Answer:
31 and -31
Step-by-step explanation:
The two numbers with a difference of 62 and whose product is a minimum are; 31 and -31
Let the two numbers be x and y.We are told that their difference is 62.
Thus; x - y = 62 ---(1)
We want their products to be minimum. Thus;f(x,y) = xy
From eq, making y the subject gives us;
y = x - 62
Thus;
f(x) = x(x - 62)
f(x) = x² - 62x
For the product to be minimum, let us find the derivative of f(x) and equate to zero. Thus;f'(x) = 2x - 62
At f'(x) = 0
2x - 62 = 0
2x = 62
x = 62/2
x = 31
Thus;
y = 31 - 62
y = -31
Read more at; https://brainly.com/question/9473957
In order to determine the average price of hotel rooms in Atlanta, a sample of 64 hotels was selected. It was determined that the average price of the rooms in the sample was $112 with a standard deviation of $16. Use a 0.05 level of significance and determine whether or not the average room price is significantly different from $108.50.
Which form of the hypotheses should be used to test whether or not the average room price is significantly different from $108.50?
H0:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50
c. mu is less than $108.50mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Ha:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50mu is less than $108.50
c. mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Answer:
H0 :
a. mu is greater than or equal to $108.50
Ha:
c. mu is less than or equal to $108.50
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence
In the given scenario the test is to identify whether the average room price significantly different from $108.50. We take null hypothesis as mu is greater or equal to $108.50.
The first step for deriving the quadratic formula from the quadratic equation, 0 = ax2 + bx + c, is shown. Step 1: –c = ax2 + bx Which best explains or justifies Step 1?
Answer:
Subtract c from each side, using the subtraction property of equality
Step-by-step explanation:
0 = ax^2 + bx + c
Subtract c from each side, using the subtraction property of equality
-c = ax^2 + bx + c-c
-c = ax^2 + bx
Answer:
subtract c from each side, so the answer would be D
Solve the equation for x 5x-(4x-1)=2 A 1/9 B -1 C -1/9 D 1
Answer:
D
Step-by-step explanation:
The graph of y=−x+2 is shown below.
Answer:
What is the question?
Step-by-step explanation:
Someone please help! Thxx
Answer:
E, needs more info to be determined
Step-by-step explanation:
We know that Kai takes 30 minutes round-trip to get to his school.
One way is uphill and the other is downhill.
He travels twice as fast downhill than uphill.
This means that uphill accounts for 20 minutes of the round-trip and downhill accounts for 10 minutes of his trip.
However, even with this information, we do not know how far his school is.
In order to figure out how far away his school is, we would need more information about the speed at which Kai is traveling.
Simply knowing that he travels twice as fast downhill is not enough.
This question could only be solved by knowing how many miles Kai travels uphill or downhill in a given time.
Which graph shows the solution to the system of linear inequalities? y ≥ 2x + 1 y ≤ 2x – 2
The graph which shows the solution to the system of inequalities is attached in the picture below :
Given the inequalities :
y ≥ 2x + 1
y ≤ 2x - 2
From y ≥ 2x + 1 ;
Since the inequality sign is ≥, a solid line is used to draw the straight line graph of y ≥ 2x + 1
From :
y = mx + c
Where, m = slope ; c = intercept
Hence, a straight line graph with ;
Intercept, c = 1 (where the line crosses the y-intercept)
Slope, m = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality :
0 ≥ 2(0) + 1
0 ≥ 0 + 1
0 ≥ 1
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
From : y ≤ 2x - 2
Since the inequality sign is ≤, a solid line is used to draw the straight line graph of y ≤ 2x - 2
Graph the line y ≤ 2x - 2, with ;
Intercept, c = - 2
Slope = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality y ≤ 2x - 2:
0 ≤ 2(0) - 2
0 ≤ 0 - 2
0 ≤ - 2
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
Learn more : https://brainly.com/question/19670553
Answer:
Its graph B on edge 2022
Step-by-step explanation:
g Suppose that twenty different hypothesis tests for whether jellybeans cause acne are conducted. In order that the probability of one or more type I error between these should be at most 0.05, at most what significance level should be used for each of them?
Answer:
The level of significance to be used is α = 0.0025
Step-by-step explanation:
Here, we are interested in calculating the the level of significance which at most must be used for each of the hypothesis test
We proceed as follows;
P(type 1 error) = α
From the question, n = number of hypotheses = 20
P( of one or more type one error) ≤ 0.05
1- P(no type one error) ≤ 0.05
Hence;
1- (1-α)^20 ≤ 0.05
(1-α)^20 ≥ 0.95
1- α ≥ 0.997438621223
α ≤ 0.00256
Thus α = 0.0025
factorize 3x square+5x
Answer:
x(3x+5)
Step-by-step explanation:
3x^2+5x
take out common factor x
= x(3x+5)
Answer:
[tex]x(3x + 5)[/tex]Step-by-step explanation:
3x² + 5x
Factor out X from the expression
= x ( 3x + 5 )
Hope this helps...
Best regards!!
how do you find the x- and y-intersepts of an equation
Answer:
To find the x-intercept, simply plug in the value y = 0 into your equation and then solve for x. To find the y-intercept, plug in x = 0 and solve for y.
Y= 2/3x – 18 What is the rate of change from -5 to 10? What is the average rate of change from 0 to 3?
Answer:
this is all i got for the second question.
Step-by-step explanation:
That is, the average rate of change of from 3 to 0 is 1. That is, over the interval [0,3], for every 1 unit change in x, there is a 1 unit change in the value of the function. Here is a graph of the function, the two points used, and the line connecting those two points.
hope this kinda helps
-lvr
Daniels freezer is set to 0degrees Fahrenheit he places a load of bread that was at a temperature of 78 degrees Fahrenheit in the freezer the bread cooled at a rate of 11 degrees Fahrenheit per hour write and graph an equation that models the temperature t of the bread
Answer:
it took 7 hours for the bread to drop at a constent rate
Step-by-step explanation:
Need answer now in 10 min!!!
Answer:
40 deg
Step-by-step explanation:
The vertical sides of the rectangle are parallel, so the triangle is a right triangle.
The triangle is a right triangle, so the acute angles are complementary.
The bottom right angle of the triangle measures 90 - 50 = 40 deg.
The bottom line and the top side of the rectangle are parallel, so corresponding angles are congruent. x and the 40-deg angle are corresponding angles, so they are congruent.
x = 40 deg.
At the city museum, child admission is $ 5.30 and adult admission is $ 9.40 . On Sunday, three times as many adult tickets as child tickets were sold, for a total sales of $ 1206.00 . How many child tickets were sold that day?
Answer:
36 tickets
Step-by-step explanation:
At a city museum, child tickets are sold for $5.30, and adult tickets are sold for $9.40
The total sales that were made are $1206
Let x represent the number of child tickets that were sold
Let y represent the number of adult tickets that was sold
5.30x +9.40y= 1206
The number of adult tickets sold was three times greater than the child tickets
y= 3x
Substitute 3x for y in the equation
5.30x + 9.40y= 1206
5.30x + 9.40(3x)= 1206
5.30x + 28.2x= 1206
33.5x= 1206
Divide both sides by the coefficient of x which is 33.5
33.5x/33.5= 1206/33.5
x = 36
Hence the number of child tickets that were sold that day is 36 tickets
A ball is thrown straight down from the top of a 435-foot building with an initial velocity of -27 feet per second. Use the position function below for free-falling objects. s(t) = -16t^2 + v_0t + s_0 What is its velocity after 2 seconds? v(2) = -91 ft/s What is its velocity after falling 364 feet? v = 1.61 ft/s Find an equation of the parabola y = ax^2 + bx + c that passes through (0, 1) and is tangent to the line y = 5x - 5 at (1, 0). Y = 5x + 10
Answer:
a) The velocity of the ball after 2 seconds is -91 feet per second, b) The velocity of the ball after falling 364 feet is 155 feet per second, c) The equation of the parabola that passes through (0,1) and is tangent to the line y = 5x - 5 is [tex]y = 6\cdot x^{2}-7\cdot x +1[/tex].
Step-by-step explanation:
a) The velocity function is obtained after deriving the position function in time:
[tex]v (t) = -32\cdot t -27[/tex]
The velocity of the ball after 2 seconds is:
[tex]v(2\,s) = -32\cdot (2\,s) -27[/tex]
[tex]v(2\,s) = -91\,\frac{ft}{s}[/tex]
The velocity of the ball after 2 seconds is -91 feet per second.
b) The time of the ball after falling 364 feet is found after solving the position function as follows:
[tex]435\,ft - 364\,ft = -16\cdot t^{2}-27\cdot t + 435\,ft[/tex]
[tex]-16\cdot t^{2} - 27\cdot t + 364 = 0[/tex]
The solution of this second-grade polynomial is represented by two roots:
[tex]t_{1} = 4\,s[/tex] and [tex]t_{2} = -5.688\,s[/tex].
Only the first root is physically reasonable since time is a positive variable. Now, the velocity of the ball after falling 364 feet is:
[tex]v(4\,s) = -32\cdot (4\,s) - 27[/tex]
[tex]v(4\,s) = -155\,\frac{ft}{s}[/tex]
The velocity of the ball after falling 364 feet is 155 feet per second.
c) Let consider the equation for a second order polynomial that passes through (0, 1) and its first derivative that passes through (1, 0) and represents the give equation of the tangent line. That is to say:
Second-order polynomial evaluated at (0, 1)
[tex]c = 1[/tex]
Slope of the tangent line evaluated at (1, 0)
[tex]5 = 2\cdot a \cdot (1) + b[/tex]
[tex]2\cdot a + b = 5[/tex]
[tex]b = 5 - 2\cdot a[/tex]
Now, let evaluate the second order polynomial at (1, 0):
[tex]0 = a\cdot (1)^{2}+b\cdot (1) + c[/tex]
[tex]a + b + c = 0[/tex]
If [tex]c = 1[/tex] and [tex]b = 5 - 2\cdot a[/tex], then:
[tex]a + (5-2\cdot a) +1 = 0[/tex]
[tex]-a +6 = 0[/tex]
[tex]a = 6[/tex]
And the value of b is: ([tex]a = 6[/tex])
[tex]b = 5 - 2\cdot (6)[/tex]
[tex]b = -7[/tex]
The equation of the parabola that passes through (0,1) and is tangent to the line y = 5x - 5 is [tex]y = 6\cdot x^{2}-7\cdot x +1[/tex].
You are dealt two card successively without replacement from a shuffled deck of 52 playing cards. Find the probability that the first card is a king and the second is a queen. Round to nearest thousandth
Answer:
0.078
Step-by-step explanation:
The probability P(A) of an event A happening is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question;
There are two events;
(i) Drawing a first card which is a king: Let the event be X. The probability is given by;
P(X) = [tex]\frac{number-of-possible-outcomes-of-event-X}{total-number-of-sample-space}[/tex]
Since there are 4 king cards in the pack, the number of possible outcomes of event X = 4.
Also, the total number of sample space = 52, since there are 52 cards in total.
P(X) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
(ii) Drawing a second card which is a queen: Let the event be Y. The probability is given by;
P(Y) = [tex]\frac{number-of-possible-outcomes-of-event-Y}{total-number-of-sample-space}[/tex]
Since there are 4 queen cards in the pack, the number of possible outcomes of event Y = 4
But then, the total number of sample = 51, since there 52 cards in total and a king card has been removed without replacement.
P(Y) = [tex]\frac{4}{51}[/tex]
Therefore, the probability of selecting a first card as king and a second card as queen is;
P(X and Y) = P(X) x P(Y)
= [tex]\frac{1}{13} * \frac{4}{51}[/tex] = 0.078
Therefore the probability is 0.078
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below 15 and 39
Answer:
36
Step-by-step explanation:
You did not attach a picture, so I just assumed where the lengths of 15 and 39 were.
Pretty much Self explanatory :) I don't understand this...
Answer:
Step-by-step explanation:
you have to keep going cause if you count the fives there's a 25 but right next to the 25 there's 24 all you have to do is watch what your doing just watch your steps
Solve for x in the equation X^2-16^x=0
Answer:
-1/2
Step-by-step explanation:
x^2- 16^x = 0x^2 = 16^xx^2 = 4^2xx = 4^xlogx = xlog41/x×logx = log4log(x^1/x) = log4x^(1/x) = 4At this point you can guess and try. And it seems that x = -1/2, lets check:
(-1/2)^(1 /-1/2)= (-1/2)^-2= 2^2= 4So, this is correct: x= -1/2
A rectangular waterbed is 7 ft long 5 ft wide and 1 ft tall
How many gallons of water are needed to fill the waterbed?
Assume i gallon is 013 cu ft. Round to the nearest whole galon
Hey there! I'm happy to help!
We want to find the volume of this rectangular waterbed. This means the amount of space it takes up. To find the volume of a rectangular prism, you just multiply together the three side lengths.
7×5×1=35 cubic feet
Now, we need to see how many gallons fit into 35 cubic feet. We see that one gallon is equal to 0.13 cubic feet. So, we can set up a proportion to find how many gallons are needed. We will use g to represent our missing number of gallons.
[tex]\frac{gallons}{cubic feet} = \frac{1}{0.13} =\frac{g}{35}[/tex]
In a proportion, the products of the diagonal numbers are equal. This means that 35, which is 1 multiplied by 35, is equal to 0.13g, which is from multiplying 0.13 by the g.
0.13g=35
We divide both sides by 0.13/
g≈269.23
When rounded to the nearest whole gallon, we will need 269 gallons of water to fill the waterbed.
I hope that this helps! Have a wonderful day! :D
Answer:
Step-by-step explanation:
Since the waterbed is rectangular, its volume would be determined by applying the formula for determining the volume of a cuboid which is expressed as
Volume = length × width × height
Therefore,
Volume of waterbed = 7 × 5 × 1 = 35 cubic feet
1 US gallon = 0.133680556 cubic feet
Therefore, converting 35cubic feet to gallons, it becomes
35/0.133680556 = 261.81818094772 gallons
Rounding up to whole gallon, it becomes 262 gallons
The tee for the sixth hole on a golf course is 400 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marsha’s ball and the hole to the nearest tenth of a yard. Answer any time! :D
Answer:
181.8 yd
Step-by-step explanation:
The law of cosines is good for this. It tells you for triangle sides 'a' and 'b' and included angle C, the length of 'c' is given by ...
c^2 = a^2 +b^2 -2ab·cos(C)
For the given geometry, this is ...
c^2 = 400^2 +240^2 -2(400)(240)cos(16°) ≈ 33,037.75
c ≈ √33037.75 ≈ 181.8 . . . yards
Marsha's ball is about 181.8 yards from the hole.
Answer:
181.8 yds
Step-by-step explanation:
I got it correct on founders edtell
The radius of a right circular cone is increasing at a rate of 1.1 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 109 in. and the height is 198 in.
Answer:
[tex]79591.8872 in^3/s[/tex]
Step-by-step explanation:
we know that the volume of a right circular cone is give as
[tex]V(r,h)= \frac{1}{3} \pi r^2h\\\\[/tex]
Therefore differentiating partially with respect to r and h we have
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [2rh\frac{dr}{dt} +r^2\frac{dh}{dt}][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [218*198*1.1+109^2*2.4][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [47480.4+28514.4]\\\\\frac{dV}{dt} = \frac{\pi}{3} [75994.8]\\\\ \frac{dV}{dt} = 3.142 [25331.6]\\\\ \frac{dV}{dt} =79591.8872 in^3/s[/tex]
What are some key words used to note addition operations?
Answer:
The correct answer is
For addition, Caulleen used the words total, sum, altogether, and increase. But we could also have used the words combine, plus, more than, or even just the word "and". For subtraction, Caulleen used the words, fewer than, decrease, take away, and subtract. We also could have used less than, minus, and difference.
Step-by-step explanation:
hope this helps u!!!
Solving exponential functions
Answer:
approximately 30Step-by-step explanation:
[tex]f(x) = 4 {e}^{x} [/tex]
[tex]f(2) = 4 {e}^{2} [/tex]
[tex]f(2) = 4 \times 7.389[/tex]
[tex]f(2) = 29.6[/tex]
( Approximately 30)
Hope this helps..
Good luck on your assignment..
Answer:
approximately 30
Step-by-step explanation:
[tex]f(x)=4e^x[/tex]
Put x as 2 and evaluate.
[tex]f(2)=4e^2[/tex]
[tex]f(2)=4(2.718282)^2[/tex]
[tex]f(2)= 29.556224 \approx 30[/tex]
6. Assume that the probability of a driver getting into an accident is 6.4%, the average cost of an
accident is $13,991.05, and the overhead cost for an insurance company per insured driver is $95.
What should this driver's insurance premium be?
Answer:
This driver's insurance premium should be at least $990.43.
Step-by-step explanation:
We are given that the probability of a driver getting into an accident is 6.4%, the average cost of an accident is $13,991.05, and the overhead cost for an insurance company per insured driver is $95.
As we know that the expected cost that the insurance company has to pay for each of driver having met with the accident is given by;
The Expected cost to the insurance company = Probability of driver getting into an accident [tex]\times[/tex] Average cost of an accident
So, the expected cost to the insurance company = [tex]0.064 \times \$13,991.05[/tex]
= $895.43
Also, the overhead cost for an insurance company per insured driver = $95. This means that the final cost for the insurance company for each driver = $895.43 + $95 = $990.43.
Hence, this driver's insurance premium should be at least $990.43.
Answer:115
Step-by-step explanation:
Each character in a password is either a digit [0-9] or lowercase letter [a-z]. How many valid passwords are there with the given restriction(s)? Length is 13. No character repeats.
Answer:
2310789600
Step-by-step explanation:
10 digits + 26 letters = 36
₃₆C₁₃ = 2310789600
Hope this helps, although i am not 100 percent sure its right.
A box with a hinged lid is to be made out of a rectangular piece of cardboard that measures 3 centimeters by 5 centimeters. Six squares will be cut from the cardboard: one square will be cut from each of the corners, and one square will be cut from the middle of each of the -5 centimeter sides . The remaining cardboard will be folded to form the box and its lid . Letting x represent the side-lengths (in centimeters) of the squares, to find the value of that maximizes the volume enclosed by this box. Then give the maximum volume. Round your responses to two decimal places.
Answer:
x = 0.53 cm
Maximum volume = 1.75 cm³
Step-by-step explanation:
Refer to the attached diagram:
The volume of the box is given by
[tex]V = Length \times Width \times Height \\\\[/tex]
Let x denote the length of the sides of the square as shown in the diagram.
The width of the shaded region is given by
[tex]Width = 3 - 2x \\\\[/tex]
The length of the shaded region is given by
[tex]Length = \frac{1}{2} (5 - 3x) \\\\[/tex]
So, the volume of the box becomes,
[tex]V = \frac{1}{2} (5 - 3x) \times (3 - 2x) \times x \\\\V = \frac{1}{2} (5 - 3x) \times (3x - 2x^2) \\\\V = \frac{1}{2} (15x -10x^2 -9 x^2 + 6 x^3) \\\\V = \frac{1}{2} (6x^3 -19x^2 + 15x) \\\\[/tex]
In order to maximize the volume enclosed by the box, take the derivative of volume and set it to zero.
[tex]\frac{dV}{dx} = 0 \\\\\frac{dV}{dx} = \frac{d}{dx} ( \frac{1}{2} (6x^3 -19x^2 + 15x)) \\\\\frac{dV}{dx} = \frac{1}{2} (18x^2 -38x + 15) \\\\\frac{dV}{dx} = \frac{1}{2} (18x^2 -38x + 15) \\\\0 = \frac{1}{2} (18x^2 -38x + 15) \\\\18x^2 -38x + 15 = 0 \\\\[/tex]
We are left with a quadratic equation.
We may solve the quadratic equation using quadratic formula.
The quadratic formula is given by
[tex]$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$[/tex]
Where
[tex]a = 18 \\\\b = -38 \\\\c = 15 \\\\[/tex]
[tex]x=\frac{-(-38)\pm\sqrt{(-38)^2-4(18)(15)}}{2(18)} \\\\x=\frac{38\pm\sqrt{(1444- 1080}}{36} \\\\x=\frac{38\pm\sqrt{(364}}{36} \\\\x=\frac{38\pm 19.078}{36} \\\\x=\frac{38 + 19.078}{36} \: or \: x=\frac{38 - 19.078}{36}\\\\x= 1.59 \: or \: x = 0.53 \\\\[/tex]
Volume of the box at x= 1.59:
[tex]V = \frac{1}{2} (5 – 3(1.59)) \times (3 - 2(1.59)) \times (1.59) \\\\V = -0.03 \: cm^3 \\\\[/tex]
Volume of the box at x= 0.53:
[tex]V = \frac{1}{2} (5 – 3(0.53)) \times (3 - 2(0.53)) \times (0.53) \\\\V = 1.75 \: cm^3[/tex]
The volume of the box is maximized when x = 0.53 cm
Therefore,
x = 0.53 cm
Maximum volume = 1.75 cm³
A college student completed some courses worth 3 credits and some courses worth 4 credits. The student earned a total of 59 credits after completing 18 courses. How many courses worth 3 credits did the student complete?
Answer:
They completed 13, 3 credit classes
Step-by-step explanation:
1. Make 2 formulas. In this case: x+y=18
and 3x+4y=59
2. Then multiply x+y=18 by 3 and subtract the two equations.
Find y which is 5 and input into the equations. Then find your answer.
Which correlation coefficient could represent the relationship in the scatterpot
Answer:
D. -0.98
Step-by-step explanation:
Well it is a negative correlation and it is really strong but it is impossible to go pasit -1.
Thus,
the answer is D. -0.98
Hope this helps :)
Answer:
D. -0.98
Step-by-step explanation:
The correlation is a negative if the Y value decreases as the x value increases. It is not -1.43 because it is not decraeseing that fast.
John is a quarterback. This year, he completed 350passes, which is 70%of all the passes he's attempted this year.
How many passes has John attempted this year?
Answer:
500
Step-by-step explanation:
350/70%=500
Help please!! Thank you
Answer:
D. 6
Step-by-step explanation:
here, as given set Q consists { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36}
and set Z contains {3, 6, 9, 12, 15, 18, 21,24, 27, 30, 33, 36, .... }
so be comparing both, we can see that the numbers 6, 12, 18, 24, 30 and 36 is repeated.