Answer:
The sales account for year 3 is [tex][\frac{32\ \text{mn}-x\ \text{mn}}{x\ \text{mn}}\times 100\%][/tex].
Step-by-step explanation:
As the sales for year 2 is not provided, assume it is x million.
The total sales in year 3 is, 32 million.
Compute the sales account for year 3 as follows:
[tex]\text{Percentage of sales for year 3}=\frac{\text{Total Sales in year 3}-\text{Total Sales in year 2}}{\text{Total Sales in year 2}}\times 100\%[/tex]
[tex]=\frac{32\ \text{mn}-x\ \text{mn}}{x\ \text{mn}}\times 100\%[/tex]
help me plz I really dont get it
Please help ASAP! Do not understand how to conduct problem!
Answer:
AB =-4 24 25
-5 15 15
BC= -5
4
10
2BC = -10
8
20
THE Operation AB -2BC cannot be performed because the unequality of the arrays
Step-by-step explanation:
AB=first row (3*2)+(1/2*0)+(5*-2), (3*-4)+(1/2*2)+(5*7), (3*0),(1/2*0),(5*5)
Second row ((1*1)+(-1*0)+(3*-2),(1*-4)+(-1*2)+(3*7), (1*0)+(-1*0)+(3*5)
AB =-4 24 25
-5 15 15
BC =FIRST ROW (1*1)+(-4*2)+(0*0)
SECOND ROW (0*1)+(2*2)+(0*0)
THIRSD ROW (-2*2)+(7*2)+(5*0)
BC= -5
4
10
2BC = -10
8
20
THE Operation AB -2BC cannot be performed because the unequality of the arrays
The average score of 100 students taking a statistics final was 70 with a standard deviation of 7. Assuming a normal distribution, what is the probability that a student scored greater than 65
Answer:
50
Step-by-step explanation:
50 because of the 100 of 79 to 7
The mean number of words per minute (WPM) typed by a speed typist is 149149 with a standard deviation of 1414 WPM. What is the probability that the sample mean would be greater than 147.8147.8 WPM if 8888 speed typists are randomly selected
Answer:
The probability is [tex]P(\= X > x ) = 0.78814[/tex]
Step-by-step explanation:
From the question we are given that
The population mean is [tex]\mu = 149[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
The random number [tex]x = 147.81[/tex]
The sample size is [tex]n = 88[/tex]
The probability that the sample mean would be greater than [tex]P(\= X > x ) = P( \frac{ \= x - \mu }{\sigma_{\= x} } > \frac{ x - \mu }{\sigma_{\= x} } )[/tex]
Generally the z- score of this normal distribution is mathematically represented as
[tex]Z = \frac{ \= x - \mu }{\sigma_{\= x} }[/tex]
Now
[tex]\sigma_{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma_{\= x } = \frac{14 }{\sqrt{88} }[/tex]
[tex]\sigma_{\= x } = 1.492[/tex]
Which implies that
[tex]P(\= X > x ) = P( Z > \frac{ 147.81 - 149 }{ 1.492} )[/tex]
[tex]P(\= X > x ) = P( Z > -0.80 )[/tex]
Now from the z-table the probability is found to be
[tex]P(\= X > x ) = 0.78814[/tex]
Katie wants to create a rectangular frame for a picture. She has 60 inches of material. If she wants the length to be 3 more than 2 times the width what is the largest possible length
Answer:
Largest possible length is 21 inches.
Step-by-step explanation:
Given:
Total material available = 60 inches
Length to be 3 more than twice of width.
To find:
Largest possible length = ?
Solution:
As it is rectangular shaped frame.
Let length = [tex]l[/tex] inches and
Width = [tex]w[/tex] inches
As per given condition:
[tex]l = 2w+3[/tex] ..... (1)
Total frame available = 60 inches.
i.e. it will be the perimeter of the rectangle.
Formula for perimeter of rectangle is given as:
[tex]P = 2 \times (Width + Length)[/tex]
Putting the given values and conditions as per equation (1):
[tex]60 = 2 \times (w+ l)\\\Rightarrow 60 = 2 \times (w+ 2w+3)\\\Rightarrow 60 = 2 \times (3w+3)\\\Rightarrow 30 = 3w+3\\\Rightarrow 3w = 27\\\Rightarrow w = 9 \ inch[/tex]
Putting in equation (1):
[tex]l = 2\times 9+3\\\Rightarrow l = 21\ inch[/tex]
So, the answer is:
Largest possible length is 21 inches.
A jet flies 425 km from Ottawa to Québec at rate v + 60. On the return flight, the
plane encountered wind resistance and travelled at rate v - 40. What is the
difference in flight times of the initial and return flights?
Answer:
a. [tex] \frac{- 42,500}{(v + 60)(v - 40)} [/tex]
Step-by-step Explanation:
Given:
Distance Ottawa to Québec = 425 km
Initial flight rate = v + 60
Return flight rate = v - 40
[tex] t = \frac{d}{r} [/tex]
Required:
Flight times difference of the initial and return flights
Solution:
=>Flight time of the initial flight:
[tex] t = \frac{d}{r} [/tex]
[tex] t = \frac{425}{v + 60} [/tex]
=>Flight time of the return flight:
[tex] t = \frac{425}{v - 40} [/tex]
=>Difference in flight times:
[tex] \frac{425}{v + 60} - \frac{425}{v - 40} [/tex]
[tex] \frac{425(v - 40) -425(v + 60)}{(v + 60)(v - 40)} [/tex]
[tex] \frac{425(v) - 425(40) -425(v) -425(+60)}{(v + 60)(v - 40)} [/tex]
[tex] \frac{425v - 17000 -425v - 25500}{(v + 60)(v - 40)} [/tex]
[tex] \frac{425v - 425v - 17000 - 25500}{(v + 60)(v - 40)} [/tex]
[tex] \frac{- 42,500}{(v + 60)(v - 40)} [/tex]
Complete the point-slope equation of the line through (3,-8) (6,-4)
Answer:
y + 4 = 4/3(x - 6).
Step-by-step explanation:
The point-slope formula is shown below. We just need to find the slope.
(-4 - (-8)) / (6 - 3) = (-4 + 8) / 3 = 4 / 3
m = 4/3, y1 = -4, and x1 = 6.
y - (-4) = 4/3(x - 6)
y + 4 = 4/3(x - 6).
Hope this helps!
6th grade math, help me please.
Answer:
B Kim rode 3 more miles per week than Eric rode.
Interpret the standard deviation in this problem.Group of answer choicesWe expect most of the sampled heights to fall within 9.8 inches of their least squares predicted values.We expect most of the sampled heights to fall within 4.9 inches of their least squares predicted values.We expect most of the sampled dad's heights to fall within 4.9 inches of their least squares predicted values.We expect most of the sampled dad's heights to fall within 9.8 inches of their least squares predicted values.
Answer:
Hello some parts of your question is missing below is the missing part
suppose we use a person's dad's height to predict how short or tall the person will be by building a regression model to investigate if a relationship exists between the two variables. Suppose the regression results are as follows:
Least Squares Linear Regression of Height
Predictor
Variables Coefficient Std Error T P
Constant 20.2833 8.70520 2.33 0.0223
DadsHt 0.67499 0.12495 5.40 0.0002
R² 0.2673 Mean Square Error (MSE) 23.9235
Adjusted R² 0.2581 Standard Deviation 4.9000
Answer : We expect most of the sampled heights to fall within 9.8 inches of their least squares predicted values.
Step-by-step explanation:
standard deviation is the statistical measurement of the level at which a dataset disperses from its mean value
interpreting the standard deviation in this problem ,
given that the standard deviation is 4.9 inches, it simply means that the dataset heights will be either +4.9 inches or -4.9 inches away from the mean value. this means that most of the sampled Dad/'s height will fall within 9.8 inches of their least squares predicted values
McKenzie has a bag contains six red marbles four blue marbles and 14 yellow marbles if she chooses one marble from the bag what is the probability that the marble is not yellow
Answer:
5/12
Step-by-step explanation:
Total number of marbles in the bag
6red+ 4blue + 14 yellow = 24 marbles
Not yellow marbles = 10 marbles
P ( not yellow ) = number of not yellow marbles / total marbles
=10/24
= 5/12
Answer:
5/12
Step-by-step explanation:
6 red marbles
4 blue marbles
14 yellow marbles
total marbles = 6 + 4 + 14 = 24 marbles
24 - 14 = 10 marbles
10 marbles are not yellow.
P(not yellow) = 10/24 = 5/12
A sample of 26 offshore oil workers took part in a simulated escape exercise, resulting in the accompanying data on time (sec) to complete the escape.
389 357 359 364 375 424 326 395 402 373
374 371 365 367 365 326 339 393 392 369
374 359 357 403 335 397
A normal probability plot of the n 26 observations on escape time given above shows a substantial linear pattern; the sample mean and sample standard deviation are 371.08 and 24.45, respectively. (Round your answers to two decimal places.)
Required:
a. Calculate an upper confidence bound for population mean escape time using a confidence level of 95%.
b. Calculate an upper prediction bound for the escape time of a single additional worker using a prediction level of 95%.
Answer:
The upper confidence bound for population mean escape time is: 379.27
The upper prediction bound for the escape time of a single additional worker is 413.64
Step-by-step explanation:
Given that :
sample size n = 26
sample mean [tex]\bar x[/tex] = 371.08
standard deviation [tex]\sigma[/tex] = 24.45
The objective is to calculate an upper confidence bound for population mean escape time using a confidence level of 95%
We need to determine the standard error of these given data first;
So,
Standard Error S.E = [tex]\dfrac{\sigma }{\sqrt{n}}[/tex]
Standard Error S.E = [tex]\dfrac{24.45 }{\sqrt{26}}[/tex]
Standard Error S.E = [tex]\dfrac{24.45 }{4.898979486}[/tex]
Standard Error S.E = 4.7950
However;
Degree of freedom df= n - 1
Degree of freedom df= 26 - 1
Degree of freedom df= 25
At confidence level of 95% and Degree of freedom df of 25 ;
t-value = 1.7080
Similarly;
The Margin of error = t-value × S.E
The Margin of error = 1.7080 × 4.7950
The Margin of error = 8.18986
The upper confidence bound for population mean escape time is = Sample Mean + Margin of Error
The upper confidence bound for population mean escape time is = 371.08 + 8.18986
The upper confidence bound for population mean escape time is = 379.26986 [tex]\approx[/tex] 379.27
The upper confidence bound for population mean escape time is: 379.27
b. Calculate an upper prediction bound for the escape time of a single additional worker using a prediction level of 95%.
The standard error of the mean = [tex]\sigma \times \sqrt{1+ \dfrac{1}{n}}[/tex]
The standard error of the mean = [tex]24.45 \times \sqrt{1+ \dfrac{1}{26}}[/tex]
The standard error of the mean = [tex]24.45 \times \sqrt{1+0.03846153846}[/tex]
The standard error of the mean = [tex]24.45 \times \sqrt{1.03846153846}[/tex]
The standard error of the mean = [tex]24.45 \times 1.019049331[/tex]
The standard error of the mean = 24.91575614
Recall that : At confidence level of 95% and Degree of freedom df of 25 ;
t-value = 1.7080
∴
The Margin of error = t-value × S.E
The Margin of error = 1.7080 × 24.91575614
The Margin of error = 42.55611149
The upper prediction bound for the escape time of a single additional worker is calculate by the addition of
Sample Mean + Margin of Error
= 371.08 + 42.55611149
= 413.6361115
[tex]\approx[/tex] 413.64
The upper prediction bound for the escape time of a single additional worker is 413.64
What is viscosity?
O A measure of the oil's quality
O An oil's resistance to flow at different temperatures
A reference to synthetic oil; all oils with viscosity are synthetic
O A new motor oil ingredient
< BACK
NEXT
>
Answer:
viscosity is the state of being thick, sticky, and semifluid in consistency, due to internal friction.
"cooling the fluid raises its viscosity"
a quantity expressing the magnitude of internal friction, as measured by the force per unit area resisting a flow in which parallel layers unit distance apart have unit speed relative to one another.
plural noun: viscosities
"silicone oils can be obtained with different viscosities"
Step-by-step explanation:
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. hope this helps you :)
Answer:
O An oil's resistance to flow at different temperatures
Step-by-step explanation:
Internal friction of a moving fluid .
n rectangle ABCD, point E lies half way between sides AB and CD and halfway between sides AD and BC. If AB=11 and BC=2, what is the area of the shaded region? Write your answer as a decimal, if necessary.
Answer:
Step-by-step explanation:
Hello!
For the rectangle ABCD
AB= DC= 11
BC= AD= 2
Point E lies halfway between AB and CD
The shaded are forms two triangles, I'll refer to the upper triangle as "Triangle one" and the lower triangle will be "triangle 2"
The area of a triangle is calculated as
[tex]a= \frac{bh}{2}[/tex]
b= base
h= height
Triangle 1
b₁= AB= 11
[tex]h_1= \frac{BC}{2}= \frac{2}{2}= 1[/tex]
[tex]a_1= \frac{b_1h_1}{2}= \frac{11*1}{2}= 5.5[/tex]
Triangle 2
b₂= DC= 11
[tex]h_2= \frac{BC}{2}= \frac{2}{2} = 1[/tex]
[tex]a_2= \frac{b_2h_2}{2}= \frac{11*1}{2}= 5.5[/tex]
Now you add the areas of both triangles to get the area of the shaded region:
a₁ + a₂= 5.5 + 5.5= 11
Since point E is halfway to all sides of the rectangle, even tough it doesn't see so, the shaded area is equal to half the area of the rectangle:
area= bh= DC*AD= 11*2= 22
area/2= 22/12= 11
I hope this helps!
The radius of a sphere is 11 cm.what is the surface area of the sphere? Round to the nearest tenth.
Answer:
The answer is
1520.5 cm²Step-by-step explanation:
Surface area of a sphere is given by
S = 4πr²
where r is the radius
From the question r = 11cm
So the surface area of the sphere is
4π(11)²
= 4(121)π
= 484π
= 1520.5308
Which is
1520.5 cm² to the nearest tenth
Hope this helps you
A painter takes hours to paint a wall. How many hours will the painter take to paint 8 walls if she works at the same rate?
Answer:
20.8 hours
Step-by-step explanation:
2 3/5 = 2.6.The painter will take (2.6 × 8) = 20.8 hours to paint a wall.
Hope this helps and pls mark as brianliest :)
Answer:
20.8, 20 4/5, and 104/5
Could someone answer the question with the photo linked below? Then explain how to solve it?
Answer:
Hey there!
Pythagorean Theorem:
[tex]a^2+b^2=c^2\\[/tex]
Let 6 be a, and 11 be b.
[tex]6^2+11^2=c^2\\[/tex]
[tex]36+121=c^2\\[/tex]
[tex]157=c^2[/tex]
[tex]\sqrt{157} =c[/tex]
Hope this helps :)
Answer:
[tex]12.529[/tex]
Step-by-step explanation:
[tex] {a}^{2} + {b}^{2} = {c}^{2} \\ {6}^{2} + {11}^{2} = {c}^{2} \\ 36 + 121 = {c}^{2} \\ 157 = {c}^{2} \\ \sqrt{157} = {c}^{2} \\ c = 12.529[/tex]
[tex]hope \: it \: helps \: < 3[/tex]
Tessellations that use more than one one type of regular polygon are called regular tessellations?
Answer:
False
Step-by-step explanation:
A tessellation refest to a shape that is repeated over and over again covering a plane without any gaps or overlaps. The statement is false given that regular tessellations use only one polygon. Semi-regular tessellations are created with more than one type of regular polygon.
If 2/3 of a certain number is subtracted from twice the number, the result is 20. Find the number.
Answer:
[tex]\boxed{x = 15}[/tex]
Step-by-step explanation:
Let the number be x
Condition:
[tex]2x - \frac{2}{3} x = 20[/tex]
Multiplying 3 to both sides
=> 3(2x) - 2x = 3(20)
=> 6x - 2x = 60
=> 4x = 60
Dividing both sides by 4
=> x = 15
Answer:
15
Step-by-step explanation:
Let x be that number.
2/3 of x subtracted from twice of x is 20.
2x - 2/3x = 20
Solve for x.
Combine like terms.
4/3x = 20
Multiply both sides by 3/4
x = 60/4
x = 15
The number is 15.
Find the centroid of the quarter of the unit circle lying in the fourth quadrant.
Step-by-step explanation:
In the fourth quadrant, the equation of the unit circle is:
y = -√(1 − x²), 0 ≤ x ≤ 1
The x and y coordinates of the centroid are:
cₓ = (∫ x dA) / A = (∫ xy dx) / A
cᵧ = (∫ y dA) / A = (∫ ½ y² dx) / A
For a quarter circle in the fourth quadrant, A = -π/4.
Solving each integral:
∫₀¹ xy dx
= ∫₀¹ -x √(1 − x²) dx
= ½ ∫₀¹ -2x √(1 − x²) dx
If u = 1 − x², then du = -2x dx.
When x = 0, u = 1. When x = 1, u = 0.
= ½ ∫₁⁰ √u du
= ½ ∫₁⁰ u^½ du
= ½ (⅔ u^³/₂) |₁⁰
= (⅓ u√u) |₁⁰
= 0 − ⅓
= -⅓
∫₀¹ ½ y² dx
= ½ ∫₀¹ (1 − x²) dx
= ½ (x − ⅓ x³) |₀¹
= ½ [(1 − ⅓) − (0 − 0)]
= ⅓
Therefore, the x and y coordinates of the centroid are:
cₓ = (-⅓) / (-π/4) = 4/(3π)
cᵧ = (⅓) / (-π/4) = -4/(3π)
What is the value of s in the equation 3 r equals 10 plus 5 s, when r equals 10? 4 8 100 200
Answer
4Step-by-step explanation:
Given,
r = 10
Let's create an equation,
[tex]3r = 10 + 5s[/tex]
plugging the value of r
[tex]3 \times 10 = 10 + 5s[/tex]
Multiply the numbers
[tex]30 = 10 + 5s[/tex]
Move 5s to L.H.S and change its sign
Similarly, Move 30 to R.H.S and change its sign.
[tex] - 5s = 10 - 30[/tex]
Calculate
[tex] - 5s = - 20[/tex]
The difference sign ( - ) should be cancelled on both sides
[tex]5s = 20[/tex]
Divide both sides of the equation by 5
[tex] \frac{5s}{2} = \frac{20}{5} [/tex]
Calculate
[tex]s = 4[/tex]
The value of s is 4.
Hope this helps..
Best regards!!
Answer:
A. 4 (on edgenuity)
Step-by-step explanation:
The pressure applied to a leverage bar varies inversely as the distance from the object. If 150 pounds is required for a distance of 10 inches from the object how much pressure is needed for a distance of 3 inches
Answer:
500 pounds
Step-by-step explanation:
Let the pressure applied to the leverage bar be represented by p
Let the distance from the object be represented by d.
The pressure applied to a leverage bar varies inversely as the distance from the object.
Written mathematically, we have:
[tex]p \propto \dfrac{1}{d}[/tex]
Introducing the constant of proportionality
[tex]p = \dfrac{k}{d}[/tex]
If 150 pounds is required for a distance of 10 inches from the object
p=150 poundsd=10 inches[tex]150 = \dfrac{k}{10}\\\\k=1500[/tex]
Therefore, the relationship between p and d is:
[tex]p = \dfrac{1500}{d}[/tex]
When d=3 Inches
[tex]p = \dfrac{1500}{3}\\\implies p=500$ pounds[/tex]
The pressure applied when the distance is 3 inches is 500 pounds.
find the arithmetic
mean median and mode
Step-by-step explanation:
The formulae to find them are:
arithmetic mean in individual series = sum x/Narithmetic mean in discrete data= sum fx/Narithmetic mean in continuous data= sum fm/N[tex]median = \frac{n + 1}{2} th[/tex]and mode= number of greatest frequency.
(note; f is frequency, N is number of data and x is x is the raw data)
hope it helps..
Perform the indicated operation and write the result in standard form: (-3+2i)(-3-7i)
A. -5+27i
B. 23+15i
C. -5+15i
D. 23-15i
E-5-27I
Answer:
23+15i
Step-by-step explanation:
(-3+2i) (-3-7i)
multiply -3 w (-3+2i) and multiply -7i w (-3+2i)
9-6i+21i-14i^2
combine like terms
9+15i-14i^2
i squared is equal to -1 so
9+15i-(14x-1)
9+14+15i
23+15i
hope this helps :)
How many ways can 3 boys and 2 girls stand in a row so that the two girls are not next to each other?
Answer:
3 ways← key b=boy g=girlStep-by-step explanation:
b g b gg b b gg b g bgive brainllest please °∩°
A cable company must provide service for 6 houses in a particular neighborhood. They would like to wire the neighborhood in a way to minimize the wiring costs (or distance). What is the minimal length of the network required to span the entire neighborhood? House Distances (yards) 1 to 2 250 1 to 3 400 1 to 4 300 2 to 3 400 2 to 4 400 2 to 5 400 3 to 5 350 3 to 6 450 4 to 5 300 4 to 6 350
Answer:
1650 yards
Step-by-step explanation:
Here, we have to find the minimal spanning tree required to span the neighborhood.
We start from house 1. The minimum distance from house 1 to house 2 is 250 yards. Now from 2, we can go to house 3,4 or 5 all having the equal distances of 400 yard from house 2. So we go to from house 2 to house 3. Now from 3, we go to house 5 which is at a minimum distance of 350 yards. Now from house 5 we go to house 4 with 300 yards and then from house 4 we go to house 6 which is at 350 yards from 4.
Thus the network is complete and the total distance covered is
= 250 + 400 + 350 + 300 + 350
= 1650 yards
This is the minimum distance by which the neighborhood can be wired.
And the tree is
[tex]$1\rightarrow2\rightarrow3\rightarrow5\rightarrow4\rightarrow6$[/tex]
Simplify the polynomial, then evaluate for x=3 x^2+2x-3-2x^2+x+4
Answer:
The answer is
19Step-by-step explanation:
x² + 2x - 3 - 2x² + x + 4
Group like terms
That's
x² - 2x² + 2x + x - 3 + 4
Simplify
- x² + 3x + 1
when x = 3
We have
(-3)² + 3(3) + 1
9 + 9 + 1
18 + 1
19
Hope this helps you
8,5,15,18,3,what's next
13 since i think it's when a single didget number has a 1 at the beginning. i might be wrong thoough
The difference between seven times a number and 9 is equal to three times the sum of the number and 2. Find the number
If x represents the number, which equation is correct for solving this problem?
The difference between seven times a number and 9 is equal to three times the sum of the number and 2. Find the number
If x represents the number, which equation is correct for solving this problem?
Answer:
Number:3.75
Equation:7 x-9=3(x+2)
Step-by-step explanation:
Let the number be x.
According to the question,
7 x-9=3(x+2)
7 x-9= 3 x+ 6
7 x- 3 x= 9+6
4 x= 15
x=15/4
x=3.75
If you verify the answer you will get,
11.25=11.25
Thank you!
Write your answer as a whole number or a mixed number in simplest form. Include the correct unit in your answer
Answer:
15 pt
Step-by-step explanation:
to convert qt to pt you multiply by 2 so 7 and 1/2 times 2 is 15
What is the inverse of the function below?
f(x) = x-5
A. f^-1(x) = x + 5
B. f^-1(X) = x-5
C. f^-1(x) = -x + 5
D. f^-1(x) = -x-5
Answer:
f^-1(x) = x + 5
Step-by-step explanation:
f(x) = x-5
y = x-5
Exchange x and y
x = y-5
Solve for y
x+5 = y-5+5
x+5 =y
The inverse is x+5