Which of the following is an element? A. Fire B. Carbon C. Salt D. Water

Answers

Answer 1

Answer:

OPTION B is correct

Carbon

Explanation:

element can be defined as a pure substance which cannot be broken down by into smaller units through a chemical method, an element has atoms with identical numbers of protons in their atomic nuclei

Each element is composed of its own type of atom. And this gives the reason why chemical elements are all very different from each other. And all substance on Earth has atoms of at least one of this elements.

There about 118 elements and all arranged in a row and colomn of the periodic table .This elements of the periodic table are arranged by their atomic number, which helps with the chemical properties. Example of elements are; Hydrogen, Oxygeñ, carbon.

Therefore, among the option only carbon is an element because it cannot be broken down into smaller unit unlike water which is made up of oxygen and hydrogen. Also salt is a compound containing more elements.

Answer 2

The substance which represents an element given the following option is carbon (option B)

What is an element?

An element is a pure substance that consist of identical atoms.

An element can not be broken down into simple substances by ordinary methods.

The period table consist of a large number of elements. Some of which are:

HydrogenHeliumLithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon

We must also understand that when two or more elements are chemically combined together it is called a compound and when they are not chemically combined together, it is called a mixture.

Thus, we can conclude that the correct answer to the question is Carbon (option B)

Learn more about element:

https://brainly.com/question/20716171

#SPJ6


Related Questions

At what temperature will water begin to boil and turn to steam?
212 degrees Celsius
100 degrees Fahrenheit
212 kelvins
100 degrees Celsius

Answers

Answer:

100 degrees Celsius

Explanation:

Water starts to boil at 100 degrees celcius or 212 degrees fahrenheit.

At 100 degrees Celsius water begin to boil and turns to steam.

What are the boiling point and melting point of water?

The melting point for water is 0 degrees C (32 degrees F). The boiling point of water varies with atmospheric pressure. At lower pressure or higher altitudes, the boiling point is lower. At sea level, pure water boils at 212 °F (100°C).

Is boiling water always 212?

If the temperature is much above 212°F, the water will boil. That means that it won't just evaporate from the surface but will form vapor bubbles, which then grow, inside the liquid itself. If the water has very few dust flecks etc.

Learn more about a boiling point here https://brainly.com/question/40140

#SPJ2

A 4g bullet, travelling at 589m/s embeds itself in a 2.3kg block of wood that is initially at rest, and together they travel at the same velocity. Calculate the percentage of the kinetic energy that is left in the system after collision to that before.

Answers

Answer:

The  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Explanation:

Given;

mass of bullet, m₁ = 4g = 0.004kg

initial velocity of bullet, u₁ = 589 m/s

mass of block of wood, m₂ = 2.3 kg

initial velocity of the block of wood, u₂ = 0

let the final velocity of the system after collision = v

Apply the principle of conservation of linear momentum

m₁u₁ + m₂u₂ = v(m₁+m₂)

0.004(589) + 2.3(0) = v(0.004 + 2.3)

2.356 = 2.304v

v = 2.356 / 2.304

v = 1.0226 m/s

Initial kinetic energy of the system

K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²

K.E₁ = ¹/₂(0.004)(589)² = 693.842 J

Final kinetic energy of the system

K.E₂ = ¹/₂v²(m₁ + m₂)

K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)

K.E₂ = 1.209 J

The kinetic energy left in the system = final kinetic energy of the system

The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%

                       = (1.209 / 693.842) x 100%

                        = 0.174 %

Therefore, the  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Four 50-g point masses are at the corners of a square with 20-cm sides. What is the moment of inertia of this system about an axis perpendicular to the plane of the square and passing through its center

Answers

Answer:

moment of inertia I ≈ 4.0 x 10⁻³ kg.m²

Explanation:

given

point masses = 50g = 0.050kg

note: m₁=m₂=m₃=m₄=50g = 0.050kg

distance, r, from masses to eachother = 20cm = 0.20m

the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by

= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m  

moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center

mathematically,

I = ∑m×d²

remember, a square will have 4 equal points

I = ∑m×d² = 4(m×d²)

I = 4 × 0.050 × (14.12 x 10⁻² m)²

I = 0.20 × 1.96 × 10⁻²

I =  3.92 x 10⁻³ kg.m²

I ≈ 4.0 x 10⁻³ kg.m²

attached is the diagram of the equation

A body's current radiation rate is 30% higher than it was an hour ago. Calculate the percentage by which your temperature increased.

Answers

Answer:

6.8%

Explanation:

According to Stefan-Boltzmann law, radiation is directly proportional with temperature raised to the fourth power:

P ∝ T⁴

Writing a proportion:

P₁ / P₂ = T₁⁴ / T₂⁴

1.3P / P = (T₁ / T₂)⁴

T₁ / T₂ = ∜1.3

T₁ = 1.068 T₂

The temperature increased by 6.8%.

A typical home uses approximately 1600 kWh of energy per month. If the energy came from a nuclear reaction, what mass would have to be converted to energy per year to meet the energy needs of the home

Answers

Answer:

7.68×10^25kg

Explanation:

The formula for energy used per year is calculated as

Energy used per year =12 x Energy used per month

By substituting Energy used per month in the above formula, we get

Energy used per year =12 x 1600kWh

= 19200kWh

Conversion:

From kWh to J:

1 kWh=3.6 x 10^6 J

Therefore, it is converted to J as

19200 kWh =19200 x 3.6 x 10^6 J

= 6.912×10^10 J

Hence, energy used per year is 6.912×10^10 J

To find the mass that is converted to energy per year.

E = MC^2 ............1

E is the energy used per year

C is the speed of light = 3.0× 10^8m/s

Where E= 6.912×10^10 J

Substituting the values into equation 1

6.912×10^10 J = M × 3.0× 10^8m/s

M = 6.912×10^10 J / (3.0× 10^8m/s)^2

M = 6.912×10^10 J/9×10^16

M = 7.68×10^25kg

Hence the mass to be converted is

7.68×10^25kg

(a) Find the speed of waves on a violin string of mass 717 mg and length 24.3 cm if the fundamental frequency is 980 Hz. (b) What is the tension in the string? For the fundamental, what is the wavelength of (c) the waves on the string and (d) the sound waves emitted by the string? (Take the speed of sound in air to be 343 m/s.)

Answers

Answer:

a)v = 476.28 m / s , b) T = 6.69 10⁵ N , c)  λ = 0.486 m , d)     λ = 0.35 m

Explanation:

a) The speed of a wave on a string is

          v = √T /μ

also all the waves fulfill the relationship

          v = λ f

they indicate that the fundamental frequency is f = 980 Hz.

The wavelength that is fixed at its ends and has a maximum in the center

          L = λ / 2

          λ = 2L

we substitute

           v = 2 L f

let's calculate

           v = 2  0.243  980

           v = 476.28 m / s

b) The tension of the rope

             T = v² μ

the density of the string is

            μ = m / L

            T = v² m / L

            T = 476.28²   0.717 / 0.243

            T = 6.69 10⁵ N

           

c)          λ = 2L

            λ = 2  0.243

            λ = 0.486 m

d) The violin has a resonance process with the air therefore the frequency of the wave in the air is the same as the wave in the string. Let's find the wavelength in the air

          v = λ f

          λ= v / f

          λ = 343/980

          λ = 0.35 m

A skater of mass 45.0 kg standing on ice throws a stone of mass 7.65 kg with a speed of 20.9 m/s in a horizontal direction. Find:

a. The speed of the skater after throwing the stone.
b. The distance over which the skater will move in the opposite direction if the coefficient of kinetic friction between his skates and the ice is 0.03.

Answers

Answer:

Explanation:

know that there is no external force on skater and the stone so the total momentum of the system will remains constant

so we will have

here we have

so the skater will move back with above speed

now the deceleration of the skater is due to friction given as

Answer:

(a) 3.553 m/s

(b) 21.46 m

Explanation:

(a) Applying the law of of momentum,

Total momentum before collision = Total momentum after collision

mu+m'u'  = mv+m'v'.................. Equation 1

Where m and m' are the mass of skater and stone respectively,  u and u' are the initial velocity of skater and stone respectively, v and v' are the final velocity of the skater and the stone respectively.

Note, u = 0 m/s, u' = 0 m/s

Therefore,

0 = mv+m'v'

-mv = m'v'................ Equation 2

make v the subject of the equation

v = -m'v'/m............. Equation 3

Given: m = 45 kg, m' = 7.65 kg, v' = 20.9 m/s

Substitute into equation 3

v = 7.65(20.9)/45

v = -3.553 m/s

Hence the speed of the skater = 3.553 m/s

(b) F = mgμ..............Equation 4

But F = ma

Therefore,

ma = mgμ

a = gμ............... Equation 5

Where a = acceleration of the skater, g = acceleration due to gravity, μ = coefficient of kinetic friction

Given: μ = 0.03, g = 9.8 m/s²

Substitute into equation 5

a = 0.03(9.8)

a = 0.294 m/s²

Using the equation of motion,

v² = u²+2as............. Equation 6

Where s = distance moved by the skater.

note that u = 0 m/s.

therefore,

v² = 2as

s = v²/2a................ Equation 7

Given: v = 3.553 m/s, a = 0.294

Substitute into equation 7

s = 3.553²/(2×0.294)

s = 12.62/0.588

s = 21.46 m

A motor is designed to operate on 117 V and draws a current of 12.3 A when it first starts up. At its normal operating speed, the motor draws a current of 3.38 A. Obtain (a) the resistance of the armature coil, (b) the back emf developed at normal speed, and (c) the current drawn by the motor at one-third normal speed

Answers

Answer:

a) using

R=V/I =117/12.3

R=9.5 ohms

b)

E=V-I*R =117-3.38*9.5

E=84.8Volts

c)

at (1/3)rd of normal speed ,back emf is (1/3) of its maximum

value

E=(1/3)*84.8=28.3Volts

Current drawn

I=V-Eback/R =117-28.3/9.5

I=9.33A

Explanation:

The resistance is = 9.5 ohms

The back emf developed at normal speed is = 84.90 volts

The current drawn at one-third normal speed =9.33 A.

To calculate the resistance of the armature coil this formula is used;

V = IR

make R the subject of formula,

R = V/I

where R = resistance

V = voltage

I = Current

R = 117/12.3

R = 9.5 ohms

To calculate the back emf developed at normal speed, this formula is used;

E = V + Ir ( for normal emf)

But for back emf which is the difference between the supplied voltage and the loss from the current through the resistance, this formula is used;

E = V - Ir

where V = 117v

I = 3.38

r = 9.5

E = 117 - ( 3.38 × 9.5)

= 117 - 32.11

= 84.90 volts

To calculate the current drawn at one-third normal speed;

1/3 of Emf = 1/3 × 84.90

= 28.3volts

Therefore current (I) = V - E/ R

= 117- 28.3/9.5

= 88.7/9.5

= 9.33 A

Learn more about current here:

https://brainly.com/question/24858512

"A power of 200 kW is delivered by power lines with 48,000 V difference between them. Calculate the current, in amps, in these lines."

Answers

Answer:

9.6×10⁹ A

Explanation:

From the question above,

P = VI.................... Equation 1

Where P = Electric power, V = Voltage, I = current.

make I the subject of the equation

I = P/V............. Equation 2

Given: P = 200 kW = 200×10³ W, V = 48000 V.

Substitute these vales into equation 2

I = 200×10³×48000

I = 9.6×10⁹ A.

Hence the current in the line is 9.6×10⁹ A.

Which of the following explains why metallic bonding only occurs between
metallic atoms?
A. Metallic atoms are less likely to give their electrons to nonmetallic
atoms
B. Electrical conductivity is higher in metallic atoms, which means
they are more likely to attract free electrons.
C. Metallic atoms are highly reactive and do not tend to form bonds
with other atoms.
D. Metallic atoms have valence shells that are mostly empty, which
means these atoms are more likely to give up electrons and allow
them to move freely.

Answers

Answer:

D. Metallic atoms have valence shells that are mostly empty, which

means these atoms are more likely to give up electrons and allow

them to move freely.

Explanation:

Metals usually contain very few electrons in their valence shells hence they easily give up these few valence electrons to yield metal cations.

In the metallic bond, metal cations are held together by electrostatic attraction between the metal ions and a sea of mobile electrons.

Since metals give up their electrons easily, it is very easy for them to participate in metallic bonding. They give up their electrons easily because their valence shells are mostly empty, metal valence shells usually contain only a few electrons.

A typical electric oven has two separate heating elements: one on top and one on the bottom. The bottom element is used for baking while the top element is used to broil foods. When only the bottom element is active and glowing red hot, what heat transfer mechanisms carry most of the heat to the food in the oven?

Answers

Answer:

Convection and Radiation mechanisms carry most of the heat

Explanation:

This is because Convection proceeds strongy as heated air rises from the hot element while Radiation is also strong, although the material of the cooking pots will how effective it is.

if two point charges are separated by 1.5 cm and have charge values of 2.0 and -4.0, respectively, what is the value of the mutual force between them

Answers

Complete question:

if two point charges are separated by 1.5 cm and have charge values of +2.0 and -4.0 μC, respectively, what is the value of the mutual force between them.

Answer:

The mutual force between the two point charges is 319.64 N

Explanation:

Given;

distance between the two point charges, r = 1.5 cm = 1.5 x 10⁻² m

value of the charges, q₁ and q₂ = 2 μC and - μ4 C

Apply Coulomb's law;

[tex]F = \frac{k|q_1||q_2|}{r^2}[/tex]

where;

F is the force of attraction between the two charges

|q₁| and |q₂| are the magnitude of the two charges

r is the distance between the two charges

k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²

[tex]F = \frac{k|q_1||q_2|}{r^2} \\\\F = \frac{8.99*10^9 *4*10^{-6}*2*10^{-6}}{(1.5*10^{-2})^2} \\\\F = 319.64 \ N[/tex]

Therefore, the mutual force between the two point charges is 319.64 N

Determine the slit spacing d. Explain which measurement you made, show your calculation and your result for the slit spacing. There are several measurements you can make.

Answers

Answer:

The quantities to measure are:

* the distance to the screen

* The distance from the central maximum to each interference

* in order of interference

* wavelength

Explanation:

To determine the gap spacing we must use the constructive interference equation

            d sin θ = m λ

as the angles are small

          tan θ = sin θ / cos θ

          tan θ = sin θ

and the definition of tangent is

          tan θ = y / L

Thus

         sin θ = y / L

when replacing

          d y / L = m λ

          d = m λ L / y

with this equation we can know what parameter should be measured.

The quantities to measure are:

* the distance to the screen

* The distance from the central maximum to each interference

* in order of interference

* wavelength

Do the math: How many seconds would it take an echo sounder’s ping to make the trip from a ship to the Challenger Deep (10,994 meters) and back? Recall that depth in meters = ½ (1500 m/sec × Echo travel time in seconds). Round your answer to two decimal places.

Answers

Answer:

14.66secs

Explanation:

Given the formula for calculating the depth in metres expressed as

depth in meters = ½ (1500 m/sec × Echo travel time in seconds)

Given depth of the challenger = 10, 994 meters, we will substitute this given value into the formula given to calculate the time take for the echo to travel.

10, 994 = depth in meters = ½ * 1500 m/sec × Echo travel time in seconds

10,994 = 750 * Echo travel time in seconds

Dividing both sides by 750;

Echo travel time in seconds = 10,994 /750

Echo travel time in seconds ≈ 14.66secs (to two decimal places)

Therefore, it would take an echo sounder’s ping 14.66secs to make the trip from a ship to the Challenger Deep and back

An inductor is connected to a 18 kHz oscillator. The peak current is 70 mA when the rms voltage is 5.4 V What is the value of the inductance L

Answers

Answer:

The value of the inductance is 0.955 mH

Explanation:

Given;

frequency of the oscillator, f = 18 kHz = 18,000 Hz

the peak current, I₀ = 70 mA = 0.07 A

the root mean square voltage, [tex]V_{rms}[/tex] = 5.4 V

The root mean square current is given as;

[tex]I_{rms}= \frac{I_o}{\sqrt{2} }[/tex]

[tex]I_{rms} = \frac{0.07}{\sqrt{2} } \\\\I_{rms} = 0.05 \ A[/tex]

Inductive reactance is given by;

[tex]X_L =\frac{V_{rms}}{I_{rms}} \\\\X_L = \frac{5.4}{0.05} \\\\X_L = 108 \ ohms[/tex]

Inductance is given by;

[tex]L = \frac{X_L}{2\pi f} \\\\L = \frac{108}{2\pi *18,000} \\\\L = 9.55 *10^{-4} \ H[/tex]

L = 0.955 mH

Therefore, the value of the inductance is 0.955 mH

The value of the inductance (L) for this oscillating circuit is equal to [tex]9.55 \times 10^{-4}[/tex] Henry.

Given the following data:

Oscillator frequency = 18 kHzPeak current = 70 mARms Voltage = 5.4 V

To determine the value of the inductance (L):

First of all, we would find the root mean square (rms) current by using the formula:

[tex]I_{rms} = \frac{I_o}{\sqrt{2} }\\\\I_{rms} = \frac{70 \times 10^{-3}}{1.4142} \\\\I_{rms} = 0.050 \;A[/tex]

Next, we would calculate the inductive reactance of the oscillator by using the formula:

[tex]X_L = \frac{V_{rms}}{I_{rms}} \\\\X_L = \frac{5.4}{0.050} \\\\X_L = 108 \; Ohms[/tex]

Now, we can solve for the value of the inductance (L):

[tex]L = \frac{X_L}{2\pi f}[/tex]

Where:

L is the inductance.f is the frequency.[tex]X_L[/tex] is the inductive reactance.

Substituting the parameters into the formula, we have;

[tex]L = \frac{108}{2 \times 3.142 \times 18 \times 10^3} \\\\L = \frac{108}{113112}[/tex]

L = [tex]9.55 \times 10^{-4}[/tex] Henry.

Read more: https://brainly.com/question/12530980

A student builds a rocket-propelled cart for a science project. Its acceleration is not quite high enough to win a prize, so he uses a larger rocket engine that provides 39% more thrust, although doing so increases the mass of the cart by 13%. By what percentage does the cart's acceleration increase?

Answers

Answer:

Explanation:

a = F / m

where a is acceleration , F is thrust and m is mass

taking log and differentiating

da / a = dF / F - dm / m

(da / a)x 100 = (dF / F)x100 - (dm / m) x100

percentage increase in a = percentage increase in F - percentage increase in m

= percentage increase in acceleration a   = 39 - 13 = 26 %

required increase = 26 %.

An elastic circular bar is fixed at one end and attached to a rubber grommet at the other end. The grommet functions as a torsional spring with spring constant k. If a concentrated torque of magnitude Ta is applied in the center of the bar, what is the rotation at the end of the bar, φ(L)? Assume a constant shear modulus G and polar moment of inertia J.

Answers

Answer:

2.1 rad(anticlockwise).

Explanation:

So, we are given the following data or parameters or information in the question above:

=> "The torsional stiffness of the spring support is k = 50 N m/rad. "

=> "If a concentrated torque of mag- nitude Ta = 500 Nm is applied in the center of the bar"

=> "L = 300 mm Assume a shear modu- lus G = 10 kN/mm2 and polar monnent of inertia J = 2000 mln"

Hence;

G × J = 10 kN/mm2 × 2000 mln = 20 Nm^2.

Also, L/2 = 300 mm /2 = 0.15 m (converted to metre).

==> 0.15/20 (V - w) + θ = 0.

==> 0.15/20 (V - w ) = -θ.

Where V = k = 50 N m/rad

w = 183.3 θ.

Therefore, w + Vθ = 500 Nm.

==> 183.3 + 50 θ = 500 Nm.

= 6.3

Anticlockwise,

θ = 2.1 rad.

As a wheel turns, the angle through which it has turned varies with time as β(t)=Ct + Bt3 where C=0.400rad/s and B=0.0120rad/s3. Calculate the angular velocity w(t) as a function of time.

Answers

Answer:

ω(t) = 0.4 + 0.036 t²

Explanation:  

The angular displacement of the disk is given as the function of time:

β(t) = Ct + B t³

where,

C = 0.4 rad/s

B = 0.012 rad/s³

Therefore,

β(t) = 0.4 t + 0.012 t³

Now, for angular velocity ω(t), we must take derivative of angular displacement with respect to t:

ω(t) = dβ/dt = (d/dt)(0.4 t + 0.012 t³)

ω(t) = 0.4 + 0.036 t²

How much work is required to carry an electron from positive terminal of 12Volt battery to negative terminal?

Answers

Answer:

Explanation:

Work required = q x V

where q is charge on electron and V is potential difference

= 1.6 x 10⁻¹⁹  x 12

= 19.2 x 10⁻¹⁹ J

A body of mass 2.5kg is raised 4.0m above the ground.Calculate the potential energy if g=10m/s squared

Answers

Answer:

100 joules

Explanation:

[tex]mass = 2.5kg\\height = 4.0\\Acceleration \: due \:to\:gravity = 10m/s^2\\\\P.E = mgh\\P.E = 2.5kg\times10\times4\\\\Potential \: Energy = 100 joules[/tex]

The potential energy if g = 10m/s² is 98 J

What is Potential Energy ?

Potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.

Formula for potential energy :

P.E. = mgh

m = mass (kg)g = gravity (m/s²)h = height/distance (m)

Given :

The book is held from the ground of a distance  = 4.0 m,

so

h = 4.0 m

we know that the book weighs,

2.5 kg

so

m = 2.5 kg.

Now we just put it in the formula  ;

PE = (2.5kg) × (9.8 m/s²) × ( 4.0 m)

P E = 98 J

Therefore, The potential energy if g = 10m/s² is 98 J

Learn more about Potential Energy here ;

https://brainly.com/question/24284560

#SPJ2

g a conductor consists of an infinite number of adjacent wires, each infinitely long. If there are n wires per unit length, what is the magnitude of B~

Answers

Answer:

B=uonI/2

Explanation:

See attached file

An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the new acceleration would be _____ m/s/s.

Answers

Hahahahaha. Okay.

So basically , force is equal to mass into acceleration.

F=ma

so when F=ma , we get acceleration=6m/s/s

Force is doubled.

Mass is 1/3 times original.

2F=1/3ma

Now , we rearrange , and we get 6F=ma

So , now for 6 times the original force , we get 6 times the initial acceleration.

So new acceleration = 6*6= 36m/s/s

Question 8
A spring is attached to the ceiling and pulled 8 cm down from equilibrium and released. The
damping factor for the spring is determined to be 0.4 and the spring oscillates 12 times each
second. Find an equation for the displacement, D(t), of the spring from equilibrium in terms of
seconds, t.
D(t) =

Can someone please help me ASAP?!!!!

Answers

Answer: D(t) = [tex]8.e^{-0.4t}.cos(\frac{\pi }{6}.t )[/tex]

Explanation: A harmonic motion of a spring can be modeled by a sinusoidal function, which, in general, is of the form:

y = [tex]a.sin(\omega.t)[/tex] or y = [tex]a.cos(\omega.t)[/tex]

where:

|a| is initil displacement

[tex]\frac{2.\pi}{\omega}[/tex] is period

For a Damped Harmonic Motion, i.e., when the spring doesn't bounce up and down forever, equations for displacement is:

[tex]y=a.e^{-ct}.cos(\omega.t)[/tex] or [tex]y=a.e^{-ct}.sin(\omega.t)[/tex]

For this question in particular, initial displacement is maximum at 8cm, so it is used the cosine function:

[tex]y=a.e^{-ct}.cos(\omega.t)[/tex]

period = [tex]\frac{2.\pi}{\omega}[/tex]

12 = [tex]\frac{2.\pi}{\omega}[/tex]

ω = [tex]\frac{\pi}{6}[/tex]

Replacing values:

[tex]D(t)=8.e^{-0.4t}.cos(\frac{\pi}{6} .t)[/tex]

The equation of displacement, D(t), of a spring with damping factor is [tex]D(t)=8.e^{-0.4t}.cos(\frac{\pi}{6} .t)[/tex].

Consider an electromagnetic wave where the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis.
In what directions is it possible that the wave is traveling?
A. The-z direction.
B. The ty direction
C. The +x direction.
D. The -y direction
E. The -x direction.
F. The +z direction.

Answers

Answer:

The wave will be travelling in the y-axis

Explanation:

An e-m wave has a spatially varying electric field that is always associated with a magnetic field that changes over time and vice versa. The electric field and the magnetic field oscillates perpendicularly to each other, and together form a wave that travels in a perpendicular direction to the magnetic and the electric field in space. The movement of the e-m wave through space is usually away from the source where it is generated. So, if the electric field travels in the z-axis, and the magnetic field travels through along the x-axis, then the e-m wave generated will travel in the y-axis direction.

two resistors of resistance 10 ohm's and 20 ohm's are connected in parallel to a batery of e.m.f 12V. Calculate the current passing through the 20hm's resister​

Answers

Current through 20 ohm resistor is 0.6 A

Suppose that a 117.5 kg football player running at 6.5 m/s catches a 0.43 kg ball moving at a speed of 26.5 m/s with his feet off the ground, while both of them are moving horizontally.
(a) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in the same direction.
(b) Calculate the change in kinetic energy of the system, in joules, after the player catches the ball.
(c) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in opposite directions.
(d) Calculate the change in kinetic energy of the system, in joules, in this case.

Answers

Answer:

a) 6.57 m/s

b) 53.75 J

c) 6.37 m/s

d) -98.297 J

Explanation:

mass of player = [tex]m_{p}[/tex] = 117.5 kg

speed of player = [tex]v_{p}[/tex] = 6.5 m/s

mass of ball = [tex]m_{b}[/tex] = 0.43 kg

velocity of ball = [tex]v_{b}[/tex] = 26.5 m/s

Recall that momentum of a body = mass x velocity = mv

initial momentum of the player = mv = 117.5 x 6.5 = 763.75 kg-m/s

initial momentum of the ball = mv = 0.43 x 26.5 = 11.395 kg-m/s

initial kinetic energy of the player = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.5^{2}[/tex] =  2482.187 J

a) according to conservation of momentum, the initial momentum of the system before collision must equate the final momentum of the system.

for this first case that they travel in the same direction, their momenta carry the same sign

[tex]m_{p}[/tex][tex]v_{p}[/tex] + [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

where v is the final velocity of the player.

inserting calculated momenta of ball and player from above, we have

763.75 + 11.395 = (117.5 + 0.43)v

775.145 = 117.93v

v = 775.145/117.93 = 6.57 m/s

b) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.57^{2}[/tex] = 2535.94 J

change in kinetic energy = 2535.94 - 2482.187 = 53.75 J  gained

c) if they travel in opposite direction, equation becomes

[tex]m_{p}[/tex][tex]v_{p}[/tex] - [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

763.75 - 11.395 = (117.5 + 0.43)v

752.355 = 117.93v

v = 752.355/117.93 = 6.37 m/s

d) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.37^{2}[/tex]  = 2383.89 J

change in kinetic energy = 2383.89 - 2482.187 = -98.297 J

that is 98.297 J  lost

1.5 kg of air within a piston-cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 800 K and 300 K, respectively. The heat transfer from the air during the isothermal compression is 80 kJ. At the end of the isothermal compression, the volume is 0.2 m3. Determine the volume at the beginning of the isothermal compression, in m3. Assume the ideal gas model for air and neglect kinetic and potential energy effects.

Answers

Answer:

Explanation:

Carton cycle consists of four thermodynamic processes . The first is isothermal expansion at higher temperature , then adiabatic expansion which lowers the temperature of gas . The third process is isothermal compression at lower temperature and the last process is adiabatic compression which increases the temperature of the gas to its original temperature .

So the given process of isothermal compression must have been done at the temperature of 300K  , keeping the temperature constant .

Work done on gas at isothermal compression is equal to heat transfer .

work done on gas = 80 x 10³ J

work done on gas = n RT ln v₁ / v₂

n is number of moles v₁ and v₂ are initial and final volume

molecular weight of gas = 28.97 g

1.5 kg = 1500 / 28.97 moles

= 51.77 moles

work done on gas = n RT ln v₁ / v₂

Putting the values in the equation above

80 x 10³ = 51.78 x 8.31 x 300 x ln v₁ / .2

ln v₁ / .2 = .62

v₁ / .2 = 1.8589

v₁ = 0.37 m³

4. The Richter scale describes how much energy an earthquake releases. With every increase of 1.0 on the scale, 32 times more energy is released. How many times more energy would be released by a quake measuring 2.0 more units on the Richter scale?

Answers

Answer:

64 times

Explanation:

if increase of 1 gives you 32

then increase of 2 will give you its double

64

If you increase one, you get 32 then multiplying by 2 will give you 64, which is its double.

What is Earthquake?

An earthquake is a sudden energy released in the Earth's lithosphere that causes shock wave, which cause the Earth's surface to shake. Earthquakes can range in strength from ones that are so small that no one can feel them to quakes that are so powerful that they uproot entire cities, launch individuals and objects into the air, and harm vital infrastructure.

The frequency, kind, and intensity of earthquakes observed over a specific time period are considered to be the seismic activity of an area.

The average rate of earthquake energy output per unit volume determines the basicity of a certain area of the Earth. The non-earthquake seismic rumbling is also alluded to as a tremor.

To know more about Earthquake:

https://brainly.com/question/1296104

#SPJ5

What is the wavelength λλlambda of the wave described in the problem introduction? Express the wavelength in terms of the other given variables and constants

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The wavelength is   [tex]\lambda= \frac{2 \pi }{k}[/tex]

Explanation:

From the question we are told that  

      The electric field is [tex]\= E = E_o sin (kx - wt )\r j[/tex]

       The magnetic field is  [tex]\= B = B_0 sin (kx -wt) \r k[/tex]

From the above equation

and  k is the wave number which is mathematically represented as

        [tex]k = \frac{2 \pi }{\lambda }[/tex]

=>     [tex]\lambda= \frac{2 \pi }{k}[/tex]

Where [tex]\lambda[/tex] is the wavelength

A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns of wire. When running, the solenoid produced a field of 1.4 TT in the center. Given this, how large a current does it carry?

Answers

Answer:

The current is  [tex]I = 2042\ A[/tex]

Explanation:

From the question we are told that

    The length of the solenoid is  [tex]l = 2.2 \ m[/tex]

    The  radius is  [tex]r_i = 30 \ cm = 0.30 \ m[/tex]

    The number of turn is [tex]N = 1200 \ turns[/tex]

    The  magnetic field is  [tex]B = 1.4 \ T[/tex]

The  magnetic field produced  is mathematically represented as

         [tex]B = \frac{\mu_o * N * I }{l }[/tex]

making [tex]I[/tex] the subject

       [tex]I = \frac{B * l}{\mu_o * N }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with values [tex]\mu_o = 4\pi *10^{-7} N/A^2[/tex]

 substituting values

        [tex]I = \frac{1.4 * 2.2 }{4\pi *10^{-7} * 1200 }[/tex]

        [tex]I = 2042\ A[/tex]

Other Questions
You are pushing a 60 kg block of ice across the ground. You exert a constant force of 9 N on the block of ice. You let go after pushing it across some distance d, and the block leaves your hand with a velocity of 0.85 m/s. While you are pushing, the work done by friction between the ice and the ground is 3 Nm (3 J). Assuming that the ice block was stationary before you push it, find d. The lengths of the sides of a triangle are in the ratio of 6:6:5. The perimeter of the triangleis 34 centimeters. Find the length of each side of the triangle. A 46-ton monolith is transported on a causeway that is 3500 feet long and has a slope of about 3.7. How much force parallel to the incline would be required to hold the monolith on this causeway? how could you correctly rewrite the equation 4(5+3)=2(22-6) using the distributive property? On January 1, 2017, Eagle borrows $16,000 cash by signing a four-year, 5% installment note. The note requires four equal total payments of accrued interest and principal on December 31 of each year from 2017 through 2020. Prepare the journal entries for Eagle to record the loan on January 1, 2017, and the four payments from December 31, 2017, through December 31, 2020. 1. Eagle borrows $16,000 cash by signing a four-year, 5% installment note. Record the issuance of the note on January 1, 2017. 2. Record the payment of the first installment payment of interest and principal on December 31, 2017. 3. Record the payment of the second installment payment of interest and principal on December 31, 2018. 4. Record the payment of the third installment payment of interest and principal on December 31, 2019. 5. Record the payment of the fourth installment payment of interest and principal on December 31, 2020 An organization is required to know, track, and record the location of all hazardous materials that it owns, controls, or generates. Group of answer choices True False In which of the following ways did Soviet women differ from American women in there involvment in Warld War 2? A. Soviet women served in a combatant role. B american women served in a combatant role C. American women worked in factories D. Soviet women worked in factories Write your original thesis that makes a significant claim about the story. Refer to the Group Discussion Overview for additional information. Solve 2x2 6x + 10 = 0 by completing the square. Related to the British rule in India..... What was the main motive of the British rule in India? How did they succeed in their objective? Complete the point-slope equation of the line through ( 1 , 10 )and (5 , 2) y-2 =? Identify the point corresponding to Q.A (-3,-2)B (1,-1)C (-3,2)D (-2,-1) A buyer is getting a fully amortized loan for $220,000. The bank will give the buyer the loan for 15 years at 5 1/2% or for 30 years at 6 1/2%. To the nearest dollar, what is the difference between the monthly payments for these two loans? What is the mistake in the following sentence? Mark make sure you buy broccoli, bean sprouts and sunflower seeds for the salad. The baker makes54 biscuits in the morning. Then he makes 26 more in the afternoon. If the predetermined overhead allocation rate is 250% of direct labor cost and the Finishing Department's direct labor cost for the reporting period is $20,000, the following entry would record the allocation of overhead to the products processed in this department: Work in Process Inventory, Finishing Dept 50,000 Factory Overhead 50,000 a) True b) False Question 1(Multiple Choice Worth 2 points)If you take a 10 second quick count, which value would total 72 beats per minute?OTen beatsOTwelve beatsO Fourteen beatsO Fifteen beats Select the option with the correct form of the irregular verb estar in the preterite tense for the pronoun yo. Estuve Estuvo Est Estoy This is a part of an argument that is flawed and makes the argument invalid, an error in reasoning. A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five. The study involved a large random sample of mothers and children and was conducted over several years. What is the population of interest in this survey