The following table shows the number of innings pitched by each of the Greenbury Goblins' starting pitchers during the Rockbottom Tournament. Pitcher Calvin Thom Shawn Kris Brantley Number of innings pitched 11 1111 12 1212 7 77 3 33 ? ?question mark If the mean of the data set is 8 88 innings, find the number of innings Brantley pitched. innings

Answers

Answer 1

Answer:

The number of innings Brantley pitched is 7.

Step-by-step explanation:

We are given that the table shows the number of innings pitched by each of the Greenbury Goblins' starting pitchers during the Rockbottom Tournament below;

         Pitcher                           Number of innings pitched

          Calvin                                            11

          Thom                                             12

          Shawn                                            7

            Kris                                               3

         Brantley                                           x

Let the number of innings Brantley pitched be 'x'.

The mean of the following data set is given by the following formula;

          Mean = [tex]\frac{\text{Sum of all data values}}{\text{Total number of observations}}[/tex]

                  [tex]8 = \frac{11+12+7+3+x}{5}[/tex]

                 [tex]8\times 5 =33+x[/tex]

                 [tex]40 = 33+x[/tex]

                  x = 40 - 33 = 7

Hence, the number of innings Brantley pitched is 7.

Answer 2

Answer:

7

Step-by-step explanation:

Khan Academy


Related Questions

An investigation of a number of automobile accidents revealed the following information:
18 accidents involved alcohol and excessive speed.
26 involved alcohol.
12 accidents involved excessive speed but not alcohol.
21 accidents involved neither alcohol nor excessive speed.
How many accidents were investigated?

Answers

Answer:

59 accidents were investigated.

Step-by-step explanation:

The question above is a probability question that involves 2 elements: causes of accidents.

Let

A = Alcohol

E = Excessive speed

In the question, we are given the following information:

18 accidents involved Alcohol and Excessive speed =P(A ∩ E)

26 involved Alcohol = P(A)

12 accidents involved excessive speed but not alcohol = P( E ) Only

21 accidents involved neither alcohol nor excessive speed = neither A U B

We were given P(A) in the question. P(A Only) = P(A) - P(A ∩ E)

P(A Only) = 26 - 18

= 8

So, only 8 accident involved Alcohol but not excessive speed.

The Total number of Accidents investigated = P(A Only) + P( E only) + P(A ∩ E) + P( neither A U B)

= 8 + 12 + 18 + 21

= 59

Therefore, 59 accidents were investigated.

The length of a rectangle is four times its width. If the perimeter of the rectangle is 50 yd, find its area

Answers

Answer:

100yd²

Step-by-step explanation:

length=4x

width=x

perimeter=2(l+w)

50=2(4x+x)

50=2(5x)=10x

50=10x

x=5yd

width=5yd

length=20yd

area=length×width

=20×5

=100yd²

Answer:

[tex]\boxed{\red{100 \: \: {yd} ^{2}}} [/tex]

Step-by-step explanation:

width = x

length = 4x

so,

perimeter of a rectangle

[tex] p= 2(l + w) \\ 50yd = 2(4x + x) \\ 50yd= 2(5x) \\ 50yd= 10x \\ \frac{50yd}{10} = \frac{10x}{10} \\ x = 5 \: \: yd[/tex]

So, in this rectangle,

width = 5 yd

length = 4x

= 4*5

= 20yd

Now, let's find the area of this rectangle

[tex]area = l \times w \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 20 \times 5 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 100 {yd}^{2} [/tex]

Solve for x 90°, 45°, and x°

Answers

Answer:

x= 45

Step-by-step explanation:

In this diagram, there is an angle that is split into 2 angles.

The angle is a 90 degree angle. We know this because of the little square in the corner that denotes a right angle.

Therefore, the 2 angles inside of the right angle must add to 90 degrees. The 2 angles that make up the right angle are x and 45.

x+45=90

We want to find x. We need to get x by itself. 45 is being added on to x. The inverse of addition is subtraction. Subtract 45 from both sides.

x+45-45=90-45

x= 90-45

x=45

The measure of angle x is 45 degrees.

Math question, need help

Answers

In general, if we have [tex]x^a=x^b,[/tex] then [tex]a=b.[/tex] Thus, the first answer choice is correct.

Answer:

[tex]\boxed{\red{2x - 1 = 5x - 14}}[/tex]

First answer is correct.

Step-by-step explanation:

we know that,

[tex] {x}^{a} = {x}^{b} [/tex]

[tex]a = b[/tex]

So, according to that,

[tex] {5}^{(2x - 1)} = {5}^{(5x - 14)} [/tex]

Therefore,

[tex]2x - 1 = 5x - 14[/tex]

Find the total surface area of the cone in the figure. ( use rr=3.14.)

Answers

Answer:

Answer D

Step-by-step explanation:

The formula is [tex]A = pi r(r+\sqrt{h^2+r^2})[/tex]. We have our r (radius) and h (height), so plugging it all in would give us A = (3.14)(5 + sqrt(12^2)+(5^2). After computing this, you would get answer D, 282.6.

Please answer this correctly without making mistakes

Answers

Answer:

41.1 miles

Step-by-step explanation:

84 - 42.9 = 41.1

A survey of 700 non-fatal car accidents showed that 183 involved faulty equipment. Find a point estimate for the population proportion of non-fatal car accidents that involved faulty equipment.

Answers

Answer:

Point of faulty equipment car = 0.2614 (Approx)

Step-by-step explanation:

Given:

Total number of car = 700

Faulty equipment car = 183

Find:

Point of faulty equipment car

Computation:

Point of faulty equipment car = Faulty equipment car / Total number of car

Point of faulty equipment car = 183 / 700

Point of faulty equipment car = 0.261428571

Point of faulty equipment car = 0.2614 (Approx)

I made a square frame for my favorite bird picture from four wooden pieces. Each piece is a rectangle with a perimeter of 24 inches. What is the area and perimeter of the picture and frame, together?

Answers

Answer:

Perimeter of the picture and frame = 38.4inches

Area of the picture and frame = 92.16inches²

Step-by-step explanation:

A square frame is made up of 4 different pieces. The shape of each piece = Rectangle

The perimeter of the rectangle = 24

Perimeter of the rectangle = 24 inches

The perimeter of a rectangle = 2L + 2W

The Width of a Rectangle is always on her than the length hence.

24 = 2L + 2W

24 = 2( L + W)

24/2 = L + W

12 = L + W

Because the width is always longer than the length

W > L

Width of wooden frame = 4 × Length

Therefore;

4 × L = W

Which gives

L + W = 12 inches

4 × L + L = 12 inches

L×(4 + 1)

= 5L = 12 inches

L = 12/5 = 2.4 inches

W = 4 × L = 4 × 12/5

W = 48/5 = 9.6 inches

Side length of wooden frame, L =9.6

The perimeter of the picture frame = 4 × L= 4 × 9.6= 38.4 inches

The area of the picture frame = L²

= L × L

= 9.6 × 9.6 = 92.16inches².

Which steps can be used in order to determine the solution to Negative 1.3 + 4.6 x = 0.3 + 4 x?

Answers

Answer:

x=8/3 OR 2.7

Step-by-step explanation:

-1.3+4.6x=0.3+4x

4.6x-4x=0.3+1.3

0.6x=1.6

x=1.6/0.6=8/3

x=8/3 OR 2.7

Hope this helps!

Answer:

[tex]\boxed{x = 2\frac{2}{3} }[/tex]

Step-by-step explanation:

[tex]-1.3+4.6x = 0.3 +4x[/tex]

Collecting like terms

[tex]4.6 x -4x = 0.3+1.3[/tex]

[tex]0.6x = 1.6[/tex]

Dividing both sides by 0.6

x = 1.6 / 0.6

x = 2 2/3

WILL GIVE YOU BRAINLIEST

Answers

Answer:

AB = 20 tan55°

Step-by-step explanation:

Using the tangent ratio in the right triangle

tan55° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AB}{BC}[/tex] = [tex]\frac{AB}{20}[/tex] ( multiply both sides by 20 )

20 tan55° = AB

the product of two consequtive integers is 72 the equation x(x+1)=72 represents the situation, where x represents the smaller integer, which equation can be factor and solve for the smaller integer?

Answers

Answer:

x² + x - 72 = 0 can be factored into (x - 8)(x + 9) = 0 to find your answer.

Step-by-step explanation:

Step 1: Distribute x

x² + x = 72

Step 2: Move 72 over

x² + x - 72 = 0

Step 3: Factor

(x - 8)(x + 9) = 0

Step 4: Find roots

x - 8 = 0

x = 8

x + 9 = 0

x = -9

Answer:

x² + x - 72 = 0 ⇒ (x - 8)(x + 9) = 0

Step-by-step explanation:

Let the first consecutive integer be x.

Let the second consecutive integer be x+1.

The product of the two consecutive integers is 72.

x(x + 1) = 72

x² + x = 72

Subtracting 72 from both sides.

x² + x - 72 = 0

Factor left side of the equation.

(x - 8)(x + 9) = 0

Set factors equal to 0.

x - 8 = 0

x = 8

x + 9 = 0

x = -9

8 and -9 are not consecutive integers.

Try 8 and 9 to check.

x = 8

x + 1 = 9

x(x+1) = 72

8(9) = 72

72 = 72

True!

The two consecutive integers are 8 and 9.

What is the solution for x in the given equation? (root)9x+7+ (root)2x=7 A. x = 18 and x = 2 B. x = 18 C. x = 2 D. x = 18 and x = -2

Answers

Answer:

C. x = 2

Step-by-step explanation:

[tex] \sqrt{9x + 7} + \sqrt{2x} = 7 [/tex]

Since you have square roots, you need to separate the square roots and square both sides.

[tex] \sqrt{9x + 7} = 7 - \sqrt{2x} [/tex]

Now that one square root is on each side of the equal sign, we square both sides.

[tex] (\sqrt{9x + 7})^2 = (7 - \sqrt{2x})^2 [/tex]

[tex] 9x + 7 = 49 - 14\sqrt{2x} + 2x [/tex]

Now we isolate the square root and square both sides again.

[tex] 7x - 42 = -14\sqrt{2x} [/tex]

Every coefficient is a multiple of 7, so to work with smaller numbers, we divide both sides by 7.

[tex] x - 6 = -2\sqrt{2x} [/tex]

Square both sides.

[tex] (x - 6)^2 = (-2\sqrt{2x})^2 [/tex]

[tex] x^2 - 12x + 36 = 4(2x) [/tex]

[tex] x^2 - 20x + 36 = 0 [/tex]

We need to try to factor the left side.

-2 * (-18) = 36 & -2 + (-18) = -20, so we use -2 and -18.

[tex] (x - 2)(x - 18) = 0 [/tex]

[tex] x = 2 [/tex]   or   [tex] x = 18 [/tex]

Since solving this equation involved the method of squaring both sides, we much check for extraneous solutions by testing our two solutions in the original equation.

Test x = 2:

[tex] \sqrt{9x + 7} + \sqrt{2x} = 7 [/tex]

[tex] \sqrt{9(2) + 7} + \sqrt{2(2)} = 7 [/tex]

[tex] \sqrt{25} + \sqrt{4} = 7 [/tex]

[tex] 5 + 2 = 7 [/tex]

[tex] 5 = 5 [/tex]

We have a true equation, so x = 2 is a true solution of the original equation.

Now we test x = 18.

[tex] \sqrt{9x + 7} + \sqrt{2x} = 7 [/tex]

[tex] \sqrt{9(18) + 7} + \sqrt{2(18)} = 7 [/tex]

[tex] \sqrt{162 + 7} + \sqrt{36} = 7 [/tex]

[tex] \sqrt{169} + 6 = 7 [/tex]

[tex] 13 + 6 = 7 [/tex]

[tex] 19 = 7 [/tex]

Since 19 = 7 is a false equation, x = 18 is not a true solution of the original equation and is discarded as an extraneous solution.

Answer: C. x = 2

helpppppppppppppppppppppppppppppp

Answers

Answer:

0

Step-by-step explanation:

Hope this helps

Graph y less than or equal to 3x

Answers

Answer:

See Image Below.

Step-by-step explanation:

The Shaded region is the area of numbers that this equation satisfies.

Answer:

Please see attached image

Step-by-step explanation:

In order to graph the inequality, start from plotting the boundary line defined by the equality;

y = 3 x

You just need two points to accomplish such. so let's use two simple values for x and find what the y-values are:

for x = 0 then y = 3 (0) = 0

for x = 1 then y = 3 (1) = 3

Then use the points (0, 0) and (1, 3) to plot the boundary line.

After this, grab any point on the plane either clearly above the boundary line, or clearly below it and check if the inequality satisfies. For example, you can pick the point (3, 0) which is on the x line, 3 units to the right of the origin, and clearly below the boundary line we just plot.

When you use it in the inequality, you get:

(0)  [tex]\leq[/tex] 3 (3)

0   [tex]\leq[/tex] 9

which is a true statement, therefore, the points below the boundary lie are also solutions of the inequality.

Then the solution consists of all the points in the boundary line we just plotted (and indicated by drawing a solid line), plus all the points below the line, as depicted in the attached image.

The value of y varies inversely as the square of x, and y = 16, when I = 3.
Find the value of x when y = 1.​

Answers

Answer:

x = 12

Step-by-step explanation:

The statement

The value of y varies inversely as the square of x is written as

[tex]y = \frac{k}{ {x}^{2} } [/tex]

where k is the constant of proportionality

To find the value of x when y = 1 first find the formula for the variation

y = 16 x = 3

k = yx²

k = 16(3)²

k = 16 × 9

k = 144

The formula for the variation is

[tex]y = \frac{144}{ {x}^{2} } [/tex]

when y = 1

We have

[tex]1 = \frac{144}{ {x}^{2} } [/tex]

Cross multiply

x² = 144

Find the square root of both sides

We have the final answer as

x = 12

Hope this helps you

An exterior angle of a triangle is 120° and one of the interior opposite angle is 50°. Find the other two angles of the triangle.

Answers

Answer:

interior angle (2)= 70

interior angle (3)= 60

Step-by-step explanation:

Given:

exterior angle=120°

interior angle (1)=50°

Required:

interior angle (2)=?

interior angle (3)=?

Formula:

exterior angle=interior angle (1) + interior angle (2)

Solution:

exterior angle=interior angle (1)+ interior angle (2)

120°=50°+interior angle (2)

120°+50°=interior angle (2)

70°=interior angle (2)

interior angle (3)= 180°-interior angle (1)- interior angle (2)

interior angle (3)=180°-50°+70°

interior angle (3)=180°-120°

interior angle (3)= 60°

Theorem:

Theorem 1.16

The measure of an exterior angle of a triangle is greater than either of the measures of the remote interior angles.

Hope this helps ;) ❤❤❤

?? help out plssss ill do the thing wtv its called

Answers

Steps to solve:

1 = -4 + 3/8x

~Add 4 to both sides

1 + 4 = -4 + 4 + 3/8x

~Simplify

5 = 3/8x

~Multiply 8/3 to both sides

5 * 8/3 = 3/8x * 8/3

~Simplify

13 1/3 = x

As we look through the answer choices, we can see that none resembles any of the steps I did above but by looking at the answers for each one, the only logical answer is B since it has a final answer of x = 40/3 or 13 1/3.

Best of Luck!

A stained-glass window is shaped like a right triangle. The hypotenuse is 15feet. The length of one leg is three more than the other. Find the lengths of the legs.

Answers

let us build equation for unknown legs

If we keep the length pf one leg as x

the other leg would be x +3

so we can build a relationship using pythagoras theorem

x^2 + (x+3)^2 = 15^2

x^2 + x^2 + 6x + 9 = 225

2x^2 + 6x + 9 = 225

2x^2 + 6x+ 9-225 = 0

2x^2 + 6x - 216 = 0

x^2 + 3x - 108 = 0 dividing whole equation by 2

x^2 + 12x - 9x - 108 = 0

x ( x + 12 ) - 9 (x + 12) = 0

(x -9) ( x +12) = 0

solutions for x are

x = 9 or x = -12

as lengths cannot be negative

one side length is 9cm

and other which is( x + 3)

9 + 3

12cm

The lengths of the legs of the right angled triangle is 9 feet and 12 feet.

Pythagoras theorem is used to show the relationship between the sides of a right angled triangle. It is given by:

Hypotenuse² = First Leg² + Second leg²

Let x represent the length of one leg. The other leg is three more = x + 3, hypotenuse = 15 ft. Hence:

15² = x² + (x + 3)²

x² + 6x + 9 + x² = 225

2x² + 6x - 216 = 0

x² + 3x - 108 = 0

x = - 12 or x = 9

Since the length cant the negative hence x= 9, x + 3 = 12

The lengths of the legs of the right angled triangle is 9 feet and 12 feet.

Find out more at: https://brainly.com/question/10040532

Which phrase best describes the graph of a proportional relationship?

A) a straight line passing

B) a straight line

C) a curve

D) not a straight line

Answers

Answer:

A. a straight line passing

Step-by-step explanation:

Answer:

a straight line passing

Step-by-step explanation:

What is the equation for the plane illustrated below?

Answers

Answer:

Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].

Step-by-step explanation:

The general equation in rectangular form for a 3-dimension plane is represented by:

[tex]a\cdot x + b\cdot y + c\cdot z = d[/tex]

Where:

[tex]x[/tex], [tex]y[/tex], [tex]z[/tex] - Orthogonal inputs.

[tex]a[/tex], [tex]b[/tex], [tex]c[/tex], [tex]d[/tex] - Plane constants.

The plane presented in the figure contains the following three points: (2, 0, 0),  (0, 2, 0), (0, 0, 3)

For the determination of the resultant equation, three equations of line in three distinct planes orthogonal to each other. That is, expressions for the xy, yz and xz-planes with the resource of the general equation of the line:

xy-plane (2, 0, 0) and (0, 2, 0)

[tex]y = m\cdot x + b[/tex]

[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

Where:

[tex]m[/tex] - Slope, dimensionless.

[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.

[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.

[tex]b[/tex] - x-Intercept, dimensionless.

If [tex]x_{1} = 2[/tex], [tex]y_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]y_{2} = 2[/tex], then:

Slope

[tex]m = \frac{2-0}{0-2}[/tex]

[tex]m = -1[/tex]

x-Intercept

[tex]b = y_{1} - m\cdot x_{1}[/tex]

[tex]b = 0 -(-1)\cdot (2)[/tex]

[tex]b = 2[/tex]

The equation of the line in the xy-plane is [tex]y = -x+2[/tex] or [tex]x + y = 2[/tex], which is equivalent to [tex]3\cdot x + 3\cdot y = 6[/tex].

yz-plane (0, 2, 0) and (0, 0, 3)

[tex]z = m\cdot y + b[/tex]

[tex]m = \frac{z_{2}-z_{1}}{y_{2}-y_{1}}[/tex]

Where:

[tex]m[/tex] - Slope, dimensionless.

[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the independent variable, dimensionless.

[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.

[tex]b[/tex] - y-Intercept, dimensionless.

If [tex]y_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]y_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:

Slope

[tex]m = \frac{3-0}{0-2}[/tex]

[tex]m = -\frac{3}{2}[/tex]

y-Intercept

[tex]b = z_{1} - m\cdot y_{1}[/tex]

[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]

[tex]b = 3[/tex]

The equation of the line in the yz-plane is [tex]z = -\frac{3}{2}\cdot y+3[/tex] or [tex]3\cdot y + 2\cdot z = 6[/tex].

xz-plane (2, 0, 0) and (0, 0, 3)

[tex]z = m\cdot x + b[/tex]

[tex]m = \frac{z_{2}-z_{1}}{x_{2}-x_{1}}[/tex]

Where:

[tex]m[/tex] - Slope, dimensionless.

[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.

[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.

[tex]b[/tex] - z-Intercept, dimensionless.

If [tex]x_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:

Slope

[tex]m = \frac{3-0}{0-2}[/tex]

[tex]m = -\frac{3}{2}[/tex]

x-Intercept

[tex]b = z_{1} - m\cdot x_{1}[/tex]

[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]

[tex]b = 3[/tex]

The equation of the line in the xz-plane is [tex]z = -\frac{3}{2}\cdot x+3[/tex] or [tex]3\cdot x + 2\cdot z = 6[/tex]

After comparing each equation of the line to the definition of the equation of the plane, the following coefficients are obtained:

[tex]a = 3[/tex], [tex]b = 3[/tex], [tex]c = 2[/tex], [tex]d = 6[/tex]

Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].

Answer:

It is A    3x+3y+2z=6

Step-by-step explanation:

x−15≤−6 solve for x pls help

Answers

Answer:

x≤9  

Step-by-step explanation:

x−15≤−6

Add 15 to each side

x−15+15≤−6+15

x≤9  

Answer:

[tex]\boxed{x\leq 9}[/tex]

Step-by-step explanation:

[tex]x-15 \leq -6[/tex]

[tex]\sf Add \ 15 \ to \ both \ parts.[/tex]

[tex]x-15 +15 \leq -6+15[/tex]

[tex]x\leq 9[/tex]

Line AB and Line CD are parallel lines. Which translation of the plane can we use to prove angles x and y are congruent, and why?

Answers

Answer:

Option C.

Step-by-step explanation:

In the given figure we have two parallel lines AB and CD.

A transversal line FB intersect the parallel lines at point B and C.

We know that the if a transversal line intersect two parallel lines, then corresponding angles are congruent.

[tex]\angle ABC=\anle ECF[/tex]

[tex]x=y[/tex]

To prove this by translation, we need a translation along the directed line segment CB maps ine CD onto line AB and angle y onto angle x.

Therefore, the correct option is C.

20 points please help!!!

Answers

Answer:

a = 16

b = [tex]\frac{3}{4}[/tex]

Step-by-step explanation:

Length of the design 16 inches is represented by the point (0, 16) and length of 12 inches by (1, 12).

That means these points lie on the graph of the function 'f' represented by,

f(x) = a(b)ˣ

For the point (0, 16),

f(0) = a(b)⁰

16 = a(1)

a = 16

For another point (1, 12),

f(1) = a(b)¹

12 = ab

12 = 16(b) [Since a = 16]

b = [tex]\frac{12}{16}[/tex]

b = [tex]\frac{3}{4}[/tex]

Therefore, values of a and b are 16 and [tex]\frac{3}{4}[/tex] respectively.

You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately 60%. You would like to be 98% confident that your estimate is within 2.5% of the true population proportion. How large of a sample size is required?

Answers

Answer:

A sample size of 2080 is needed.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

98% confidence level

So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].

Based on previous evidence, you believe the population proportion is approximately 60%.

This means that [tex]\pi = 0.6[/tex]

How large of a sample size is required?

We need a sample of n.

n is found when [tex]M = 0.025[/tex]. So

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.025 = 2.327\sqrt{\frac{0.6*0.4}{n}}[/tex]

[tex]0.025\sqrt{n} = 2.327\sqrt{0.6*0.4}[/tex]

[tex]\sqrt{n} = \frac{2.327\sqrt{0.6*0.4}}{0.025}[/tex]

[tex](\sqrt{n})^{2} = (\frac{2.327\sqrt{0.6*0.4}}{0.025})^{2}[/tex]

[tex]n = 2079.3[/tex]

Rounding up

A sample size of 2080 is needed.

Which best describes the meaning of the statement if A then B

Answers

Answer:

[tex]a => b \equiv ( \neg a \ \lor \ b )[/tex]

Step-by-step explanation:

You can understand the statement from many perspectives, but in terms of proposition logic it is best to understand it as   "negation of a" or "  b" in mathematical terms is written like this

[tex]a => b \equiv ( \neg a \ \lor \ b )[/tex]

You can show that they are logically equivalent because they have the same truth table.

 

Find the exact values of sin 2θ and cos 2θ for cos θ = 6/13

Answers

Answer:

Step-by-step explanation:

cos^-1(6/13)=62.5136°

sin(2*62.5136°)=0.8189

cos(2*62.5136°)=-0.5740

Find a power series for the function, centered at c. f(x) = 1 9 − x , c = 4 f(x) = [infinity] n = 0 Incorrect: Your answer is incorrect. Determine the interval of convergence. (Enter your answer using interval notation.)

Answers

Looks like the given function is

[tex]f(x)=\dfrac1{9-x}[/tex]

Recall that for |x| < 1, we have

[tex]\displaystyle\frac1{1-x}=\sum_{n=0}^\infty x^n[/tex]

We want the series to be centered around [tex]x=4[/tex], so first we rearrange f(x) :

[tex]\dfrac1{9-x}=\dfrac1{5-(x-4)}=\dfrac15\dfrac1{1-\frac{x-4}5}[/tex]

Then

[tex]\dfrac1{9-x}=\displaystyle\frac15\sum_{n=0}^\infty\left(\frac{x-4}5\right)^n[/tex]

which converges for |(x - 4)/5| < 1, or -1 < x < 9.

The radius of a nitrogen atom is 5.6 × 10-11 meters, and the radius of a beryllium atom is 1.12 × 10-10 meters. Which atom has a larger radius, and by how many times is it larger than the other?

Answers

Answer:

The beryllium atom; 1.99 times larger.

Step-by-step explanation:

The beryllium atom is 0.000000000112 meters, while the nitrogen atom is 0.000000000056 meters. So, the beryllium atom is larger than the other.

(1.12 * 10^-10) / (5.6 * 10^-11)

= (1.112 / 5.6) * (10^-10 + 11)

= 0.1985714286 * 10

= 1.985714286 * 10^0

So, the beryllium atom is about 1.99 times larger than the other.

Hope this helps!

The board of directors of Midwest Foods has declared a dividend of $3,500,000. The company has 300,000 shares of preferred stock that pay $2.85 per share and 2,500,000 shares of common stock. After finding the amount of dividends due the preferred shareholders, calculate the dividend per share of common stock.

Answers

Answer:

$855,000Dividend per share of common stock = $1.06

Step-by-step explanation:

1. Preferred Share dividends.

There are 300,000 preference shares and each of them got $2.85. Total dividends are;

= 300,000 * 2.85

= $855,000‬

2. Total dividends = $3,500,000

Dividends left for Common Shareholders (preference gets paid first)

= 3,500,000 - 855,000

= $2,645,000

Common shares number 2,500,000

Dividend per share of common stock = [tex]\frac{2,645,000}{2,500,000}[/tex]

= $1.06

how many pairs of matching surfaces does a cereal box have

Answers

Answer:

3 pairs

Step-by-step explanation:

Top and Bottom

Front and Back

Side and Side.

Cereal Boxes have 6 sides

Other Questions
The overwhelmingly supportive response on behalf of many Oklahomans that came out of the Oklahoma City bombingtragedy became known as the "OklahomaA. OutpouringB. VibeC. NatureD. Standard If 50 km thick crust having an average density of 3.0 g/cm3 has a surface elevation of 2.5 km above sea level, what would you predict about the surface elevation for 50 km thick crust with an average density of 2.8 g/cm3 B. In each of the following questions, find the smallest number by which it should be multiplied to geta perfect square. Find the square root of the perfect squares so obtained.(a) 392(b) 216(c) 11.045(d) 3,698 (e) 11,094 Stanley Systems completed the following stock issuancetransactions:May 19 Issued 1,200 shares of $2 par value common stock for cash of $12.00 per share.Jun. 3 Isssued 500 shares of $8, no-par preferred stock for $25,000 cash.11 Received equipment with a market value of $70,000 in exchange for 4,000 shares of the $2 par value common stockRequirements1. Journalize the transactions. Explanations are not required.2. How much paid-in capital did these transactions generate forStanleyStanleySystems?DateAccountsDebitCreditMay 19CashCommon Stock$2 Par ValuePaid-In Capital in Excess of ParCommonAnd if possible please help me with,Pioneer Amusements Corporation had the following stockholders' equity on November 30:Stockholders' EquityPaid-In Capital:Common Stock$5 Par Value; 1,300 sharesauthorized, 150 shares issued and outstanding $750Paid-In Capital in Excess of ParCommon 2,250Total Paid-In Capital 3,000Retained Earnings 56,000Total Stockholders' Equity $59,000(Click the icon to view the stockholders' equity.) On December 30,Pioneer purchased 100 shares of treasury stock at $ 14 per share.Read the requirements1. Journalize the purchase of the treasury stock.2. Prepare the stockholders' equity section of the balance sheet at December 31,20182018.Assume the balance in retained earnings is unchanged fromNovemberNovember3030.3. How many shares of common stock are outstanding after the purchase of treasury stock?DateAccounts and ExplanationDebitCreditDec. 30Treasury StockCommon1000Cash1000Purchased treasury stock. A company budgets 10,000 units of sales based on a projected selling price of $13.00. The actual units sold were 15,000 at a price of $10. What is the flexible budget for sales? Why do people called Queen Elizabeth I is The Queen Mother?(sorry for my bad english.)(any confusion, tell me.)A. Because she is a mother.B. Because she is queen.C. To avoid confusion with her daughter.D. To know she had two kids. Which one of the following stocks is correctly priced if the risk-free rate of return is 3.6 percent and the market risk premium is 8.1 percent? Stock Beta Expected Return A. 89 7.83% B. 1.52 12.59 C. 1.25 11.27 C 1.27 14.50 D. 80 10.08 which is the largest statue and where it is located in the world?? Which number is the odd one out? Please help me with this geometry question:(( I NEED HELP FAST PLZZZZ!!!! In about 100 words, discuss the meaning of narrative and how it works in autobiography and memoir. Be sure and point out the differences between the two types. 11. Which of the following lines is perpendicular to the line 3x-9y = 17?A) 12x + y = 4B) 9x - 3y = 11C) 6x + 2y = 8D) 3x - y = 5 Aluminum and oxygen react according to the following equation: 4Al + 3O2 -> 2Al2O3 In a certain experiment, 4.6g Al was reacted with excess oxygen and 6.8g of product was obtained. What was the percent yield of the reaction? 2. Salvador has 10 cards, each with one number onit. The numbers are 2, 3, 4,5,5,7,7,7,7,7.Salvador is going to make a row containing all 10cards. How many ways can he order the row? Hi! Can I have some help on this math question...Question C please!Please explain it as I am very confused!15 Points- Thanks! 4, 12, 36,what is 3 other remaining sequence Sandra y Roberto, cada uno de ellos con una copia del libro, deciden que ellos pueden ganar tiempo "leyendo en equipo" la novela. En este esquema, Sandra leer desde la pgina 1 hasta una cierta pgina y Roberto leer desde la pgina siguiente hasta la pagina 760. Cuando ellos hayan terminado cada uno contar la parte que ley al otro. Cul es la ltima pgina que Sandra debera leer de tal manera que ella y Roberto pasen la misma cantidad de tiempo leyendo la novela? Right triangle ABC is located at A (-1,-2), B(-1, 1), and C (3, 1) on a coordinate plane. What is the equation of a circle A with radius AC?Olx + 1)2 + y + 2)2 = 9O(x + 1)2 + (y + 2)2 = 25OOX - 3)2 + y - 12 = 16Ox - 3)2 + (y - 142 = 25 Use the adjective econmico: Viajar en carro es_____________.Viajar en tren es ________________ que viajar en carro. Viajar en bus es ____________________. Which statement best describes the counterclaim