Answer:
true
Explanation:
true
Answer:
I believe this is true
Explanation:
If your looking at something and you look at something else everything is still in perfect view and clear, in focus.
hope this helps :)
A series circuit contains four resistors. In the circuit, R1 is 80 , R2 is 60 , R3 is 90 , and R4 is 100 . What is the total resistance? A. 330 B. 250 C. 460 D. 70.3
Describe the meaning of the different symbols and abbreviations found on the drawings/documents that they use (such as BS8888, surface finish to be achieved, linear and geometric tolerances, electronic components, weld symbols and profiles, pressure and flow characteristics, torque values, imperial and metric systems of measurement, tolerancing and fixed reference points)
Answer:
Engineering drawing abbreviations and symbols are used to communicate and detail the characteristics of an engineering drawing.
There are many abbreviations common to the vocabulary of people who work with engineering drawings in the manufacture and inspection of parts and assemblies.
Technical standards exist to provide glossaries of abbreviations, acronyms, and symbols that may be found on engineering drawings. Many corporations have such standards, which define some terms and symbols specific to them; on the national and international level, like BS8110 or Eurocode 2 as an example.
Explanation:
Who plays a role in the financial activities of a company?
O A. Just employees
O B. Just managers
O C. Only members of the finance and accounting department
O D. Everyone at the company, including managers and employees
Hey,
Who plays a role in the financial activities of a company?
O D. Everyone at the company, including managers and employees
Answer:
Everyone at the company, including managers and employees
Explanation:
. A belt drive is desired to couple the motor with a mixer for processing corn syrup. The 25-hp electric motor is rated at 950 rpm and the mixer must operate as close to 250 rpm as possible. Select an appropriate belt size, commercially available sheaves, and a belt for this application. Also calculate the actual belt speed and the center distance.
Answer:
Hello the table which is part of the question is missing and below are the table values
For a 5V belt the available diameters are : 5.5, 5.8, 5.9, 6.2, 6.3, 6.6, 12.5, 13.9, 15.5, 16.1, 18.5, 20.1
Answers:
belt size = 140 in with diameter of 20.1n
actual speed of belt = 288.49 in/s
actual center distance = 49.345 in
Explanation:
Given data :
Electric motor (driver sheave) speed (w1) = 950 rpm
Driven sheave speed (w2) = 250 rpm
pick D1 ( diameter of driver sheave) = 5.8 in ( from table )
To select an appropriate belt size we apply the equation for the velocity ratio to get the diameter first
VR = [tex]\frac{w1}{w2}[/tex] = 950 / 250
also since the speed of belt would be constant then ;
Vb = w1r1 = w2r2 ------- equation 1
r = d/2
substituting the value of r into equation 1
equation 2 becomes : [tex]\frac{w1}{w2} = \frac{d2}{d1}[/tex] = VR
Appropriate belt size ( d2) can be calculated as
d2 = [tex]\frac{w1d1}{w2}[/tex] = [tex]\frac{950 * 5.8}{250}[/tex] = 22.04
From the given table the appropriate belt size would be : 20.1 because it is the closest to the calculated value
next we have to determine the belt length /size
[tex]L = 2C + \frac{\pi }{2} ( d1+d2) + \frac{(d2-d1)^2}{4C}[/tex]
inputting all the values into the above equation including the value of C as calculated below
L ≈ 140 in
Calculating the center distance
we use this equation to get the ideal center distance
[tex]d2< C_{ideal} < 3( d1 +d2)[/tex]
22.04 < c < 3 ( 5.8 + 20.1 )
22.04 < c < 77.7
the center distance is between 22.04 and 77.7 but taking an average value
ideal center distance would be ≈ 48 in
To calculate the actual center distance we use
[tex]C = \frac{B+\sqrt{B^2 - 32(d2-d1)^2} }{16}[/tex] -------- equation 3
B = [tex]4L -2\pi (d2 + d1 )[/tex]
inputting all the values into (B)
B = 140(4) - 2[tex]\pi[/tex]( 20.01 + 5.8 )
B ≈ 399.15 in
inputting all the values gotten Back to equation 3 to get the actual center distance
C = 49.345 in ( actual center distance )
Calculating the actual belt speed
w1 = 950 rpm = 99.48 rad/s
belt speed ( Vb) = w1r1 = w1 * [tex]\frac{d1}{2}[/tex]
= 99.48 * 5.8 / 2 = 288.49 in/s
A wall 0.12 m thick having a thermal diffusivity of 1.5 × 10-6 m2/s is initially at a uniform temperature of 97°C. Suddenly one face is lowered to a temperature of 20°C, while the other face is perfectly insulated. Use the explicit finite-difference technique with space and time increments of 30 mm and 300 s to determine the temperature distribution at at 45 minutes.
Answer:
at t = 45 s :
To = 61.7⁰c, T1 = 55.6⁰c, T2 = 49.5⁰c, T3 = 34.8⁰C
Explanation:
Wall thickness = 0.12 m
thermal diffusivity = 1.5 * 10^-6 m^2/s
Δt ( time increment ) = 300 s
Δ x = 0.03 m ( dividing wall thickness into 4 parts assuming the system to be one dimensional )
using the explicit finite-difference technique
Detailed solution is attached below