What is the solution to the quadratic equation x2 + x - 30 = 0?

Answers

Answer 1

Answer:

try 3x=30 or 10

Step-by-step explanation:


Related Questions

plzzz help 6≥ -6(a+2)

Answers

Answer:

a[tex]\geq[/tex]-3

Step-by-step explanation:

Answer:

-3  ≤  a

Step-by-step explanation:

6≥ -6(a+2)

Divide each side by -6, remembering to flip the inequality

6/-6 ≤ -6/-6(a+2)

-1 ≤ (a+2)

Subtract 2 from each side

-1 -2  ≤  a+2-2

-3  ≤  a

A subcommittee is randomly selected from a committee of eight men and seven women. What is the probability that all three people on the subcommittee are men

Answers

Answer:

The probability that all three people on the subcommittee are men

= 20%

Step-by-step explanation:

Number of members in the committee = 15

= 8 men + 7 women

The probability of selecting a man in the committee

= 8/15

= 53%

The probability of selecting three men from eight men

= 3/8

= 37.5%

The probability that all three people on the subcommittee are men

= probability of selecting a man multiplied by the probability of selecting three men from eight men

= 53% x 37.5%

= 19.875%

= 20% approx.

This is the same as:

The probability of selecting 3 men from the 15 member-committee

= 3/15

= 20%

Linda, Reuben, and Manuel have a total of $70 in their wallets. Reuben has $10 more than Linda. Manuel has 2 times what Linda has. How much does each have? Amount in Linda's wallet: $ Amount in Reuben's wallet: $ Amount in Manuel's wallet:

Answers

Answer:

Linda has $15Reuben has $25Manuel has $30

Step-by-step explanation:

Together, they have 4 times what Linda has, plus $10. So, Linda has 1/4 of $60 = $15.

  Linda has $15

  Reuben has $25 . . . . . . $10 more than Linda

  Manuel has $30 . . . . . . twice what Linda has

What is the slope of the line shown below (3,9) (1,1)

Answers

Answer:

slope m = 4

Step-by-step explanation:

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points

[tex](3;\ 9)\to x_1=3;\ y_1=9\\(1;\ 1)\to x_2=1;\ y_2=1[/tex]

Substitute:

[tex]m=\dfrac{1-9}{1-3}=\dfrac{-8}{-2}=4[/tex]

Answer:

m=4

Step-by-step explanation:

Slope can be found using the following formula:

[tex]m=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

where [tex](x_{1},y_{1})[/tex] and [tex](x_{2},y_{2})[/tex] are points on the line.

We are given the points (3,9) and (1,1). Therefore,

[tex]x_{1}=3\\y_{1}=9 \\x_{2}=1\\y_{2}=1[/tex]

Substitute each value into the formula.

[tex]m=\frac{1-9}{1-3}[/tex]

Subtract in the numerator first.

[tex]m=\frac{-8}{1-3}[/tex]

Subtract in the denominator.

[tex]m=\frac{-8}{-2}[/tex]

Divide.

[tex]m=4[/tex]

The slope of the line is 4.

a 12- inch ruler is duvided into 3 parts. the large part is 3 times longer than the small. the meddium part is times longer than then small, the medium part is 2 times long as the smallest .how long is the smallest part?

Answers

Answer:

2 inches

Step-by-step explanation:

x= smallest

3x=largest

2x=medium

x+3x+2x=12

6x=12

x=2

so smallest is 2

largest is 6 (3x)

medium is 4 (2x)

2+6+4=12

Please help asap.
A pizza is cut into six unequal slices (each cut starts at the center). The largest slice measures $90$ degrees If Larry eats the slices in order from the largest to the smallest, then the number of degrees spanned by a slice decreases at a constant rate. (So the second slice is smaller than the first by a certain number of degrees, then the third slice is smaller than the second slice by that same number of degrees, and so on.) What is the degree measure of the fifth slice Larry eats?

Answers

Answer:

The answer is 5th angle = [tex]\bold{42^\circ}[/tex]

Step-by-step explanation:

Given that pizza is divided into six unequal slices.

Largest slice has an angle of [tex]90^\circ[/tex].

He eats the pizza from largest to smallest.

Let the difference in angles in each slice = [tex]d^\circ[/tex]

1st angle = [tex]90^\circ[/tex]

2nd angle = 90-d

3rd angle = 90-d-d = 90 - 2d

4th angle = 90-2d-d = 90 - 3d

5th angle = 90-3d-d = 90 - 4d

6th angle = 90-4d -d = 90 - 5d

We know that the sum of all the angles will be equal to [tex]360^\circ[/tex] (The sum of all the angles subtended at the center).

i.e.

[tex]90+90-d+90-2d+90-3d+90-4d+90-5d=360\\\Rightarrow 540 - 15d = 360\\\Rightarrow 15d = 540 -360\\\Rightarrow 15d = 180\\\Rightarrow d = 12^\circ[/tex]

So, the angles will be:

1st angle = [tex]90^\circ[/tex]

2nd angle = 90- 12 = 78

3rd angle = 78-12 = 66

4th angle = 66-12 = 54

5th angle = 54-12 = 42

6th angle = 42 -12 = 30

So, the answer is 5th angle = [tex]\bold{42^\circ}[/tex]

the value of 4^-1+8^-1÷1/2/3^3​

Answers

Answer:

1.9375.

Step-by-step explanation:

To solve this, we must use PEMDAS.

The first things we take care of are parentheses and exponents.

Since there are no parentheses, we do exponents.

4^-1+8^-1÷1/2/3^3​

= [tex]\frac{1}{4} +\frac{1}{8} / 1/ 2/ 27[/tex]

= 1/4 + (1/8) / 1 * (27 / 2)

= 1/4 + (27 / 8) / 2

= 1/4 + (27 / 8) * (1 / 2)

= 1/4 + (27 / 16)

= 4 / 16 + 27 / 16

= 31 / 16

= 1.9375.

Hope this helps!


An experiment involves 17 participants. From these, a group of 3 participants is to be tested under a special condition. How many groups of 3 participants can
be chosen, assuming that the order in which the participants are chosen is irrelevant?

Answers

Answer: 680

Step-by-step explanation:

When order doesn't matter,then the number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Given: Total participants = 17

From these, a group of 3 participants is to be tested under a special condition.

Number of groups of 3 participants chosen = [tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\[/tex]

[tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\\\\=\dfrac{17\times16\times15\times14!}{3\times2\times14!}\\\\=680[/tex]

Hence, there are 680 groups of 3 participants can  be chosen,.

Assume that there is a 6% rate of disk drive failure in a year. a. If all your computer data is stored on a hard disk drive with a copy stored on a second hard disk drive, what is the probability that during a year, you can avoid catastrophe with at least one working drive? b. If copies of all your computer data are stored on independent hard disk drives, what is the probability that during a year, you can avoid catastrophe with at least one working drive? four a. With two hard disk drives, the probability that catastrophe can be avoided is . (Round to four decimal places as needed.) b. With four hard disk drives, the probability that catastrophe can be avoided is . (Round to six decimal places as needed.)

Answers

Answer: 0.9964

Step-by-step explanation:

Consider,

P (disk failure) = 0.06

q = 0.06

p = 1- q

p = 1- 0.06,

p = 0.94

Step 2

Whereas p represents the probability that a disk does not fail. (i.e. working entire year).

a)

Step 3

a)

n = 2,

let x be a random variable for number...

Continuation in the attached document

given sin theta=3/5 and 180°<theta<270°, find the following: a. cos(2theta) b. sin(2theta) c. tan(2theta)​

Answers

I hope this will help uh.....

For each of the following research scenarios, decide whether the design uses a related sample. If the design uses a related sample, identify whether it uses matched subjects or repeated measures. (Note: Researchers can match subjects by matching particular characteristics, or, in some cases, matched subjects are naturally paired, such as siblings or married couples.)
You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.
The design described ___________a, b, or c_________________________.
a. uses a related sample - repeated measures
b. uses a related sample - matched subjects
c. does not use a related sample
John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample to lonely people to the sleep quality of a random sample of nonlonely people.
The design described ______a, b, or c_________________________.
a. does not use a related sample
b. uses a related sample (repeated measures)
c. uses a related sample (matched subjects)

Answers

Answer:

a. uses a related sample - repeated measures

c. uses a related sample (matched subjects)

Step-by-step explanation:

A) You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.  

The design described uses a related sample - repeated measures because the scores were compared on the Hoarding Severity scale before and after the treatment.

B) John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample of lonely people to the sleep quality of a random sample of nonlonely people.

The design described uses a related sample (matched subjects)

which quadratic function in standard form has the value a= -3.5, b=2.7, and c= -8.2?

Answers

Answer:

y = -3.5x² + 2.7x -8.2

Step-by-step explanation:

the quadratic equation is set up as a² + bx + c, so just plug in the values

Answer:

[tex]-3.5x^2 + 2.7x -8.2[/tex]

Step-by-step explanation:

Quadratic functions are always formatted in the form [tex]ax^2+bx+c[/tex].

So, we can use your values of a, b, and c, and plug them into the equation.

A is -3.5, so the first term becomes [tex]-3.5x^2[/tex].

B is 2.7, so the second term is [tex]2.7x[/tex]

And -8.2 is the C, so the third term is [tex]-8.2[/tex]

So we have [tex]-3.5x^2+2.7x-8.2[/tex]

Hope this helped!

Find the area of the surface given by z = f(x, y) that lies above the region R. f(x, y) = 64 + x2 − y2 R = {(x, y): x2 + y2 ≤ 64}

Answers

The area of the surface above the region R is 4096π square units.

Given that:

The function: [tex]f(x, y) = 64 + x^2 - y^2[/tex]

The region R is the disk with a radius of 8 units [tex]x^2 + y^2 \le 64[/tex].

To find the area of the surface given by z = f(x, y) that lies above the region R, to calculate the double integral over the region R of the function f(x, y) with respect to dA.

The integral for the area is given by:

[tex]Area = \int\int_R f(x, y) dA[/tex]

To evaluate this integral, we need to set up the limits of integration for x and y over the region R, which is the disk cantered at the origin with a radius of 8 units.

Using polar coordinates, we can parameterize the region R as follows:

x = rcos(θ)

y = rsin(θ)

where r goes from 0 to 8, and θ goes from 0 to 2π.

Now, rewrite the integral in polar coordinates:

[tex]Area =\int\int_R f(x, y) dA\\Area = \int_0 ^{2\pi} \int_0^8(64 + r^2cos^2(\theta) - r^2sin^2(\theta)) \times r dr d \theta[/tex]

Now, we can integrate with respect to r first and then with respect to θ:

[tex]Area = \int_0^{2\pi} \int_0^8] (64r + r^3cos^2(\theta) - r^3sin^2(\theta)) dr d \theta[/tex]

Integrate with respect to r:

[tex]Area = \int_0^{2\pi}[(32r^2 + (1/4)r^4cos^2(\theta) - (1/4)r^4sin^2(\theta))]_0^8 d \theta\\Area = \int_0^{2\pi} (2048 + 256cos^2(\theta) - 256sin^2(\theta)) d \theta[/tex]

Now, we can integrate with respect to θ:

[tex]Area = [2048\theta + 128(sin(2\theta) + \theta)]_0 ^{2\pi}[/tex]

Area = 2048(2π) + 128(sin(4π) + 2π) - (2048(0) + 128(sin(0) + 0))

Area = 4096π + 128(0) - 0

Area = 4096π square units

So, the area of the surface above the region R is 4096π square units.

Learn more about Integration here:

https://brainly.com/question/31744185

#SPJ4

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

8lb of the cheaper Candy

17.5lb of the expensive candy

Step-by-step explanation:

Let the cheaper candy be x

let the costly candy be y

X+y = 25.5....equation one

2.2x +7.3y = 25.5(5.7)

2.2x +7.3y = 145.35.....equation two

X+y = 25.5

2.2x +7.3y = 145.35

Solving simultaneously

X= 25.5-y

Substituting value of X into equation two

2.2(25.5-y) + 7.3y = 145.35

56.1 -2.2y +7.3y = 145.35

5.1y = 145.35-56.1

5.1y = 89.25

Y= 89.25/5.1

Y= 17.5

X= 25.5-y

X= 25.5-17.5

X= 8

If a pair of dice are rolled,
what is the probability that at least
one die shows a 5?

Answers

Answer:

11/36

Step-by-step explanation:

Find the probability that neither dice shows a 5 (also means the dice can show any number except 5- where there are 5 possible choices out of 6):

= 5/6 x 5/6

=25/36

If we subtract the probability that neither dice shows a 5, we can obtain the probability that at least 1 dice shows a 5- (either one of them is 5, or both of them is 5)

1- 25/36

=11/36

A regression model between sales (y in $1000), unit price (x1 in dollars), and television advertisement (x2 in dollars) resulted in the following function: Ŷ = 7 - 3x1 + 5x2 For this model, SSR = 3500, SSE = 1500, and the sample size is 18. If we want to test for the significance of the regression model, the critical value of F at the 5% level of significance is a. 3.29. b. 3.24. c. 3.68. d. 4.54.

Answers

Answer: C. 3.68

Step-by-step explanation:

Given that;

Sample size n = 18

degree of freedom for numerator k = 2

degree of freedom for denominator = n - k - 1 = (18-2-1) = 15

level of significance = 5% = 5/100 = 0.05

From the table values,

the critical value of F at 0.05 significance level with (2, 18) degrees of freedom is 3.68

Therefore option C. 3.68 is the correct answer

The automatic opening device of a military cargo parachute has been designed to open when the parachute is 155 m above the ground. Suppose opening altitude actually has a normal distribution with mean value 155 and standard deviation 30 m. Equipment damage will occur if the parachute opens at an altitude of less than 100 m. What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes

Answers

Answer:

the probability that one parachute of the  five parachute is damaged is 0.156

Step-by-step explanation:

From the given information;

Let consider X to be the altitude above the  ground that a parachute opens

Then; we can posit that the probability that the parachute is damaged is:

P(X ≤ 100 )

Given that the population mean μ = 155

the standard deviation σ = 30

Then;

[tex]P(X \leq 100 ) = ( \dfrac{X- \mu}{\sigma} \leq \dfrac{100- \mu}{\sigma})[/tex]

[tex]P(X \leq 100 ) = ( \dfrac{X- 155}{30} \leq \dfrac{100- 155}{30})[/tex]

[tex]P(X \leq 100 ) = (Z \leq \dfrac{- 55}{30})[/tex]

[tex]P(X \leq 100 ) = (Z \leq -1.8333)[/tex]

[tex]P(X \leq 100 ) = \Phi( -1.8333)[/tex]

From standard normal tables

[tex]P(X \leq 100 ) = 0.0334[/tex]

Hence; the probability of the given parachute damaged is 0.0334

Let consider Q to be the dropped parachute

Given that the number of parachute be n= 5

The probability that the parachute opens in each trail be  p = 0.0334

Now; the random variable Q follows the binomial distribution with parameters n= 5 and p = 0.0334

The probability mass function is:

Q [tex]\sim[/tex] B(5, 0.0334)

Similarly; the event that one parachute is damaged is :

Q ≥ 1

P( Q ≥ 1 ) = 1 - P( Q < 1 )

P( Q ≥ 1 ) = 1 - P( Y = 0 )

P( Q ≥ 1 ) = 1 - b(0;5; 0.0334 )

P( Q ≥ 1 ) = [tex]1 -(^5_0)* (0.0334)^0*(1-0.0334)^5[/tex]

P( Q ≥ 1 ) = [tex]1 -( \dfrac{5!}{(5-0)!}) * (0.0334)^0*(1-0.0334)^5[/tex]

P( Q ≥ 1 ) = 1 -  0.8437891838

P( Q ≥ 1 ) = 0.1562108162

P( Q ≥ 1 ) [tex]\approx[/tex] 0.156

Therefore; the probability that one parachute of the  five parachute is damaged is 0.156

Find the common ratio of the following geometric sequence:
11,55, 275, 1375, ....

Answers

Answer:

Hey there!

The common ratio is 5, because you multiply by 5 to get from one term to the next.

Hope this helps :)

Answer:

5

Step-by-step explanation:

To find the common ratio take the second term and divide by the first term

55/11 = 5

The common ratio would be 5

A car travels 133 mi averaging a certain speed. If the car had gone 30 mph​ faster, the trip would have taken 1 hr less. Find the​ car's average speed.

Answers

Answer:

49.923 mph

Step-by-step explanation:

we know that the car traveled 133 miles in h hours at an average speed of x mph.

That is, xh = 133.

We can also write this in terms of hours driven: h = 133/x.

 

If x was 30 mph faster, then h would be one hour less.

That is, (x + 30)(h - 1) = 133, or h - 1 = 133/(x + 30).

We can rewrite the latter equation as h = 133/(x + 30) + 1

We can then make a system of equations using the formulas in terms of h to find x:

h = 133/x = 133/(x + 30) + 1

133/x = 133/(x + 30) + (x + 30)/(x + 30)

133/x = (133 + x + 30)/(x + 30)

133 = x*(133 + x + 30)/(x + 30)

133*(x + 30) =  x*(133 + x + 30)

133x + 3990 = 133x + x^2 + 30x

3990 = x^2 + 30x

x^2 + 30x - 3990 = 0

Using the quadratic formula:

x = [-b ± √(b^2 - 4ac)]/2a  

= [-30 ± √(30^2 - 4*1*(-3990))]/2(1)  

= [-30 ± √(900 + 15,960)]/2

= [-30 ± √(16,860)]/2

= [-30 ± 129.846]/2

= 99.846/2  -----------  x is miles per hour, and a negative value of x is neglected, so we'll use the positive value only)

= 49.923

Check if the answer is correct:

h = 133/49.923 = 2.664, so the car took 2.664 hours to drive 133 miles at an average speed of 49.923 mph.

If the car went 30 mph faster on average, then h = 133/(49.923 + 30) = 133/79.923 = 1.664, and 2.664 - 1 = 1.664.

Thus, we have confirmed that a car driving 133 miles at about 49.923 mph would have arrive precisely one hour earlier by going 30 mph faster

Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value

Answers

Answer:

z(c)  = - 1,64

We reject the null hypothesis

Step-by-step explanation:

We need to solve a proportion test ( one tail-test ) left test

Normal distribution

p₀ = 63 %

proportion size  p = 51 %

sample size  n = 114

At 5% level of significance   α = 0,05, and with this value we find in z- table z score of z(c) = 1,64  ( critical value )

Test of proportion:

H₀     Null Hypothesis                        p = p₀

Hₐ    Alternate Hypothesis                p < p₀

We now compute z(s) as:

z(s) =  ( p - p₀ ) / √ p₀q₀/n

z(s) =( 0,51 - 0,63) / √0,63*0,37/114

z(s) =  - 0,12 / 0,045

z(s) = - 2,66

We compare z(s) and z(c)

z(s) < z(c)      - 2,66 < -1,64

Therefore as z(s) < z(c)  z(s) is in the rejection zone we reject the null hypothesis

Refer to the following wage breakdown for a garment factory:
Hourly Wages Number of employees
$4 up to $7 18
7 up to 10 36
10 up to 13 20
13 up to 16 6
What is the class interval for the preceding table of wages?
A. $4
B. $2
C. $5
D. $3

Answers

Answer:

The class interval is $3

Step-by-step explanation:

The class interval is simply the difference between the lower or upper class boundary or limit  of a class and the lower or upper class boundary or limit of the next class.

In this case for the class

$4 up to $7 18 and

$7 up to $10 36

The lower class boundary of the first class is $4 and the lower class boundary of the second class is $7

Hence the class interval = $7-$4= $3

You are selling your product at a three-day event. Each day, there is a 60% chance that you will make money. What is the probability that you will make money on the first two days and lose money on the third day

Answers

Answer:

The required probability = 0.144

Step-by-step explanation:

Since the probability of making money is 60%, then the probability of losing money will be 100-60% = 40%

Now the probability we want to calculate is the probability of making money in the first two days and losing money on the third day.

That would be;

P(making money) * P(making money) * P(losing money)

Kindly recollect;

P(making money) = 60% = 60/100 = 0.6

P(losing money) = 40% = 40/100 = 0.4

The probability we want to calculate is thus;

0.6 * 0.6 * 0.4 = 0.144

Sam weights 51kg. What is this weight to the nearest stone?. Use this conversion, 1kg= 2.2 pounds and 14 pounds= 1 stone

Answers

Sam's weight to the nearest stone is equal to 8.0 stone.

Given the following data:

Sam's weight = 51 kg.1 kg = 2.2 pounds.14 pounds = 1 stone.

To determine Sam's weight to the nearest stone:

How to convert the units of measurement.

In this exercise, you're required to determine Sam's weight to the nearest stone. Thus, we would convert his weight in kilograms to pounds and lastly to stone as follows:

Conversion:

1 kg = 2.2 pounds.

51 kg = [tex]51 \times 2.2[/tex] = 112.2 pounds.

Next, we would convert the value in pounds to stone:

14 pounds = 1 stone.

112.2 pounds = X stone.

Cross-multiplying, we have:

[tex]14X = 112.2\\\\X=\frac{112.2}{14}[/tex]

X = 8.01 8.0 stone.

Read more on weight here: brainly.com/question/13833323

In randomized, double-blind clinical trials of Prevnar, infants were randomly divided into two groups. Subjects in group 1 received Prevnar, while subjects in group 2 received a control vaccine. Aft er the second dose, 137 of 452 subjects in the experimental group (group 1) experienced drowsiness as a side effect. After the second dose, 31 of 99 subjects in the control group (group 2) experienced drowsiness as a side effect. Does the evidence suggest that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2 at the αα=0.05 level of significance?

Answers

Answer:

Step-by-step explanation:

From the summary of the given data;

After the second dose, 137 of 452 subjects in the experimental group (group 1) experienced drowsiness as a side effect.

Let consider [tex]p_1[/tex] to be the probability of those that experience the drowsiness in group 1

[tex]p_1[/tex] = [tex]\dfrac{137}{452}[/tex]

[tex]p_1[/tex] = 0.3031

After the second dose, 31 of 99 subjects in the control group (group 2) experienced drowsiness as a side effect.

Let consider [tex]p_2[/tex] to be the probability of those that experience the drowsiness in group 1

[tex]p_2[/tex] = [tex]\dfrac{31}{99}[/tex]

[tex]p_2[/tex] = 0.3131

The objective is to be able to determine if the evidence suggest that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2 at the α=0.05 level of significance.

In order to do that; we have to state the null and alternative hypothesis; carry out our test statistics and make conclusion based on it.

So; the null and the  alternative hypothesis can be computed as:

[tex]H_o :p_1 =p_2[/tex]

[tex]H_a= p_1<p_2[/tex]

The test statistics is computed as follows:

[tex]Z = \dfrac{p_1-p_2}{\sqrt{p_1 *\dfrac{1-p_1}{n_1} +p_2 *\dfrac{1-p_2}{n_2}} }[/tex]

[tex]Z = \dfrac{0.3031-0.3131}{\sqrt{0.3031 *\dfrac{1-0.3031}{452} +0.3131 *\dfrac{1-0.3131}{99}} }[/tex]

[tex]Z = \dfrac{-0.01}{\sqrt{0.3031 *\dfrac{0.6969}{452} +0.3131 *\dfrac{0.6869}{99}} }[/tex]

[tex]Z = \dfrac{-0.01}{\sqrt{0.3031 *0.0015418 +0.3131 *0.0069384} }[/tex]

[tex]Z = \dfrac{-0.01}{\sqrt{4.6731958*10^{-4}+0.00217241304} }[/tex]

[tex]Z = \dfrac{-0.01}{0.051378 }[/tex]

Z = - 0.1946

At the level of significance ∝ = 0.05

From the standard normal table;

the critical value for Z(0.05) = -1.645

Decision Rule: Reject the null hypothesis if Z-value is lesser than the critical value.

Conclusion: We do not reject the null hypothesis because the Z value is greater than the critical value. Therefore, we cannot conclude that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2

Crime and Punishment: In a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.
(A) If one of the study subjects is randomly selected, find the probability of getting someone who was not sent to prison.
(B) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, find the probability that this person was not sent to prison.

Answers

Answer:

(a) The probability of getting someone who was not sent to prison is 0.55.

(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is 0.63.

Step-by-step explanation:

We are given that in a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.

Let the probability that subjects studied were sent to prison = P(A) = 0.45

Let G = event that subject chose to plead guilty

So, the probability that the subjects chose to plead guilty given that they were sent to prison = P(G/A) = 0.40

and the probability that the subjects chose to plead guilty given that they were not sent to prison = P(G/A') = 0.55

(a) The probability of getting someone who was not sent to prison = 1 - Probability of getting someone who was sent to prison

      P(A') = 1 - P(A)

               = 1 - 0.45 = 0.55

(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is given by = P(A'/G)

We will use Bayes' Theorem here to calculate the above probability;

    P(A'/G) =  [tex]\frac{P(A') \times P(G/A')}{P(A') \times P(G/A') +P(A) \times P(G/A)}[/tex]      

                 =  [tex]\frac{0.55 \times 0.55}{0.55\times 0.55 +0.45 \times 0.40}[/tex]

                 =  [tex]\frac{0.3025}{0.4825}[/tex]

                 =  0.63

let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has

Answers

Answer:

The answer is below

Step-by-step explanation:

A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?

Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:

[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]

a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]

b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.

That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757

c) Let b be the amount of raw sugar should be stocked for the plant each day.

P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]

But P(x > a) = 0.05

Therefore:

[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]

a  ≅ 12

A drawer contains 3 white shirts, 2 blue shirts, and 5 gray shirts. A shirt is randomly
selected from the drawer and set aside. Then another shirt is randomly selected from the
drawer.
What is the probability that the first shirt is white and the second shirt is gray?

Answers

Answer:

Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]

Step-by-step explanation:

Given that

3 white, 2 blue and 5 gray shirts are there.

To find:

Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = ?

Solution:

Here, total number of shirts = 3+2+5 = 10

First of all, let us learn about the formula of an event E:

[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]

[tex]P(First\ White) = \dfrac{\text{Number of white shirts}}{\text {Total number of shirts left}}[/tex]

[tex]P(First\ White) = \dfrac{3}{10}[/tex]

Now, this shirt is set aside.

So, total number of shirts left are 9 now.

[tex]P(First\ White\ and\ second\ gray) = P(First White) \times P(Second\ Gray)\\\Rightarrow P(First\ White\ and\ second\ gray) = P(First White) \times \dfrac{\text{Number of gray shirts}}{\text{Total number of shirts left}}\\\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{3}{10} \times \dfrac{5}{9}\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{1}{2} \times \dfrac{1}{2}\\\Rightarrow P(First\ White\ and\ second\ gray) = \bold{\dfrac{1}{4} }[/tex]

So, the answer is:

Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]

The following data values represent a sample. What is the variance of the
sample? X = 8. Use the information in the table to help you.
х
12
9
11
5
3
(x; - x)²
16
1
9
9
25

Answers

Answer:

The variance of the data is 15.

σ² = 15

Step-by-step explanation:

The mean is given as

X = 8

х        |    (x - X)    |    (x - X) ²

12       |        4         |    16

9        |        1         |     1    

11        |        3         |    9

5       |        -3        |    9

3       |        -5        |    25

The variance is given by

[tex]\sigma^2 = \frac{1}{n-1} \sum (x - X)^2[/tex]

[tex]\sigma^2 = \frac{1}{5 - 1} (16 + 1 + 9 + 9 +25) \\\\\sigma^2 = \frac{1}{4} ( 16 + 1 + 9 + 9 +25) \\\\\sigma^2 = \frac{1}{4} (60) \\\\\sigma^2 = 15[/tex]

Therefore, the variance of the data is 15.

In which table does y vary inversely with x? A. x y 1 3 2 9 3 27 B. x y 1 -5 2 5 3 15 C. x y 1 18 2 9 3 6 D. x y 1 4 2 8 3 12

Answers

Answer:

In Table C, y vary inversely with x.

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Step-by-step explanation:

We are given four tables and asked to find out in which table y vary inversely with x.

We know that an inverse relation has a form given by

y = k/x

xy = k

where k must be a constant

Table A:

x     |      y

1     |      3

2     |     9

3     |    27

1×3 = 3

2×9 = 18

3×27 = 81

3 ≠ 18 ≠ 81

Hence y does not vary inversely with x.

Table B:

x     |      y

1     |     -5

2     |     5

3     |    15

1×-5 = -5

2×5 = 10

3×15 = 45

-5 ≠ 10 ≠ 45

Hence y does not vary inversely with x.

Table C:

x     |      y

1     |      18

2     |     9

3     |     6

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Hence y vary inversely with x.

Table D:

x     |      y

1     |      4

2     |     8

3     |    12

1×4 = 4

2×8 = 16

3×12 = 36

4 ≠ 16 ≠ 36

Hence y does not vary inversely with x.

Verify the Cauchy-Schwarz Inequality and the triangle inequality for the given vectors and inner product.

p(x)=5x , q(x)= -2x^2+1, (p,q)= aobo+ a1b1+ a2b2

Required:
a. Compute (p,q)
b. Compute ||p|| and ||q||

Answers

Answer:

To verify the Cauchy-Bunyakovsky-Schwarz Inequality, (p,q) must be less than (or equal to) ||p|| • ||q||

(1,1,1) is not equal to (-10,5)

Step-by-step explanation:

a°b° + a^1b^1 + a^2b^2 < 5x (-2x^2 + 1)

Any algebra raised to the power of zero is equal to 1.

a°b° = 1 × 1 = 1

1 + ab + a^2b^2 < -10x^3 + 5x

The vectors:

(1,1,1) < (-10,5)

This verifies the Cauchy-Schwarz Inequality

Triangle Inequality states that for any triangle, the sum of the lengths of two sides must be greater than or equal to the length of the third side.

Other Questions
Consider the following information for Dave Company for the month of May: Direct materials (DM) purchased and used 86,000 gallons Total quantity of DM budgeted to be used in May production 81,400 gallons Actual cost of DM purchased and used in May $230,200 Unfavorable DM quantity variance $12,880 What is the DM price variance in May In five (5)ways, examine the validity of the statement that a country without a constitution has no future for its populace, especially the youth. Banita has a piece of string that is One-tenth times 7 inches long. Which fraction is equal to the length of Banitas string? John needs to produce a scale diagram of a bedroom using a scale of 1:40. The length of the room is 3.4 metres. What is the length on the diagram? _____ cm The graphed line shown below is y=-3x+6...Which equation, when graphed with the given equation, will form a system that has no solution? intext:"The adjusting entry at the end of an accounting period to record the unpaid salaries of employees for work provided is" an ice sheet 5m thick covers a lake that is 20m deep. at what is the temperature of the water at the bottom of the lake? How did World War I relate to the art movements of Dadaism and Surrealism?O A. Dadaists and Surrealists embraced silliness and the subconsciousand rejected the reason and rationalism they felt had led to warand mass destruction,O B. Dadaists and Surrealists used broken and reassembled shapes toexpress their frustrations with the social instability caused byWorld War I.O C. Dadaists and Surrealists expressed antiwar sentiment by usinglifelike imagery in order to portray the horror and chaos of war asrealistically as possible.O D. Dadaists and Surrealists captured the meanings of the feelingsand emotions revealed by war as opposed to focusing on thephysical events of World War I. Enter the correct answer in the box by replacing the values of a and b. f(x) = a(b)^x Claire and Elena are going on a road trip with their families. They plan to meet at Elena's house and then follow each other. Claire meets Elena at her house at 10 a.m. Elena is held up by chores and has to leave late, but Claire continues on. The total distance traveled by Claire and Elena is represented on the graphs below. Compare the two graphs and choose the correct answer. A. The distance covered by Claire prior to 10 a.m. was 120 miles more than the distance covered by Elena prior to 10 a.m. After leaving Elena's house, Claire was on the road two hours more than Elena. B. The distance covered by Claire prior to 10 a.m. was 60 miles more than the distance covered by Elena prior to 10 a.m. After leaving Elena's house, Elena was on the road one hour more than Claire. C. The distance covered by Claire prior to 10 a.m. was 120 miles more than the distance covered by Elena prior to 10 a.m. After leaving Elena's house, Elena was on the road two hours more than Claire. D. The distance covered by Claire prior to 10 a.m. was 60 miles more than the distance covered by Elena prior to 10 a.m. After leaving Elena's house, Claire was on the road one hour more than Elena. Television changed American society as Americans relied on TV for entertainment and national and global news. T or F Identify any outlier(s) in the data. {52, 61, 42, 46, 50, 51, 49, 44, 40, 66, 53, 67, 45, 64, 60, 69} Mr. Jones has a salary of $75,000 and $5,000 in dividends, for a total adjusted gross income of $80,000. He also has two real estate investments that he acquired this year: (a) a limited partnership with losses of $4,000, and (b) a real estate project in which he actively participates and owns 15%, with his share of losses equal to $15,000. How much of his losses can he deduct from the income on a joint return Mason Automotive is an automotive parts company that sells car parts and provides car service to customers. This is Mason's first year of operations and they have hired you as their CPA to prepare the income statement and balance sheet for their company. As such, January 1st , 2018 was the first day that Mason was in business. For the month of January, record all the necessary journal entries for transactions that occurred during the month. In addition, please prepare all necessary adjusting journal entries as of the end of the month.From the information below, please fill out the "journal entries tab" for all the necessary journal entries. Furthermore, please complete the "T-Accounts" tab for the individual accounts so that the trial balance tab can be updated (automatically). I prepared the first journal entry for you in the journal entries tab and T-Accounts tab. Ensure you label the entries similar to how I have shown in Entry #1.Once all entries are recored and the T-Accounts tab is updated, please prepare the financial statements (income statement and balance sheet) for the month of January.Journal Entry #1Mason Automotive sells 10,000,000 shares at $5 par for $30 on January 1st, 2018.Journal Entry #2Ed Mason, the CEO, hires 3,000 employees, whom will receive a combined salary of $12 Million on a monthly basis. The employees started on January 1st and will be paid for the month of January on February 5th. Employee's withholdings are as follows: 10% for federal income taxes 5% for state income taxes and 7% for FICA. Record the necessary entry as of January 1st, 2018.Journal Entry #3Mason Automotive issues a bond payable on January 1st, 2018 with a face value of $200 Million at 102. The bond will have a useful life of 5 years and interest is paid out monthly based on a rate of 5% APR. Record the necessary journal entry as of January 1st 2018.(Note: Assume straight line amortization for the bond discount/premium).Journal Entry #4Mason Automotive purchased $80 Million dollars worth of inventory on account on January 2nd, 2018. Mason notes that it will use a perpetual inventory system to track inventory.Journal Entry #5Mason Automotive purchases fixed assets of $120 Million that will have a useful life of 10 years and no salvage value on January 2, 2018. $20 million was paid with cash with the remaining balance on account. These assets are depreciated using the straight-line method.Journal Entry #6On January 2nd, Mason Automotive shipped an order to Corby Panther Company. The shipping terms were FOB shipping point and the value of the order was $50 Million and the inventory cost was $20 Million. Assume that this sale was made on account.Journal Entry #7On January 3rd, Mason Automotive receives $75 Million advance payment from a customer, Michael Scott Paper Company, to manufacture 7,500 cars.Journal Entry #8Mason Automotive buys a patent from Apple for $24 Million on January 3rd, 2018. The patent has a legal life of 20 years, but a useful life of 10 years. Record the necessary entry as of January 3rd, 2018. Assume the patent was purchased using cash.Journal Entry #9Mason Automotive purchased $2 Million dollars worth of supplies January 4th, 2018. $1.5 Million was paid with cash with the remaining balance on account.Journal Entry #10Mason Automotive pre-pays for Rent Expense for the next year of $12 Million and Insurance Expense of $2.4 Million on January 4th, 2018Journal Entry #11On January 20th, Mason Automotive decides to purchase 2,000,000 shares of Treasury stock at $25 per share.Month End Adjusting EntriesThere are 10 applicable adjusting entries that need to be made as of the end of the month based on the information provided above. When recording these adjusting entries consider the following facts:1) Interest expense will be recorded as a operating expense items on the income statement.2) Record the necessary adjusting entries related to pre-paid expense as separate journal entries.3) When reviewing the supply room as of the end of the month, Mason Automation noted that it had $1.5 Million worth of supplies still on hand.4) As of the end of the month, 4,000 cars were completed for Michael Scott Paper Company and the performance obligation had been met on those 4,000 cars. As such, revenue was determined to be earned on those 4,000 vehicles and it was noted that each vehicle costed $8,000 to manufacture.5) Mason Automation uses the balance sheet approach in estimating the allowance for doubtful accounts as of the end of the period. Based on industry average, Mason noted that it will use 5% of receivables as an estimation.6) When preparing the balance sheet, close out net income to retained earnings. IMPORTANT! ANSWER QUESTION NOW. Will award brainliest. Find the value of x. Give reasons to justify your solution. IRECTIONStease answer the following questions to the best of your ability. After completiat corresponds to your answer on the sheet provided at the end of the test. There areed to ensure you obtain the best results from your pulmonary rehabilitation Who was the Djembe played for in the empire? Adjusting entries affect at least one balance sheet account and at least one income statement account. For the entrie below, identify the account to be debited and the account to be credited. Indicate which of the accounts is the incom statement account and which is the balance sheet account. Assume the company records prepayments of expenses asset accounts, and cash receipts of unearned revenues in liability accounts. a. Entry to record consulting services performed but not yet billed (nor recorded). b. Entry to record Interest revenue earned but not yet collected (nor recorded). c. Entry to record service revenues performed but not yet billed (nor recorded). d. To record janitorial expense incurred but not yet paid. e. To record rent expense incurred but not yet paid Accounts Account Title Financial Statement a. Account to be debited Accounts receivable Balance sheet Account to be credited Consulting services revenue Income statement b. Account to be debited Interest receivable Balance sheet Account to be credited interest revenue earned Income statement c. Account to be debited Accounts receivable Balance sheet Account to be credited Services revenue earned Income statementd. Account to be debited Janitorial expense Balance sheet Account to be credited Accrued expenses payable Income statement e. Account to be debited Rent expense Balance sheet Account to be credited Accrued expenses payable Income statement how did early settlers cope with challenges as they established the first 13 colonies? The Moving to Opportunity study found that those in the group who received assistance in relocating and life-skills training in addition to housing vouchers:_________.a. experienced hostility from their new neighborhoods.b. were not testable because many participants could not be found later.c .were no different than those in the control group.d. experienced less stress and better health.