For each of the following research scenarios, decide whether the design uses a related sample. If the design uses a related sample, identify whether it uses matched subjects or repeated measures. (Note: Researchers can match subjects by matching particular characteristics, or, in some cases, matched subjects are naturally paired, such as siblings or married couples.)
You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.
The design described ___________a, b, or c_________________________.
a. uses a related sample - repeated measures
b. uses a related sample - matched subjects
c. does not use a related sample
John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample to lonely people to the sleep quality of a random sample of nonlonely people.
The design described ______a, b, or c_________________________.
a. does not use a related sample
b. uses a related sample (repeated measures)
c. uses a related sample (matched subjects)
Answer:
a. uses a related sample - repeated measures
c. uses a related sample (matched subjects)
Step-by-step explanation:
A) You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.
The design described uses a related sample - repeated measures because the scores were compared on the Hoarding Severity scale before and after the treatment.
B) John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample of lonely people to the sleep quality of a random sample of nonlonely people.
The design described uses a related sample (matched subjects)
A nut-raisin mix costs $5.26 a pound. Rashid buys 15.5 pounds of the mix for a party. Rashid’s estimated cost of the nut-raisin mix is A.$16 B.$22 C.$61 D.$80
Answer:
D.$80
Step-by-step explanation:
$5.26 x 15.5= $81.53
The closest amount to $81.53 is D.$80
Rewrite the equation in =+AxByC form. Use integers for A, B, and C. =−y6−6+x4
Answer:
6x + y = -18
Step-by-step explanation:
The given equation is,
y - 6 = -6(x + 4)
We have to rewrite this equation in the form of Ax + By = C
Where A, B and C are the integers.
By solving the given equation,
y - 6 = -6x - 24 [Distributive property]
y - 6 + 6 = -6x - 24 + 6 [By adding 6 on both the sides of the equation]
y = -6x - 18
y + 6x = -6x + 6x - 18
6x + y = -18
Here A = 6, B = 1 and C = -18.
Therefore, 6x + y = -18 will be the equation.
Find the number of unique permutations of the letters in each word. SIGNATURE RESTAURANT
Answer:
Ok, we have two words:
"Signature"
The letters are: "S I G N A T U R E"
9 different letters.
Now, we can make only words with 9 letters, so we can think on 9 slots, and in each of those slots, we can input a letter of those 9.
For the first slot, we have 9 options.
For the second slot, we have 8 options (because on is already taken)
For the second slot, we have 7 options and so on.
Now, the total number of combinations is equal to the product of the number of options in each selection:
C = 9*8*7*6*5*4*3*2*1 = 362,880.
Now, our second word is Restaurant.
The letters here are " R E S T A U N" such that R, T and A appear two times each, so we have a total of 10 letters and 7 unique letters.
So first we do the same as beffore, 10 slots and we start with 10 options.
The total number of combinations will be:
C = 10*9*8*7*6*5*4*3*2*1 = 3,628,800
A lot of combinations, but we are counting only unique words.
For example, as we have two R, we are counting two times the word:
Restaurant (because we could permutate only the two letters R and get the same word)
So we must divide by two for each letter repeated.
we have 3 letters repeated, we divide 3 times by 2.
C = ( 3,628,800)/(2*2*2) = 453,600
convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.
Answer:
Standard form: [tex]12x+3y-2=0[/tex]
A = 12, B = 3 and C = -2
Step-by-step explanation:
Given:
The equation:
[tex]y= -4x + \dfrac{2}3[/tex]
To find:
The standard form of given equation and find A, B and C.
Solution:
First of all, let us write the standard form of an equation.
Standard form of an equation is represented as:
[tex]Ax+By+C=0[/tex]
A is the coefficient of x and can be positive or negative.
B is the coefficient of y and can be positive or negative.
C can also be positive or negative.
Now, let us consider the given equation:
[tex]y= -4x + \dfrac{2}3[/tex]
Multiplying the whole equation with 3 first:
[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]
Now, let us take all the terms on one side:
[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]
Now, let us compare with [tex]Ax+By+C=0[/tex].
So, A = 12, B = 3 and C = -2
Linda, Reuben, and Manuel have a total of $70 in their wallets. Reuben has $10 more than Linda. Manuel has 2 times what Linda has. How much does each have? Amount in Linda's wallet: $ Amount in Reuben's wallet: $ Amount in Manuel's wallet:
Answer:
Linda has $15Reuben has $25Manuel has $30Step-by-step explanation:
Together, they have 4 times what Linda has, plus $10. So, Linda has 1/4 of $60 = $15.
Linda has $15
Reuben has $25 . . . . . . $10 more than Linda
Manuel has $30 . . . . . . twice what Linda has
Find the length of the following tangent segments to the circles centered at O and O's whose radii are 5 and 3 respectively and the distance between O and O's is 12. Find segment AB
Answer:
AB = 2 sqrt(35) (or 11.83 to two decimal places)
Step-by-step explanation:
Refer to diagram.
ABO'P is a rectangle (all angles 90)
=>
PO' = AB
AB = PO' = sqrt(12^2-2^2) = sqrt(144-4) = sqrt(140) = 2sqrt(35)
using Pythagoras theorem.
find the exact value of sin 0
Answer:
12/13
Step-by-step explanation:
First we must calculate the hypotenus using the pythagoran theorem
5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13Now let's calculate sin0
sin O = 12/13So the exact value is 12/13
Answer:
C.) 12/13
Step-by-step explanation:
In a right angle triangle MN = 12, ON = 5 and; angle N = 90°
Now,
For hypotenuse we will use Pythagorean Theorem
(MO)² = (MN)² + (ON)²
(MO)² = (12)² + (5)²
(MO)² = 144 + 25
(MO)² = 169
MO = √169
MO = 13
now,
Sin O = opp÷hyp = 12÷13
Mia agreed to borrow a 3 year loan with 4 percent interest to buy a motorcycle if Mia will pay a total of $444 in interest how much money did she borrow how much interest would Mia pay if the simple interest rate was 5 percent
Answer:
a) $3700
b) $555
Step-by-step explanation:
The length of the loan is 3 years.
The interest after 3 years is $444.
The rate of the Simple Interest is 4%.
Simple Interest is given as:
I = (P * R * T) / 100
where P = principal (amount borrowed)
R = rate
T = length of years
Therefore:
[tex]444 = (P * 3 * 4) / 100\\\\444 = 12P / 100\\\\12P = 444 * 100\\\\12P = 44400\\\\P = 44400 / 12\\[/tex]
P = $3700
She borrowed $3700
b) If the simple interest was 5%, then:
I = (3700 * 5 * 3) / 100 = $555
The interest would be $555.
Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )
Answer:
[tex]\boxed{x = 9}[/tex]
Step-by-step explanation:
m = -1/3
b = 7
And y = 4 (Given)
Putting all of the givens in [tex]y = mx+b[/tex] to solve for x
=> 4 = (-1/3) x + 7
Subtracting 7 to both sides
=> 4-7 = (-1/3) x
=> -3 = (-1/3) x
Multiplying both sides by -3
=> -3 * -3 = x
=> 9 = x
OR
=> x = 9
Answer:
x = 9
Step-by-step explanation:
m = -1/3
b = 7
Using slope-intercept form:
y = mx + b
m is slope, b is y-intercept.
y = -1/3x + 7
Solve for x:
Plug y as 4
4 = 1/3x + 7
Subtract 7 on both sides.
-3 = -1/3x
Multiply both sides by -3.
9 = x
which quadratic function in standard form has the value a= -3.5, b=2.7, and c= -8.2?
Answer:
y = -3.5x² + 2.7x -8.2
Step-by-step explanation:
the quadratic equation is set up as a² + bx + c, so just plug in the values
Answer:
[tex]-3.5x^2 + 2.7x -8.2[/tex]
Step-by-step explanation:
Quadratic functions are always formatted in the form [tex]ax^2+bx+c[/tex].
So, we can use your values of a, b, and c, and plug them into the equation.
A is -3.5, so the first term becomes [tex]-3.5x^2[/tex].
B is 2.7, so the second term is [tex]2.7x[/tex]
And -8.2 is the C, so the third term is [tex]-8.2[/tex]
So we have [tex]-3.5x^2+2.7x-8.2[/tex]
Hope this helped!
Use the functions m(x) = 4x + 5 and n(x) = 8x − 5 to complete the function operations listed below. Part A: Find (m + n)(x). Show your work. (3 points) Part B: Find (m ⋅ n)(x). Show your work. (3 points) Part C: Find m[n(x)]. Show your work. (4 points)
Answer:
Step-by-step explanation:
Part A
(m + n)x = 4x + 5 + 8x - 5
(m + n)x = 12x The fives cancel
Part B
(m - n)x = 4x + 5 - 8x + 5
(m - n)x = -4x + 10
Part C
The trick here is to put n(x) into m(x) wherever m(x) has an x.
m[n(x)] = 5(n(x)) + 5
m[n(x)] = 5(8x - 5) + 5
m[n(x)] = 40x - 20 + 5
m[n(x)] = 40x - 15
Verify the Cauchy-Schwarz Inequality and the triangle inequality for the given vectors and inner product.
p(x)=5x , q(x)= -2x^2+1, (p,q)= aobo+ a1b1+ a2b2
Required:
a. Compute (p,q)
b. Compute ||p|| and ||q||
Answer:
To verify the Cauchy-Bunyakovsky-Schwarz Inequality, (p,q) must be less than (or equal to) ||p|| • ||q||
(1,1,1) is not equal to (-10,5)
Step-by-step explanation:
a°b° + a^1b^1 + a^2b^2 < 5x (-2x^2 + 1)
Any algebra raised to the power of zero is equal to 1.
a°b° = 1 × 1 = 1
1 + ab + a^2b^2 < -10x^3 + 5x
The vectors:
(1,1,1) < (-10,5)
This verifies the Cauchy-Schwarz Inequality
Triangle Inequality states that for any triangle, the sum of the lengths of two sides must be greater than or equal to the length of the third side.
A living room is two times as long and one and one-half times as wide as a bedroom. The amount of
carpet needed for the living room is how many times greater than the amount of carpet needed for the
bedroom?
1 1/2
2
3
3 1/2
Answer:
3
Step-by-step explanation:
let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room
A living room is two times as long as the bedroom, so:
A = 2X
A living room is one and one-half times as wide as a bedroom, so:
B = 1.5Y
The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y
So, AB in terms of XY is:
A*B = (2X)*(1.5Y) = 3(X*Y)
It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the bedroom.
The automatic opening device of a military cargo parachute has been designed to open when the parachute is 155 m above the ground. Suppose opening altitude actually has a normal distribution with mean value 155 and standard deviation 30 m. Equipment damage will occur if the parachute opens at an altitude of less than 100 m. What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes
Answer:
the probability that one parachute of the five parachute is damaged is 0.156
Step-by-step explanation:
From the given information;
Let consider X to be the altitude above the ground that a parachute opens
Then; we can posit that the probability that the parachute is damaged is:
P(X ≤ 100 )
Given that the population mean μ = 155
the standard deviation σ = 30
Then;
[tex]P(X \leq 100 ) = ( \dfrac{X- \mu}{\sigma} \leq \dfrac{100- \mu}{\sigma})[/tex]
[tex]P(X \leq 100 ) = ( \dfrac{X- 155}{30} \leq \dfrac{100- 155}{30})[/tex]
[tex]P(X \leq 100 ) = (Z \leq \dfrac{- 55}{30})[/tex]
[tex]P(X \leq 100 ) = (Z \leq -1.8333)[/tex]
[tex]P(X \leq 100 ) = \Phi( -1.8333)[/tex]
From standard normal tables
[tex]P(X \leq 100 ) = 0.0334[/tex]
Hence; the probability of the given parachute damaged is 0.0334
Let consider Q to be the dropped parachute
Given that the number of parachute be n= 5
The probability that the parachute opens in each trail be p = 0.0334
Now; the random variable Q follows the binomial distribution with parameters n= 5 and p = 0.0334
The probability mass function is:
Q [tex]\sim[/tex] B(5, 0.0334)
Similarly; the event that one parachute is damaged is :
Q ≥ 1
P( Q ≥ 1 ) = 1 - P( Q < 1 )
P( Q ≥ 1 ) = 1 - P( Y = 0 )
P( Q ≥ 1 ) = 1 - b(0;5; 0.0334 )
P( Q ≥ 1 ) = [tex]1 -(^5_0)* (0.0334)^0*(1-0.0334)^5[/tex]
P( Q ≥ 1 ) = [tex]1 -( \dfrac{5!}{(5-0)!}) * (0.0334)^0*(1-0.0334)^5[/tex]
P( Q ≥ 1 ) = 1 - 0.8437891838
P( Q ≥ 1 ) = 0.1562108162
P( Q ≥ 1 ) [tex]\approx[/tex] 0.156
Therefore; the probability that one parachute of the five parachute is damaged is 0.156
Evaluate the series
Answer:
the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
C) 59
Step-by-step explanation:
Recall that;
[tex]\sum_{1}^{n}a_n = a_1+a_2+...+a_n\\[/tex]
Therefore, we can evaluate the series;
[tex]\sum_{k=1}^{6}(25-k^2)[/tex]
by summing the values of the series within that interval.
the values of the series are evaluated by substituting the corresponding values of k into the equation.
[tex]\sum_{k=1}^{6}(25-k^2) =(25-1^2)+(25-2^2)+(25-3^2)+(25-4^2)+(25-5^2)+(25-6^2)\\\sum_{k=1}^{6}(25-k^2) =(25-1)+(25-4)+(25-9)+(25-16)+(25-25)+(25-36)\\\sum_{k=1}^{6}(25-k^2) =24+21+16+9+0+(-11)\\\sum_{k=1}^{6}(25-k^2) = 59\\[/tex]
So, the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
plzzzzz helpp j + 9 - 3 < 8
Answer:
j < 2
Step-by-step explanation:
Simplify both sides of the inequality and isolating the variable would get you the answer
let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has
Answer:
The answer is below
Step-by-step explanation:
A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?
Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:
[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]
a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]
b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.
That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757
c) Let b be the amount of raw sugar should be stocked for the plant each day.
P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]
But P(x > a) = 0.05
Therefore:
[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]
a ≅ 12
In randomized, double-blind clinical trials of Prevnar, infants were randomly divided into two groups. Subjects in group 1 received Prevnar, while subjects in group 2 received a control vaccine. Aft er the second dose, 137 of 452 subjects in the experimental group (group 1) experienced drowsiness as a side effect. After the second dose, 31 of 99 subjects in the control group (group 2) experienced drowsiness as a side effect. Does the evidence suggest that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2 at the αα=0.05 level of significance?
Answer:
Step-by-step explanation:
From the summary of the given data;
After the second dose, 137 of 452 subjects in the experimental group (group 1) experienced drowsiness as a side effect.
Let consider [tex]p_1[/tex] to be the probability of those that experience the drowsiness in group 1
[tex]p_1[/tex] = [tex]\dfrac{137}{452}[/tex]
[tex]p_1[/tex] = 0.3031
After the second dose, 31 of 99 subjects in the control group (group 2) experienced drowsiness as a side effect.
Let consider [tex]p_2[/tex] to be the probability of those that experience the drowsiness in group 1
[tex]p_2[/tex] = [tex]\dfrac{31}{99}[/tex]
[tex]p_2[/tex] = 0.3131
The objective is to be able to determine if the evidence suggest that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2 at the α=0.05 level of significance.
In order to do that; we have to state the null and alternative hypothesis; carry out our test statistics and make conclusion based on it.
So; the null and the alternative hypothesis can be computed as:
[tex]H_o :p_1 =p_2[/tex]
[tex]H_a= p_1<p_2[/tex]
The test statistics is computed as follows:
[tex]Z = \dfrac{p_1-p_2}{\sqrt{p_1 *\dfrac{1-p_1}{n_1} +p_2 *\dfrac{1-p_2}{n_2}} }[/tex]
[tex]Z = \dfrac{0.3031-0.3131}{\sqrt{0.3031 *\dfrac{1-0.3031}{452} +0.3131 *\dfrac{1-0.3131}{99}} }[/tex]
[tex]Z = \dfrac{-0.01}{\sqrt{0.3031 *\dfrac{0.6969}{452} +0.3131 *\dfrac{0.6869}{99}} }[/tex]
[tex]Z = \dfrac{-0.01}{\sqrt{0.3031 *0.0015418 +0.3131 *0.0069384} }[/tex]
[tex]Z = \dfrac{-0.01}{\sqrt{4.6731958*10^{-4}+0.00217241304} }[/tex]
[tex]Z = \dfrac{-0.01}{0.051378 }[/tex]
Z = - 0.1946
At the level of significance ∝ = 0.05
From the standard normal table;
the critical value for Z(0.05) = -1.645
Decision Rule: Reject the null hypothesis if Z-value is lesser than the critical value.
Conclusion: We do not reject the null hypothesis because the Z value is greater than the critical value. Therefore, we cannot conclude that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2
Refer to the following wage breakdown for a garment factory:
Hourly Wages Number of employees
$4 up to $7 18
7 up to 10 36
10 up to 13 20
13 up to 16 6
What is the class interval for the preceding table of wages?
A. $4
B. $2
C. $5
D. $3
Answer:
The class interval is $3Step-by-step explanation:
The class interval is simply the difference between the lower or upper class boundary or limit of a class and the lower or upper class boundary or limit of the next class.
In this case for the class
$4 up to $7 18 and
$7 up to $10 36
The lower class boundary of the first class is $4 and the lower class boundary of the second class is $7
Hence the class interval = $7-$4= $3Find the common ratio of the following geometric sequence:
11,55, 275, 1375, ....
Answer:
Hey there!
The common ratio is 5, because you multiply by 5 to get from one term to the next.
Hope this helps :)
Answer:
5
Step-by-step explanation:
To find the common ratio take the second term and divide by the first term
55/11 = 5
The common ratio would be 5
A 25-foot ladder is placed against a building and the top of the ladder makes a 32° angle with the building. How many feet away from the building is the base of the ladder?
Answer:
since the top of the ladder is making the angle, the of the ladder's base from the building is our opposite and the ladder is the hypotnuse,
sin (32)=opp/hyp, 0.52=opp/25, opp=13 ft
given sin theta=3/5 and 180°<theta<270°, find the following: a. cos(2theta) b. sin(2theta) c. tan(2theta)
I hope this will help uh.....
If a pair of dice are rolled,
what is the probability that at least
one die shows a 5?
Answer:
11/36
Step-by-step explanation:
Find the probability that neither dice shows a 5 (also means the dice can show any number except 5- where there are 5 possible choices out of 6):
= 5/6 x 5/6
=25/36
If we subtract the probability that neither dice shows a 5, we can obtain the probability that at least 1 dice shows a 5- (either one of them is 5, or both of them is 5)
1- 25/36
=11/36
A drawer contains 3 white shirts, 2 blue shirts, and 5 gray shirts. A shirt is randomly
selected from the drawer and set aside. Then another shirt is randomly selected from the
drawer.
What is the probability that the first shirt is white and the second shirt is gray?
Answer:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Step-by-step explanation:
Given that
3 white, 2 blue and 5 gray shirts are there.
To find:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = ?
Solution:
Here, total number of shirts = 3+2+5 = 10
First of all, let us learn about the formula of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
[tex]P(First\ White) = \dfrac{\text{Number of white shirts}}{\text {Total number of shirts left}}[/tex]
[tex]P(First\ White) = \dfrac{3}{10}[/tex]
Now, this shirt is set aside.
So, total number of shirts left are 9 now.
[tex]P(First\ White\ and\ second\ gray) = P(First White) \times P(Second\ Gray)\\\Rightarrow P(First\ White\ and\ second\ gray) = P(First White) \times \dfrac{\text{Number of gray shirts}}{\text{Total number of shirts left}}\\\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{3}{10} \times \dfrac{5}{9}\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{1}{2} \times \dfrac{1}{2}\\\Rightarrow P(First\ White\ and\ second\ gray) = \bold{\dfrac{1}{4} }[/tex]
So, the answer is:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Please help asap.
A pizza is cut into six unequal slices (each cut starts at the center). The largest slice measures $90$ degrees If Larry eats the slices in order from the largest to the smallest, then the number of degrees spanned by a slice decreases at a constant rate. (So the second slice is smaller than the first by a certain number of degrees, then the third slice is smaller than the second slice by that same number of degrees, and so on.) What is the degree measure of the fifth slice Larry eats?
Answer:
The answer is 5th angle = [tex]\bold{42^\circ}[/tex]
Step-by-step explanation:
Given that pizza is divided into six unequal slices.
Largest slice has an angle of [tex]90^\circ[/tex].
He eats the pizza from largest to smallest.
Let the difference in angles in each slice = [tex]d^\circ[/tex]
1st angle = [tex]90^\circ[/tex]
2nd angle = 90-d
3rd angle = 90-d-d = 90 - 2d
4th angle = 90-2d-d = 90 - 3d
5th angle = 90-3d-d = 90 - 4d
6th angle = 90-4d -d = 90 - 5d
We know that the sum of all the angles will be equal to [tex]360^\circ[/tex] (The sum of all the angles subtended at the center).
i.e.
[tex]90+90-d+90-2d+90-3d+90-4d+90-5d=360\\\Rightarrow 540 - 15d = 360\\\Rightarrow 15d = 540 -360\\\Rightarrow 15d = 180\\\Rightarrow d = 12^\circ[/tex]
So, the angles will be:
1st angle = [tex]90^\circ[/tex]
2nd angle = 90- 12 = 78
3rd angle = 78-12 = 66
4th angle = 66-12 = 54
5th angle = 54-12 = 42
6th angle = 42 -12 = 30
So, the answer is 5th angle = [tex]\bold{42^\circ}[/tex]
Identify the value of the CRITICAL VALUE(S) used in a hypothesis test of the following claim and sample data:
Claim: "The average battery life (between charges) of this model of tablet is at least 12 hours."
A random sample of 80 of these tablets is selected, and it is found that their average battery life is 11.58 hours with a standard deviation of 1.93 hours. Test the claim at the 0.05 significance level.
a. -0.218
b. -1.645
c. -1.946
d. -1.667
Answer:
C
Step-by-step explanation:
The critical value we are asked to state in this question is the value of the z statistic
Mathematically;
z-score = (x- mean)/SD/√n
From the question
x = 11.58
mean = 12
SD = 1.93
n = 80
Substituting this value, we have
z= (11.58-12)/1.93/√80 = -1.946
You are selling your product at a three-day event. Each day, there is a 60% chance that you will make money. What is the probability that you will make money on the first two days and lose money on the third day
Answer:
The required probability = 0.144
Step-by-step explanation:
Since the probability of making money is 60%, then the probability of losing money will be 100-60% = 40%
Now the probability we want to calculate is the probability of making money in the first two days and losing money on the third day.
That would be;
P(making money) * P(making money) * P(losing money)
Kindly recollect;
P(making money) = 60% = 60/100 = 0.6
P(losing money) = 40% = 40/100 = 0.4
The probability we want to calculate is thus;
0.6 * 0.6 * 0.4 = 0.144
Find the area of the surface given by z = f(x, y) that lies above the region R. f(x, y) = 64 + x2 − y2 R = {(x, y): x2 + y2 ≤ 64}
The area of the surface above the region R is 4096π square units.
Given that:
The function: [tex]f(x, y) = 64 + x^2 - y^2[/tex]
The region R is the disk with a radius of 8 units [tex]x^2 + y^2 \le 64[/tex].
To find the area of the surface given by z = f(x, y) that lies above the region R, to calculate the double integral over the region R of the function f(x, y) with respect to dA.
The integral for the area is given by:
[tex]Area = \int\int_R f(x, y) dA[/tex]
To evaluate this integral, we need to set up the limits of integration for x and y over the region R, which is the disk cantered at the origin with a radius of 8 units.
Using polar coordinates, we can parameterize the region R as follows:
x = rcos(θ)
y = rsin(θ)
where r goes from 0 to 8, and θ goes from 0 to 2π.
Now, rewrite the integral in polar coordinates:
[tex]Area =\int\int_R f(x, y) dA\\Area = \int_0 ^{2\pi} \int_0^8(64 + r^2cos^2(\theta) - r^2sin^2(\theta)) \times r dr d \theta[/tex]
Now, we can integrate with respect to r first and then with respect to θ:
[tex]Area = \int_0^{2\pi} \int_0^8] (64r + r^3cos^2(\theta) - r^3sin^2(\theta)) dr d \theta[/tex]
Integrate with respect to r:
[tex]Area = \int_0^{2\pi}[(32r^2 + (1/4)r^4cos^2(\theta) - (1/4)r^4sin^2(\theta))]_0^8 d \theta\\Area = \int_0^{2\pi} (2048 + 256cos^2(\theta) - 256sin^2(\theta)) d \theta[/tex]
Now, we can integrate with respect to θ:
[tex]Area = [2048\theta + 128(sin(2\theta) + \theta)]_0 ^{2\pi}[/tex]
Area = 2048(2π) + 128(sin(4π) + 2π) - (2048(0) + 128(sin(0) + 0))
Area = 4096π + 128(0) - 0
Area = 4096π square units
So, the area of the surface above the region R is 4096π square units.
Learn more about Integration here:
https://brainly.com/question/31744185
#SPJ4
David is making rice for his guests based on a recipe that requires rice, water, and a special blend of spice, where the rice-to-spice ratio is 15:115:115, colon, 1. He currently has 404040 grams of the spice blend, and he can go buy more if necessary. He wants to make 101010 servings, where each serving has 757575 grams of rice. Overall, David spends 4.504.504, point, 50 dollars on rice.
Answer:
.006
:)
Step-by-step explanation:
8 servings can David make with the current amount of spice.
What is Ratio?Ratio is defined as a relationship between two quantities, it is expressed one divided by the other.
The rice-to-spice ratio = 15:1
The 75 grams of rice in one serving will require
⇒75/15
⇒5 gram of spice.
David's inventory of 40 gram of spice is enough for
40 g/(5 g/serving) = 8 servings
Hence, 8 servings can David make with the current amount of spice.
Learn more about Ratio
brainly.com/question/1504221
#SPJ2