Answer:
A=1,728
Step-by-step explanation:
To find the area of a prism, you must find the area of one side, then multiply it by so it would be Width*Hight*Depth, W*H*D.
The width is 12, the hight is 12, and the depth is 12 so you can write
A=12*12*12
Multiply 12 by 12
A=144*12
Multiply 12 by 144 to get your final total area
A=1,728
Hope this helps, feel free to ask follow-up questions if confused.
Have a good day! :)
What is the next term of the geometric sequence? 1, 2, 4, 8, 16,
Answer: 32
Step-by-step explanation:
A rectangular waterbed is 7 ft long 5 ft wide and 1 ft tall
How many gallons of water are needed to fill the waterbed?
Assume i gallon is 013 cu ft. Round to the nearest whole galon
Hey there! I'm happy to help!
We want to find the volume of this rectangular waterbed. This means the amount of space it takes up. To find the volume of a rectangular prism, you just multiply together the three side lengths.
7×5×1=35 cubic feet
Now, we need to see how many gallons fit into 35 cubic feet. We see that one gallon is equal to 0.13 cubic feet. So, we can set up a proportion to find how many gallons are needed. We will use g to represent our missing number of gallons.
[tex]\frac{gallons}{cubic feet} = \frac{1}{0.13} =\frac{g}{35}[/tex]
In a proportion, the products of the diagonal numbers are equal. This means that 35, which is 1 multiplied by 35, is equal to 0.13g, which is from multiplying 0.13 by the g.
0.13g=35
We divide both sides by 0.13/
g≈269.23
When rounded to the nearest whole gallon, we will need 269 gallons of water to fill the waterbed.
I hope that this helps! Have a wonderful day! :D
Answer:
Step-by-step explanation:
Since the waterbed is rectangular, its volume would be determined by applying the formula for determining the volume of a cuboid which is expressed as
Volume = length × width × height
Therefore,
Volume of waterbed = 7 × 5 × 1 = 35 cubic feet
1 US gallon = 0.133680556 cubic feet
Therefore, converting 35cubic feet to gallons, it becomes
35/0.133680556 = 261.81818094772 gallons
Rounding up to whole gallon, it becomes 262 gallons
The same bedroom furniture set costs $1,500 in both Florida and Alabama. The table gives a breakdown of the taxes someone would pay when purchasing the furniture set in either state. Alabama Florida State of Alabama: 4.225% County Tax: 1.375% City Tax: 3.0% State of Florida: 6.5% County Tax: 1% City Tax: 1.625% Which statement is true? A. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by about $8. B. The furniture set is cheaper in Florida, because the amount of sales tax will be lower by about $10. C. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by $10. D. The furniture set costs the same in either state, because the amount of sales tax will be the same for the two locations.
Answer:
A: True
B, C and D: False
Step-by-step explanation:
We have a total sales tax for Alabama that is:
[tex]T_A=4.225+1.375+3=8.6[/tex]
The total sales tax for Florida is:
[tex]T_F=6.5+1+1.625=9.125[/tex]
The total sales tax is greater in Florida than in Alabama.
A. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by about $8. TRUE
The sales tax difference in this purchase can be calculated as:
[tex]1500(T_F-T_A)=1500\left(\dfrac{9.125-8.6}{100}\right)=1500\cdot 0.00525=7.875\approx 8[/tex]
B. The furniture set is cheaper in Florida, because the amount of sales tax will be lower by about $10. FALSE (it is cheaper in Alabama)
C. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by $10. FALSE (the sale tax in Alabama is $129)
The amount of sales tax in Alabama is:
[tex]ST_A=1500\cdot T_A=1500\cdot 0.086=129[/tex]
D. The furniture set costs the same in either state, because the amount of sales tax will be the same for the two locations. FALSE (it is not the same in both states).
Base: z(x)=cosx Period:180 Maximum:5 Minimum: -4 What are the transformation? Domain and Range? Graph?
Answer:
The transformations needed to obtain the new function are horizontal scaling, vertical scaling and vertical translation. The resultant function is [tex]z'(x) = \frac{1}{2} + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right)[/tex].
The domain of the function is all real numbers and its range is between -4 and 5.
The graph is enclosed below as attachment.
Step-by-step explanation:
Let be [tex]z (x) = \cos x[/tex] the base formula, where [tex]x[/tex] is measured in sexagesimal degrees. This expression must be transformed by using the following data:
[tex]T = 180^{\circ}[/tex] (Period)
[tex]z_{min} = -4[/tex] (Minimum)
[tex]z_{max} = 5[/tex] (Maximum)
The cosine function is a periodic bounded function that lies between -1 and 1, that is, twice the unit amplitude, and periodicity of [tex]2\pi[/tex] radians. In addition, the following considerations must be taken into account for transformations:
1) [tex]x[/tex] must be replaced by [tex]\frac{2\pi\cdot x}{180^{\circ}}[/tex]. (Horizontal scaling)
2) The cosine function must be multiplied by a new amplitude (Vertical scaling), which is:
[tex]\Delta z = \frac{z_{max}-z_{min}}{2}[/tex]
[tex]\Delta z = \frac{5+4}{2}[/tex]
[tex]\Delta z = \frac{9}{2}[/tex]
3) Midpoint value must be changed from zero to the midpoint between new minimum and maximum. (Vertical translation)
[tex]z_{m} = \frac{z_{min}+z_{max}}{2}[/tex]
[tex]z_{m} = \frac{1}{2}[/tex]
The new function is:
[tex]z'(x) = z_{m} + \Delta z\cdot \cos \left(\frac{2\pi\cdot x}{T} \right)[/tex]
Given that [tex]z_{m} = \frac{1}{2}[/tex], [tex]\Delta z = \frac{9}{2}[/tex] and [tex]T = 180^{\circ}[/tex], the outcome is:
[tex]z'(x) = \frac{1}{2} + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right)[/tex]
The domain of the function is all real numbers and its range is between -4 and 5. The graph is enclosed below as attachment.
A particle is moving with the given data. Find the position of the particle. a(t) = 2t + 5, s(0) = 6, v(0) = −5
Answer:
The position of the particle is described by [tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Step-by-step explanation:
The position function is obtained after integrating twice on acceleration function, which is:
[tex]a(t) = 2\cdot t + 5[/tex], [tex]\forall t \geq 0[/tex]
Velocity
[tex]v(t) = \int\limits^{t}_{0} {a(t)} \, dt[/tex]
[tex]v(t) = \int\limits^{t}_{0} {(2\cdot t + 5)} \, dt[/tex]
[tex]v(t) = 2\int\limits^{t}_{0} {t} \, dt + 5\int\limits^{t}_{0}\, dt[/tex]
[tex]v(t) = t^{2}+5\cdot t + v(0)[/tex]
Where [tex]v(0)[/tex] is the initial velocity.
If [tex]v(0) = -5[/tex], the particular solution of the velocity function is:
[tex]v(t) = t^{2} + 5\cdot t -5, \forall t \geq 0[/tex]
Position
[tex]s(t) = \int\limits^{t}_{0} {v(t)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_{0} {(t^{2}+5\cdot t -5)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_0 {t^{2}} \, dt + 5\int\limits^{t}_0 {t} \, dt - 5\int\limits^{t}_0\, dt[/tex]
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + s(0)[/tex]
Where [tex]s(0)[/tex] is the initial position.
If [tex]s(0) = 6[/tex], the particular solution of the position function is:
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Answer:
Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex]
Step-by-step explanation:
Given information:
The particle is moving with an acceleration that is function of:
[tex]a(t)=2t+5[/tex]
To find the expression for the position of the particle first integrate for the velocity expression:
AS:
[tex]V(t)=\int\limits^0_t {a(t)} \, dt\\v(t)= \int\limits^0_t {(2.t+5)} \, dt\\\\v(t)=t^2+5.t+v(0)\\[/tex]
Where, [tex]v(0)[/tex] is the initial velocity.
Noe, if we tale the [tex]v(0) =-5[/tex] ,
So, the velocity equation can be written as:
[tex]v(t)=t^2+5.t-5[/tex]
Now , For the position of the particle we need to integrate the velocity equation :
As,
Position:
[tex]S(t)=\int\limits^0_t {v(t)} \, dt \\S(t)=\int\limits^0_t {(t^2+5.t-5)} \, dt\\S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+s(0)[/tex]
Where, [tex]S(0)[/tex] is the initial position of the particle.
So, we put the value [tex]s(0)=6[/tex] and get the position of the particle.
Hence, Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex].
For more information visit:
https://brainly.com/question/22008756?referrer=searchResults
Explain how the interquartile range of a data set can be used to identify outliers. The interquartile range (IQR) of a data set can be used to identify outliers because data values that are ▼ less than equal to greater than ▼ IQR Upper Q 3 minus 1.5 (IQR )Upper Q 3 plus IQR Upper Q 3 plus 1.5 (IQR )or ▼ less than equal to greater than ▼ IQR Upper Q 1 plus 1.5 (IQR )Upper Q 1 minus IQR Upper Q 1 minus 1.5 (IQR )are considered outliers.
Answer:
- greater than Upper Q 3 plus 1.5 (IQR)
- less than Upper Q 1 minus 1.5 (IQR)
Step-by-step explanation:
To identify outliers the interquartile range of the dataset can be used
Outliers can be identified as data values that are
- greater than Upper Q 3 plus 1.5 (IQR)
- less than Upper Q 1 minus 1.5 (IQR)
Using the interquartile range concept, it is found that:
The interquartile range (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.
----------------------------
The interquartile range of a data-set is composed by values between the 25th percentile(Q1) and the 75th percentile(Q3).It's length is: [tex]IQR = Q3 - Q1[/tex]Values that are more than 1.5IQR from the quartiles are considered outliers, that is:[tex]v < Q1 - 1.5IQR[/tex] or [tex]v > Q3 + 1.5IQR[/tex]
Thus:
The interquartile range (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.
A similar problem is given at https://brainly.com/question/14683936
A deep-sea diver is in search of coral reefs.he finds a beautiful one at an elevation of -120 4/7feet. While taking pictures of the reef he catches sight of a manta ray. He swims up 25 3/7feet to check it out.what is the diver's new elevation?
Answer:-95 1/7 feet
Step-by-step explanation:
-120 4/7+25 3/7=-95 1/7 feet
The tee for the sixth hole on a golf course is 400 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marsha’s ball and the hole to the nearest tenth of a yard. Answer any time! :D
Answer:
181.8 yd
Step-by-step explanation:
The law of cosines is good for this. It tells you for triangle sides 'a' and 'b' and included angle C, the length of 'c' is given by ...
c^2 = a^2 +b^2 -2ab·cos(C)
For the given geometry, this is ...
c^2 = 400^2 +240^2 -2(400)(240)cos(16°) ≈ 33,037.75
c ≈ √33037.75 ≈ 181.8 . . . yards
Marsha's ball is about 181.8 yards from the hole.
Answer:
181.8 yds
Step-by-step explanation:
I got it correct on founders edtell
Find the value of a A.130 B.86 C.58 D.65
Answer:
Option (B)
Step-by-step explanation:
If two chords intersect inside a circle, measure of angle formed is one half the sum of the arcs intercepted by the vertical angles.
Therefore, 86° = [tex]\frac{1}{2}(a+c)[/tex]
a + c = 172°
Since the chords intercepting arcs a and c are of the same length, measures of the intercepted arcs by these chords will be same.
Therefore, a = c
⇒ a = c = 86°
Therefore, a = 86°
Option (B) will be the answer.
W varies inversely as the square root of x when x=4 w=4 find when x=25
Answer:
8/5
Step-by-step explanation:
w = k / √x
4 = k / √4
k = 8
w = 8 / √x
w = 8 / √25
w = 8/5
A hotel rents 210 rooms at a rate of $ 60 per day. For each $ 2 increase in the rate, three fewer rooms are rented. Find the room rate that maximizes daily revenue.
Answer:
r=$14,400
The hotel should charge $120
Step-by-step explanation:
Revenue (r)= p * n
where,
p = price per item
n = number of items sold
A change in price leads to a change in number sold
A variable to measure the change in p and n needs to be introduced
Let the variable=x
Such that
p + x means a one dollar price increase
p - x means a one dollar price decrease
n + x means a one item number-sold increase
n - x means a one item number-sold decrease
for each $2 price increase (p + 2x) there are 3 fewer rooms are rented (n-3x)
know that at $60 per room, the hotel rents 210 rooms
r = (60 + 2x) * (210 - 3x)
=12,600-180x+420x-6x^2
=12,600+240x-6x^2
r=2100+40x-x^2
= -x^2 +40x+2100=0
Solve the quadratic equation
x= -b +or- √b^2-4ac / 2a
a= -1
b=40
c=2100
x= -b +or- √b^2-4ac / 2a
= -40 +or- √(40)^2 - (4)(-1)(2100) / (2)(-1)
= -40 +or- √1600-(-8400) / -2
= -40 +or- √ 1600+8400 / -2
= -40 +or- √10,000 / -2
= -40 +or- 100 / -2
x= -40+100/-2 OR -40-100/-2
=60/-2 OR -140/-2
= -30 OR 70
x=70
The quadratic equation has a maximum at x=70
p+2x
=60+2(30)
=60+60
=$120
r= (60 + 2x) * (210 - 3x)
={60+2(30)}*{(210-3(30)}
r=(60+60)*(210-90)
=120*120
=$14,400
If y varies directly as x, and y is 6 when x is 72, what is the value of y when x is 8?
NO
54
оо
96
Answer:
2/3
Step-by-step explanation:
The equation for direct variation is: y = kx, where k is a constant.
Here, we see that y varies directly with x when y = 6 and x = 72, so let's plug these values into the formula to find k:
y = kx
6 = k * 72
k = 6/72 = 1/12
So, k = 1/12. Now our formula is y = (1/12)x. Plug in 8 for x to find y:
y = (1/12)x
y = (1/12) * 8 = 8/12 = 2/3
Thus, y = 2/3.
~ an aesthetics lover
Answer:
Step-by-step explanation: I hope i'm right
[tex]y \alpha x\\y=kx....(1)\\6=72k\\\frac{6}{72} =\frac{72k}{72} \\\\1/12 =k\\y = 1/12x=relationship-between;x-and;y\\x =8 , y =?\\y = \frac{8}{12} \\Cross-Multiply\\12y =8\\12y/12 = 8/12\\\\y = 2/3[/tex]
Construct the confidence interval for the population mean mu. c = 0.90, x = 16.9, s = 9.0, and n = 45. A 90% confidence interval for mu is:______.
Answer:
The 90% confidence interval for population mean is [tex]14.7 < \mu < 19.1[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = 16.9[/tex]
The confidence level is [tex]C = 0.90[/tex]
The sample size is [tex]n = 45[/tex]
The standard deviation
Now given that the confidence level is 0.90 the level of significance is mathematically evaluated as
[tex]\alpha = 1-0.90[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the standardized normal distribution table. The values is [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
The reason we are obtaining critical values for [tex]\frac{\alpha }{2}[/tex] instead of that of [tex]\alpha[/tex] is because [tex]\alpha[/tex] represents the area under the normal curve where the confidence level 1 - [tex]\alpha[/tex] (90%) did not cover which include both the left and right tail while [tex]\frac{\alpha }{2}[/tex] is just considering the area of one tail which is what we required calculate the margin of error
Generally the margin of error is mathematically evaluated as
[tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]MOE = 1.645* \frac{ 9 }{\sqrt{45} }[/tex]
[tex]MOE = 2.207[/tex]
The 90% confidence level interval is mathematically represented as
[tex]\= x - MOE < \mu < \= x + MOE[/tex]
substituting values
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]14.7 < \mu < 19.1[/tex]
According to the histogram below, how many people took the test? 39 9 16 23
The correct answer is D. 23
Explanation:
Histograms similar to other graphs represent numerical information, usually by using bars, as well as ranges. For example, in the case presented the information presented belongs to the scores obtained in a test, which are shown using ranges. Moreover, it is possible to know the total of people that took the test by adding each of the frequencies, as the frequency in the y-axis shows the number of times the range repeated and it is expected each grade registered belongs to 1 person. This means the total of people is equal to 2 (score from 60-69) + 9 (score from 70-79) + 7 (score from 80-89) + 5 (score from 90-99) = 23 people.
Answer:
the answer is 23
Step-by-step explanation:
hopes this helps:)
In order to determine the average price of hotel rooms in Atlanta, a sample of 64 hotels was selected. It was determined that the average price of the rooms in the sample was $112 with a standard deviation of $16. Use a 0.05 level of significance and determine whether or not the average room price is significantly different from $108.50.
Which form of the hypotheses should be used to test whether or not the average room price is significantly different from $108.50?
H0:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50
c. mu is less than $108.50mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Ha:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50mu is less than $108.50
c. mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Answer:
H0 :
a. mu is greater than or equal to $108.50
Ha:
c. mu is less than or equal to $108.50
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence
In the given scenario the test is to identify whether the average room price significantly different from $108.50. We take null hypothesis as mu is greater or equal to $108.50.
Evaluate f(x) when x= 9
f(x) = {6x² +2 if 6
112 if 9
No solution
O 110
O 12
56
Answer:
[tex] f(x) = 6x^2 +2 , -6 <x<9[/tex]
[tex] f(x) = 12 , 9 \leq x <13[/tex]
And we want to evaluate f(x=9)
And for this case the answer would be:
[tex] f(9)= 12[/tex]
Best answer:
O 12
Step-by-step explanation:
For this problem we have the following function given:
[tex] f(x) = 6x^2 +2 , -6 <x<9[/tex]
[tex] f(x) = 12 , 9 \leq x <13[/tex]
And we want to evaluate f(x=9)
And for this case the answer would be:
[tex] f(9)= 12[/tex]
Best answer:
O 12
The side length of the cube is s. Find the domain of the volume of the cube.
Answer:
-∞<x<∞
Step-by-step explanation:
volume of a cube=s^3
the domain is (-∞,∞) the domain is all the real number of s
The _________ measures the strength and direction of the linear relationship between the dependent and the independent variable.
Answer:
Correlation Coefficient
Step-by-step explanation:
if the focus of an ellipse are (-4,4) and (6,4), then the coordinates of the enter of the ellipsis are
Answer:
The center is (1,4)
Step-by-step explanation:
The coordinates of the center of an ellipse are the coordinates that are in the middle of the two focus.
Then if we have a focus on [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], we can say that the coordinates for x and y can be calculated as:
[tex]x=\frac{x_1+x_2}{2}\\ y=\frac{y_1+y_2}{2}[/tex]
So, replacing [tex](x_1,y_1)[/tex] by (-4,4) and [tex](x_2,y_2)[/tex] by (6,4), we get that the center is:
[tex]x=\frac{-4+6}{2}=1\\ y=\frac{4+4}{2}=4[/tex]
Connor has a collection of dimes and quarters with a total value of $6.30. The number of dimes is 14 more than the number of quarters. How many of each coin does he have?
Answer:
14 Quarters and 28 dimes
Step-by-step explanation: 14 quarters $3.50
28 dimes is $2.80 total is $6.30
The radius of a right circular cone is increasing at a rate of 1.1 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 109 in. and the height is 198 in.
Answer:
[tex]79591.8872 in^3/s[/tex]
Step-by-step explanation:
we know that the volume of a right circular cone is give as
[tex]V(r,h)= \frac{1}{3} \pi r^2h\\\\[/tex]
Therefore differentiating partially with respect to r and h we have
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [2rh\frac{dr}{dt} +r^2\frac{dh}{dt}][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [218*198*1.1+109^2*2.4][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [47480.4+28514.4]\\\\\frac{dV}{dt} = \frac{\pi}{3} [75994.8]\\\\ \frac{dV}{dt} = 3.142 [25331.6]\\\\ \frac{dV}{dt} =79591.8872 in^3/s[/tex]
In a certain state, license plates each consist of 2 letters followed by either 3 or 4 digits. How many differen license plates are there that have no repeated letters or digits?
Answer:
26 × 26 × 10 × 10 × 10 = 676 , 000 possibilities
Step-by-step explanation:
There is nothing stating that the letters and numbers can't be repeated, so all 26 letters of the alphabet and all 10
digits can be used again.
If the first is A, we have 26 possibilities:
AA, AB, AC,AD,AE ...................................... AW, AX, AY, AZ.
If the first is B, we have 26 possibilities:
BA, BB, BC, BD, BE .........................................BW, BX,BY,BZ
And so on for every letter of the alphabet. There are 26 choices for the first letter and 26 choices for the second letter. The number of different combinations of 2 letters is: 26 × 26 = 676
The same applies for the three digits. There are 10 choices for the first, 10
for the second and 10 for the third:
10 × 10 × 10 = 1000
So for a license plate which has 2 letters and 3 digits, there are: 26 × 26 × 10 × 10 × 10 = 676 , 000 possibilities.
Hope this helps.
Noah tried to prove that cos(θ)=sin(θ) using the following diagram. His proof is not correct.
Answer:
The first statement is incorrect. They have to be complementary.
Step-by-step explanation:
You can't say the measure of angle B is congruent to theta because it is possible for angles in a right triangle to be different.
You can only say that what he said is true if the angle was 45 degrees, but based on the information provided it is not possible to figure that out.
The other two angles other than the right angle in a right triangle have to add up to 90 degrees, which is the definition of what it means for two angles to be complementary. A is the correct answer.
Answer:
[tex]\boxed{\sf A}[/tex]
Step-by-step explanation:
The first statement is incorrect. The angle B is not equal to theta θ. The two acute angles in the right triangle can be different, if the triangle was an isosceles right triangle then angle B would be equal to theta θ.
in the number 23.45 the digit 5 is in ?
Answer: hundredths place
Step-by-step explanation:
Given that is both the median and altitude of , congruence postulate SAS is used to prove that is what type of triangle?
A.
equilateral
B.
scalene obtuse
C.
isosceles
D.
scalene acute
Answer:isosceles is the correct
Step-by-step explanation:
According to the given conditions the triangle ABC is an isosceles triangle.
What is an isosceles triangle?An isosceles triangle is a triangle that has any two sides equal in length and angles opposite to equal sides are equal in measure.
Given that, BD is median and altitude in the triangle ABC, and we are asked to find that what type of the triangle ABC will be if we prove triangles ADB and CBD congruent by SAS rule,
So, the proof is as follows,
AD = CD [definition of median]
∠ ADB = ∠ CDB [definition of altitude]
BD = BD [reflexive property]
∴ Δ ADB ≅ Δ CBD by SAS rule
AB = BC by CPCT
According to the definition of an isosceles triangle we can say that, ABC is an isosceles triangle.
Hence, according to the given conditions the triangle ABC is an isosceles triangle.
Learn more about isosceles triangles, click;
https://brainly.com/question/2456591
#SPJ7
The area of a triangle is 14 square inches. The base is 28 inches. What is the height in inches? Do not include units in your answer.
Answer:
Hey there!
A=1/2bh
14=1/2(28)h
14=14h
h=1
Hope this helps :)
Answer:
the height is 1 inchStep-by-step explanation:
Area of a triangle is
[tex] \frac{1}{2} \times b \times h[/tex]
where b is the base
h is the height
From the question
Area = 14in²
b = 14 inches
So we have
[tex]14 = \frac{1}{2} \times 28 \times h[/tex]
which is
[tex]14 = 14h[/tex]
Divide both sides by 14
That's
[tex] \frac{14}{14} = \frac{14h}{14} [/tex]
We have the final answer as
h = 1
Therefore the height is 1 inch
Hope this helps you
The Customer Service Center in a large New York department store has determined that the amount of time spent with a customer about a complaint is normally distributed, with a mean of 8.9 minutes and a standard deviation of 2.5 minutes. What is the probability that for a randomly chosen customer with a complaint, the amount of time spent resolving the complaint will be as follows. (Round your answers to four decimal places.)
The complete question is;
The Customer Service Center in a large New York department store has determined that the amount of time spent with a customer about a complaint is normally distributed, with a mean of 8.9 minutes and a standard deviation of 2.5 minutes. What is the probability that for a randomly chosen customer with a complaint, the amount of time spent resolving the complaint will be as follows. (Round your answers to four decimal places.)
(a) less than 10 minutes
(b) longer than 5 minutes
(c) between 8 and 15 minutes
Answer:
A) P (x < 10) = 0.6700
B) P (x > 5 ) = 0.9406
C) P (8.0000 < x < 15.0000) = 0.6332
Step-by-step explanation:
A) we are given;
Mean;μ = 8.9 minutes
Standard deviation;σ = 2.5 minutes
Normal random variable;x = 10
So to find;P(x < 10) we will use the Z-score formula;
z = (x - μ)/σ
z = (10 - 8.9)/2.5 = 0.44
From z-distribution table and Z-score calculator as attached, we have;
P (x < 10) = P (z < 0.44) = 0.6700
B) similarly;
z = (x - μ)/σ =
z = (5 - 8.9)/2.5
z = -1.56
From z-distribution table and Z-score calculator as attached, we have;
P (x > 5 ) = P (z > -1.56) = 0.9406
C)between 8 and 15 minutes
For 8 minutes;
z = (8 - 8.9)/2.5 = -0.36
For 15 minutes;
z = (15 - 8.9)/2.5 = 2.44
From z-distribution table and Z-score calculator as attached, we have;
P (8.0000 < x < 15.0000) = P (-0.36 < z < 2.44) = 0.6332
Please answer this correctly without making mistakes
Answer:
3/11
Step-by-step explanation:
There are eleven equal parts.
So the denominator is 11.
He copies 8 parts on Sunday.
11-8=3.
He copied 3 parts on Saturday.
Hope this helps ;) ❤❤❤
help plsssssssssssss
Answer:
[tex]z = \frac{x}{y} [/tex]
Step-by-step explanation:
Let x be the price of carton of ice cream
Let y be the number of grams in carton
Let z be price per gram.
[tex]z = \frac{x}{y} [/tex]
Which means price of carton of ice cream divided by the number of grams in carton equals price per gram.
Hope this helps ;) ❤❤❤
Simplify the expression . 39*x / 13
Answer:
3x
Step-by-step explanation:
39*x / 13
39/13 * x
3*x
3x
Answer:
3x
Step-by-step explanation:
We are given the expression:
39*x /13
We want to simplify this expression. It can be simplified because both the numerator (top number) and denominator (bottom number) can be evenly divided by 13.
(39*x /13) / (13/13)
(39x/13) / 1
3x / 1
When the denominator is 1, we can simply eliminate the denominator and leave the numerator as our answer.
3x
The expression 39*x/13 can be simplified to 3x