of 10,000.
So, standard deviation = [tex]\sqrt{10000}=100[/tex].
z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].
The probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]
Learn more: https://brainly.com/question/14109853
Assume that there is a 6% rate of disk drive failure in a year. a. If all your computer data is stored on a hard disk drive with a copy stored on a second hard disk drive, what is the probability that during a year, you can avoid catastrophe with at least one working drive? b. If copies of all your computer data are stored on independent hard disk drives, what is the probability that during a year, you can avoid catastrophe with at least one working drive? four a. With two hard disk drives, the probability that catastrophe can be avoided is . (Round to four decimal places as needed.) b. With four hard disk drives, the probability that catastrophe can be avoided is . (Round to six decimal places as needed.)
Answer: 0.9964
Step-by-step explanation:
Consider,
P (disk failure) = 0.06
q = 0.06
p = 1- q
p = 1- 0.06,
p = 0.94
Step 2
Whereas p represents the probability that a disk does not fail. (i.e. working entire year).
a)
Step 3
a)
n = 2,
let x be a random variable for number...
Continuation in the attached document
An experiment involves 17 participants. From these, a group of 3 participants is to be tested under a special condition. How many groups of 3 participants can
be chosen, assuming that the order in which the participants are chosen is irrelevant?
Answer: 680
Step-by-step explanation:
When order doesn't matter,then the number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]
Given: Total participants = 17
From these, a group of 3 participants is to be tested under a special condition.
Number of groups of 3 participants chosen = [tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\[/tex]
[tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\\\\=\dfrac{17\times16\times15\times14!}{3\times2\times14!}\\\\=680[/tex]
Hence, there are 680 groups of 3 participants can be chosen,.
In the search to determine if car 1 is slower to accelerate than car 2, the mean time it takes to accelerate to 30 miles per hour is recorded (Note: a car is slower to accelerate if it takes more time to accelerate). Twenty trials of the acceleration time for each car are recorded, and both populations have normal distributions with known standard deviations. What are the hypotheses used in this test
Answer:
Step-by-step explanation:
The happiest used in a test in statistics are the null and the alternative hypothesis. The null hypothesis is usually the default statement while the alternative hypothesis is thevopposite of the null hypothesis.
In this case study, the null hypothesis is u1 = u2: the average mean time it takes to accelerate to 30 miles per hour for car 1 is the same as that for car 2.
The alternative hypothesis is u1 > u2: the mean time it takes to accelerate to 30 miles per hour is greater than that for car 2 thus car 1 is slower to accelerate as it takes more time.
WILL GIVE BRAINLIEST IF CORRECT!! Please help ! -50 POINTS -
Answer:
i think (d) one i think it will help you