Answer:
-2
Step-by-step explanation:
your equation is
f(x) = -2x+8
-2x
-2 is the slope
Answer:
The slope is -2
Step-by-step explanation:
Rewriting f(s) as y
y = -2x+8
This is in slope intercept form
y = mx+b where m is the slope and b is the y intercept
y = -2x+8
The slope is -2
Look at picture to see question
The biomass B(t) of a fishery is the total mass of the members of the fish population at time t. It is the product of the number of individuals N(t) in the population and the average mass M(t) of a fish at time t. In the case of guppies, breeding occurs continually. Suppose that at time t = 5 weeks the population is 824 guppies and is growing at a rate of 50 guppies per week, while the average mass is 1.3 g and is increasing at a rate of 0.14 g/week. At what rate is the biomass increasing when t = 5? (Round your answer to one decimal place.) B'(5) = g/week
Answer:
The rate at which the biomass is increasing when t = 5 is 180.36 g/week
Step-by-step explanation:
Given that :
t = 5 weeks
Population N(t) = 824 guppies
Growth Rate [tex]\dfrac{dN(t)}{dt}= 50 \ guppies /week[/tex]
average mass M(t) = 1.3 g
increase rate of biomass [tex]\dfrac{dM (t)}{t}[/tex]= 0.14 g/week
Therefore; the rate at which the biomass is increasing when t = 5 is:
[tex]\dfrac{dB(t)}{dt}= M(t) * \dfrac{dN(t)}{dt}+ N(t)* \dfrac{dM (t)}{t}[/tex]
[tex]\dfrac{dB(t)}{dt}=1.3 * 50+ 824* 0.14[/tex]
[tex]\dfrac{dB(t)}{dt}=65+115.36[/tex]
[tex]\mathbf{\dfrac{dB(t)}{dt}=180.36 \ g/week}[/tex]
The rate at which the biomass is increasing when t = 5 is 180.36 g/week
The rate at which the biomass is increasing when t = 5 is 180.36 g/week
Calculation of the rate:Since time = 5 weeks, Population N(t) = 824 guppies, and growth rate = 50 guppies / week, average mass = 1.3g, and the increase rate of biomass is 0.14g/week
So,
[tex]= 1.3\times 50 + 824 \times 0.14[/tex]
= 65 + 115.36
= 180.35 g/weel
Learn more about mass here: https://brainly.com/question/3943429
What interval includes all possible values of x, where –3(6 – 2x) ≥ 4x + 12? (–∞, –3] [–3, ∞) (–∞, 15] [15, ∞) SORRY THIS IS THE FULL QUESTION
Answer:
[15, ∞).
Step-by-step explanation:
–3(6 – 2x) ≥ 4x + 12
-18 + 6x ≥ 4x + 12
6x - 4x ≥ 12 + 18
2x ≥ 30
x ≥ 15
This means that the minimum of x is 15, and the most is infinity, which is the same thing as [15, ∞).
Hope this helps!
Write 4x2 + 16x - 9 in vertex form. Write 5x2 - 10x + 4 in vertex form.
Hi king,
Write [tex]4x^{2} + 16x - 9[/tex] in vertex form:
f(x)=[tex]4x^{2} + 16x - 9[/tex]
f(x)=[tex]4(x+2)^{2} -25[/tex]
Write [tex]5x^{2} - 10x + 4[/tex] in vertex form:
g(x)=[tex]5x^{2} - 10x + 4[/tex]
g(x)=[tex]5(x-1)^{2} -1[/tex]
Have a great day.
A randomized study compared two drugs that
are designed to lower a person's triglyceride
level. It was found that over a 1-year period,
those receiving Drug A decreased their
triglyceride level by a mean of 69. Those
receiving Drug B decreased their triglyceride
level by a mean of 45.
To determine whether the results are significant,
the data are rerandomized and the difference of
the means is shown in the dot plot.
What is the best conclusion to make based on
the data?
Answer:b
Step-by-step explanation:
2 3/8 ÷ 1 1/4
Steps
19/8 x 4/5
= 19/10
= 1 9/10
So the answer to this is B.
26. A positive whole number is called stable if at least one of its digits has the same value
as its position in the number. For example, 78247 is stable because a
the 4th position. How many stable 3-digit numbers are there?
appears in
Answer:
OneStep-by-step explanation:
Given the value 78247 a s a stable number because at least one of its digits has the same value as its position in the number. The 4th number in the value is 4, this makes the number a stable number.
The following are the 3-digits stable numbers that appears in 78247
The first number is 824. This digits are stable numbers because 2 as a number is situated in the same place as the number (2nd position).
Hence, there are only 1 stable 3-digit numbers in the value 78247 since only a value exists as 2 in the value and there is no 1 and 3 in the value.
Suppose you are interested in testing wheter the mean earning of men in the general social survey is representative of the earning of the entire U.S. Male population. If there are 372 men in the general social survey sample and approximately 128 million men in the population, calculate the degrees of freedom for this single-sample t test.
Answer:
371
Step-by-step explanation:
According to the given situation the calculation of degrees of freedom for this single-sample t test is shown below:-
Degrees of freedom is N - 1
Where N represents the number of Men
Now we will put the values into the above formula.
= 372 - 1
= 371
Therefore for calculating the degree of freedom we simply applied the above formula.
please help :) What is 96,989,200 written in scientific notation? A. 96.9892 × 10 to the 5 power B. 9.69892 × 10 to the 7 power C. 9.69892 × 10 to the 6 power D. 9.69892 × 10 to the 8 power
Answer: B. 9.69892 × 10^7
You'd have to move the imaginary decimal at the end of the number 96,989,200 seven times in order to get only one number that isn't zero before the decimal point.
Jan wants to lay sod on this lot. How
much sod does he need?
In sq.ft.
Type in your response.
Answer:
148.5 sq. ft.
Step-by-step explanation:
Since Jan wants to lay sod on it, Sod required will be equal to area of the lot.
Lot is in trapezium shape
area of trapezium is given by = 1/2(sum of parallel sides) height
parallel sides has length 15 and 18 feet
sum of parallel sides = (15+18) = 33
height = 9 feet
thus area of lot = 1/2(33)9 = 148.5
Thus, Jan will need 148.5 sq. ft of sod.
Where is the function decreasing?
Answer:
the function is decreasing at the domain values: (-∞,1)
Step-by-step explanation:
the function is decreasing in the domain values from -∞ until 1, the lowest point with no increase or decrease:
which in interval notation can be written as: (-∞,1)
I hope this helps, but if I didn't answer the question or answered wrongly I will try again.
Find the center and radius of x^2 – 18x + y^2 -10y = -6. part two write x2 – 18x + y2 -10y = -6 in standard form
Answer:
see explanation
Step-by-step explanation:
I will begin with part two, first.
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius.
Given
x² - 18x + y² - 10y = - 6
Using the method of completing the square
add ( half the coefficient of the x/ y terms )² to both sides
x² + 2(- 9)x + 81 + y² + 2(- 5)y + 25 = - 6 + 81 + 25, that is
(x - 9)² + (y - 5)² = 100 ← in standard form
with centre = (9, 5 ) and r = [tex]\sqrt{100}[/tex] = 10
The function graphed models the profits, P(c), in thousands of dollars a store earns as a function of the number of clerks, c, working that day. Which statements are true based on the model?
Answer:
Options (1), (2) and (5)
Step-by-step explanation:
Outcomes from the quadratic function given in the graph,
1). Negative y-intercept of the graph represents the loss to the store when x = 0 Or the loss when no clerk is working.
2). Peak of the parabola represents a point (vertex) with x-coordinate as number of clerks working = 4 and y-coordinate as maximum profit earned by the store = $400,000
3). x-intercept of the graph shows the number of clerks working at store when profit earned by the store is zero.
Graph reveals that the store is in loss when number of clerks is zero and 8.
Summarizing these outcomes from the graph,
Options (1), (2), (5) are the correct options.
The function graphed models the profits, P(c), in thousands of dollars a store earns as a function of the number of clerks, c, working that day.
Which statements are true based on the model?
Please answer the following questions
Step-by-step explanation:
sorry I can only explain as there are no labels to each diagram
The first diagram is single and can solved using triangular formular given as 1/2 ×base × height
A = 1/2 × 5 × 12
A = 30cm^2..
as for the second one...it consist of 2 diagrams which will be solved separately before adding ...it can simply be done using Pythagoras theorem..
To get the smaller part ...out tita is 45degrees while our adjacent is 4 and opposite is x we are to find x which is the height...
using SOH CAH TOA...
WE HAVE TAN45= opp/adj
Tan45= x/ 4
Tan 45 =1 ...so
1 = x/ 4
and x= 4 ...
so...having our height as 4 and base as 4 ..
Area of smaller triangle become 1/2 × 4 × 4
A = 8cm^2 ...
......SOLVING FOR THE SECOND DIAGRAM ..
WE HAVE the height as ( dotted spot + undotted spot ) = 4 + 4 = 8cm
and our base can be gotten from
Tan45 = opp / adj
1 = 8/x ..
x = 8cm ....so the base is 8 and the height is 8
..
The Area becomes 1/2 × 8×8 = 32cm ...
Total area becomes 32cm + 8cm = 40cm^2
S and T are two-digit positive integers that have the same digits but in reverse order. If the positive difference between S and T is less than 40, what is the greatest possible value of S minus T
Answer :Answer: Did you get helped on this one?
Step-by-step explanation: okay yup yup have a good day OKAY
Step-by-step explanation: HAVE A GOOD ONE OKAY
What is m∠A? please help
Answer: 50 degrees
Step-by-step explanation:
180-85=95
180-145=35
interior angle sum for a triangle is 180 degrees, so 180=95+35+a
m of angle A is 50 degrees
Complete the square to rewrite y = x2 + 8x+ 3 in vertex form, and then identify
the minimum y-value of the function.
Please answer ASAP!!!
====================================================
Work Shown:
y = x^2 + 8x + 3 is the same as y = 1x^2 + 8x + 3
It is in the form y = ax^2 + bx + c
a = 1
b = 8
c = 3
Plug the values of a and b into the formula below to get the x coordinate of the vertex (h,k)
h = -b/(2a)
h = -8/(2*1)
h = -8/2
h = -4
Plug this into the original equation to get its paired y value. This will get us the value of k
y = x^2 + 8x + 3
y = (-4)^2 + 8(-4) + 3
y = 16 - 32 + 3
y = -13
This is the smallest y output possible. Therefore it is the minimum. The minimum occurs at the vertex (h,k) = (-4, -13)
We know we are dealing with a minimum because a = 1 is positive forming a parabola that opens upward. If a < 0, then the parabola would open downward to yield a maximum.
If a watch store paid $125 per watch for a shipment of watches, and sold all but 15 watches from the shipment for $150 per watch, then, in terms of the number of watches in the shipment, y, what function describes the watch store’s profit, P, from the sales?
A) P(y) = 125(y – 15) – 150y
B) P(y) = 15(125 – y) – 150y
C) P(y) = 150(y – 15) – 125y
D) P(y) = 15(150 – y) – 125y
Answer: C) P(y) = 150(y – 15) – 125y
Step-by-step explanation:
Hi, to answer this question we have to write an equation:
Profit = revenue - cost
Cost: a watch store paid $125 per watch for a shipment of watches
Cost = 125 y
Where y is the number of watches in the shipment
Revenue: sold all but 15 watches from the shipment for $150 per watch
Revenue = 150(y-15)
Profit(y) = 150(y – 15) – 125y
So, the correct option is:
C) P(y) = 150(y – 15) – 125y
Feel free to ask for more if needed or if you did not understand something.
A group conducted a poll of 2022
likely voters just prior to an election. The results of the survey indicated that candidate A would receive 49
%
of the popular vote and candidate B would receive 46
%
of the popular vote. The margin of error was reported to be 5
%.
The group reported that the race was too close to call. Use the concept of a confidence interval to explain what this means.
Answer:
Step-by-step explanation:
number of likely voters = 2022
candidate A = 49%
candidate B = 46%
margin of error = 5%
using the concept of a confidence interval to explain
from the result of the poll conducted candidate A scored 49% of the votes while Candidate B scored 46% therefore the difference between the two voters is 3%.
also the margin of error is 5% which is higher than the 3% difference between the candidates. this margin error means that the 5% can vote for either candidate A or candidate B .which makes the results TOO CLOSE TO CALL
The sketch shows a triangle and its
exterior angles. Find the measure of
angle IAC.
Show all your calculations. Justify your
answer.
MDHA = 128"
MZHCA = 46°
Answer:
∠ IAC = 98°
Step-by-step explanation:
The sum of the exterior angle = 360°
∠ HCB = 180° - 46° = 134° ( adjacent angles )
Thus
∠ IAC + 128° + 134° = 360°, that is
∠ IAC + 262° = 360° ( subtract 262° from both sides )
∠ IAC = 98°
Answer:
<IAC=°98
Step-by-step explanation:
<DHA + CHA = 180 SUPPLEMENTARY ANGLE
128 +CHA=180
<CHA=52
<CHA + <HAC+<ACH=180 b/c it is triangle
46 +52+HAC= 180
<HAC= 180-98
<HAC= 82
<HAC + <IAC= 180. Supplementary angle
82+<IAC=180
<IAC=180-82
<IAC=98
solve the equation by using substitution method X + 2 Y equal to 8 equation first 2 x minus 2 equal to 10 equation second
Answer:
(6, 1)
Step-by-step explanation:
x + 2y = 8
1. subtract 2y to get x alone -- x = -2y + 8
2. insert (-2y + 8) as x
2x - 2 = 10
2(-2y + 8) -2 = 10
3. distribute the 2
-4y + 16 - 2 = 10
4. combine like terms
-4y + 14 = 10
5. subtract 14 from both sides
-4y = -4
6. divide by -4
y = 1
7. plug y into any of the two original equations
x + 2(1) = 8
8. simplify
x + 2 = 8
x = 6
9. check answer with second equation
2(6) - 2 = 10
12 - 2 = 10
. What is the solution set for
|k - 6|+17 = 30
A. (-19, 7}
B. (-7, 19)
C. (-19, 19)
D. {-41, 19)
Answer:
Hope this is correct and helpful
HAVE A GOOD DAY!
from the figure below identify a)Obtuse vertically opposite angles b) A pair of adjacent complementary angles c) a pair of equal supplementary angles d) a pair of unequal supplementary angles e) a pair of adjacent angles that don’t form a linear pair
Answer:
a) BOC and AOD
b) BOA and AOE
c) BOE and EOD
d) BOA and AOD
e) AOE and EOD
Step-by-step explanation:
An obtuse angle is an angle that has more than 90° and vertically opposite angles are angle formed by two lines crossed. So, Obtuse vertically opposite angles are BOC and AOD
Adjacent angles are angles in which one angle is beside the other and complementary angles are angles whose sum is equal to 90°, so, a pair of adjacent complementary angles are BOA and AOE.
Supplementary angles are angles whose sum is equal to 180°, so BOE and EOD are equal suplementary angles and BOA and AOD are unequal supplementary angles
Finally, AOE and EOD are adjacent angles that don’t form a linear pair.
Solve the inequality 47.75 + x Less-than-or-equal-to 50 to determine how much more weight can be added to Li’s suitcase without going over the 50-pound limit. What is the solution set?
x Less-than-or-equal-to 2.25
x Less-than-or-equal-to 2.75
x Greater-than-or-equal-to 2.25
x Greater-than-or-equal-to 2.75
Answer: x Less-than-or-equal-to 2.25
Step-by-step explanation:
The given inequality: 47.75 + x Less-than-or-equal-to 50.
To determine: How much more weight can be added to Li’s suitcase without going over the 50-pound limit.
i.e. inequality for x.
[tex]47.75+x\leq50[/tex]
Subtract 47.75 from both the sides, we get
[tex]x\leq50-47.75\\\\\Rightarrow\ x\leq2.25[/tex]
So, the solution set is "x Less-than-or-equal-to 2.25"
Hence, the correct answer is "x Less-than-or-equal-to 2.25."
Answer
A x <_ 2.25
Step-by-step explanation:
Three metal cubes with edges 6 cm, 8 cm and 12 cm respectively are melted down and made into a single cube. Find the length of one edge of the resulting cube.
Answer: 13.5
Step-by-step explanation:
Find the total volume of the melted cubes:
V₁ = 6³ V₂ = 8³ V₃ = 12³
= 216 = 512 = 1728
So the new cube will have a volume of 216 + 512 + 1728 = 2456
Volume of the cube = side³
2456 = s³
[tex]\sqrt[3]{2456} = s[/tex]
13.5 = s
Which expressions are equivalent to -56z+28 A 1/2*(-28z+14) B (-1.4z+0.7)\* 40 C (14-7z)*(-4) D (8z-4)*(-7) E-2(-28z-14)
Answer:
D (8z-4)*(-7)
Step-by-step explanation:
Given:
-56z+28
D (8z-4)*(-7)
-56z+28
Therefore, option D is the equivalent expression
Finding the equivalent expression by solving each option and eliminating the wrong option
A 1/2*(-28z+14)
=-28z+14/2
=-14z+7
B (-1.4z+0.7) /* 40
Two signs ( division and multiplication)
Using multiplication,we have
-56z+28
Using division, we have
0.035z + 0.0175
C (14-7z)*(-4)
-56+28z
D (8z-4)*(-7)
-56z+28
E -2(-28z-14)
56z+28
Answer:
B and D
trust me
Algebra 2 help needed
Answer:
D
Step-by-step explanation:
From the graph, the y-intercept of f(x) is 2 and since the y-intercept is when x = 0, it would fall into the x ≤ 1 category so the y-intercept of g(x) is 0 - 4 = -4. Since 2 > -4, the answer is D.
Which statements are true about the solution of 15 greater-than-or-equal-to 22 + x? Select three options. x greater-than-or-equal-to negative 7 x less-than-or-equal-to negative 7 The graph has a closed circle. –6 is part of the solution. –7 is part of the solution.
Answer:
[tex]x \leq -7[/tex]
The graph has a closed circle.
–7 is part of the solution.
Step-by-step explanation:
Given
[tex]15 \geq 22 + x[/tex]
Required
Select 3 options from the given list of options
[tex]15 \geq 22 + x[/tex]
Subtract 22 from both sides
[tex]15 - 22 \geq 22 - 22+ x[/tex]
[tex]-7 \geq x[/tex]
Swap positions of the expression; Note that the inequality sign will change
[tex]x \leq -7[/tex]
This means x less-than-or-equal-to negative 7
There are two options left to select;
The inequality sign in [tex]x \leq -7[/tex] implies that the graph has a close circle.
Inequality signs such as [tex]\leq[/tex] and [tex]\geq[/tex] signifies a close circle
There is only one option left to select;
Lastly;
Split the expression [tex]x \leq -7[/tex] into two
We have:
[tex]x < -7[/tex] or [tex]x = -7[/tex]
Because [tex]x = 7[/tex],
Then, -7 is also a part of the solution
Answer:
B) x less-than-or-equal-to negative 7
C) The graph has a closed circle.
E) –7 is part of the solution.
Step-by-step explanation:
Im not 100% sure but i am 95% sure they r
Instructions: Find FS if BS=16.
Answer:
48
Step-by-step explanation:
FB:BS=2:1
[tex]\frac{FB}{BS} =\frac{2}{1} \\add~1~to~both~sides\\\frac{FB}{BS} +1=\frac{2}{1} +1=3\\\frac{FB+BS}{BS} =3\\\frac{FS}{BS} =3\\FS=3 \times~BS\\FS=3 \times~16=48[/tex]
Answer:
48
Step-by-step explanation:
The athletic club at school sold raffle tickets to raise money for equipment. The club sold a total of 1050 tickets,515 to teachers and 235 tickets to staff. If the winning ticket was picked at random what is the probability of the teacher or other staff member?
Answer:
Probability of the teacher or other staff is 0.7143
Step-by-step explanation:
pr(teacher or other staff) = pr(teacher) + pr(other staff) - pr(teacher and other staff)
Total number of tickets = 1050
Number of tickets sold to teachers = 515
Number of tickets sold to other staff = 235
pr(teacher) = [tex]\frac{515}{1050}[/tex]
= 103 [tex]\frac{2}{10}[/tex]
= 0.4905
pr(other staff) = [tex]\frac{235}{1050}[/tex]
= 47 [tex]\frac{2}{10}[/tex]
= 0.2238
Since the picking of the wining ticket is mutually exclusive, then;
pr(teacher and other staff) = 0
Thus,
pr(teacher or other staff) = 0.4905 + 0.2238 - 0
= 0.7143
La trayectoria de cierto satelitese ajusta ala grafica de la funcionf(x) igual6x al cuadradomenos 12donde x representael tiempo en días y f(x9 el recorrido en kilometroscuantos kilómetros habrá recorridoel sateliteal cabo de diez días desde su lanzamiento
Answer:
588 kilómetros
Step-by-step explanation:
La función con la que estamos trabajando según la pregunta es;
F (x) = 6x ^ 2 -12
Ahora, la pregunta que simplemente nos hace es encontrar el valor de F (x) dado que x = 10
Entonces, lo simple que hacemos aquí es hacer una sustitución de x = 10 Eso sería;
F (10) = 6 (10) ^ 2 - 12 = 600-12 = 588