Which of the following is false? Correlation measures the strength of linear association between two numerical variables. If the correlation between two variables is close to 0.01, then there is a very weak linear relation between them. Correlation coefficient and the slope always have the same sign (positive or negative). If the correlation coefficient is 1, then the slope must be 1 as well.

Answers

Answer 1

Answer:

If the correlation coefficient is 1, then the slope must be 1 as well.

Step-by-step explanation:

Coefficient of correlation is used in statistics to determine the relationship between two variables. Correlation coefficient and slope always have same sign. It measures the strength of linear relation between two variables. The values of correlation coefficient ranges between 0 to 1. where 0 determines that there is no relationship between two variables.


Related Questions

Find the common ratio of the following geometric sequence:
11,55, 275, 1375, ....

Answers

Answer:

Hey there!

The common ratio is 5, because you multiply by 5 to get from one term to the next.

Hope this helps :)

Answer:

5

Step-by-step explanation:

To find the common ratio take the second term and divide by the first term

55/11 = 5

The common ratio would be 5

the value of 4^-1+8^-1÷1/2/3^3​

Answers

Answer:

1.9375.

Step-by-step explanation:

To solve this, we must use PEMDAS.

The first things we take care of are parentheses and exponents.

Since there are no parentheses, we do exponents.

4^-1+8^-1÷1/2/3^3​

= [tex]\frac{1}{4} +\frac{1}{8} / 1/ 2/ 27[/tex]

= 1/4 + (1/8) / 1 * (27 / 2)

= 1/4 + (27 / 8) / 2

= 1/4 + (27 / 8) * (1 / 2)

= 1/4 + (27 / 16)

= 4 / 16 + 27 / 16

= 31 / 16

= 1.9375.

Hope this helps!

Please help asap.
A pizza is cut into six unequal slices (each cut starts at the center). The largest slice measures $90$ degrees If Larry eats the slices in order from the largest to the smallest, then the number of degrees spanned by a slice decreases at a constant rate. (So the second slice is smaller than the first by a certain number of degrees, then the third slice is smaller than the second slice by that same number of degrees, and so on.) What is the degree measure of the fifth slice Larry eats?

Answers

Answer:

The answer is 5th angle = [tex]\bold{42^\circ}[/tex]

Step-by-step explanation:

Given that pizza is divided into six unequal slices.

Largest slice has an angle of [tex]90^\circ[/tex].

He eats the pizza from largest to smallest.

Let the difference in angles in each slice = [tex]d^\circ[/tex]

1st angle = [tex]90^\circ[/tex]

2nd angle = 90-d

3rd angle = 90-d-d = 90 - 2d

4th angle = 90-2d-d = 90 - 3d

5th angle = 90-3d-d = 90 - 4d

6th angle = 90-4d -d = 90 - 5d

We know that the sum of all the angles will be equal to [tex]360^\circ[/tex] (The sum of all the angles subtended at the center).

i.e.

[tex]90+90-d+90-2d+90-3d+90-4d+90-5d=360\\\Rightarrow 540 - 15d = 360\\\Rightarrow 15d = 540 -360\\\Rightarrow 15d = 180\\\Rightarrow d = 12^\circ[/tex]

So, the angles will be:

1st angle = [tex]90^\circ[/tex]

2nd angle = 90- 12 = 78

3rd angle = 78-12 = 66

4th angle = 66-12 = 54

5th angle = 54-12 = 42

6th angle = 42 -12 = 30

So, the answer is 5th angle = [tex]\bold{42^\circ}[/tex]

Which of the following is best described as sets of three whole numbers (a, b, and c) that satisfy the equation ?

A.
The Pythagorean theorem

B.
Prime numbers

C.
Pythagorean triples

D.
Perfect squares

Answers

Answer:

Option C

Step-by-step explanation:

The whole numbers a,b and c such that [tex]a^2+b^2 = c^2[/tex] are Pythagorean triples satisfying the Pythagorean theorem.

Answer:

C

Step-by-step explanation:

a, b, and c are side lengths of the triangle.

The three side lengths that make up a right triangle are most commonly known as Pythagorean triples.

please help all i need is the slope in case the points are hard to see here they are problem 1. (-2,2) (3,-3) problem 2. (-5,1) (4,-2) problem 3. (-1,5) (2,-4)

Answers

Answer: 1. [tex]-\dfrac{5}{6}[/tex]  2. [tex]-\dfrac{1}{3}[/tex] . 3. [tex]-3[/tex]

Step-by-step explanation:

Formula: Slope[tex]=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

1. (-2,2) (3,-3)

Slope [tex]=\dfrac{-3-2}{3-(-2)}[/tex]

[tex]=\dfrac{-5}{3+2}\\\\=\dfrac{-5}{6}[/tex]

Hence, slope of line passing through  (-2,2) (3,-3) is [tex]-\dfrac{5}{6}[/tex] .

2. (-5,1) (4,-2)

Slope [tex]=\dfrac{-2-1}{4-(-5)}[/tex]

[tex]=\dfrac{-3}{4+5}\\\\=\dfrac{-3}{9}\\\\=-\dfrac{1}{3}[/tex]

Hence, slope of line passing through  (-2,2) and (3,-3) is [tex]-\dfrac{1}{3}[/tex] .

3. (-1,5) (2,-4)

Slope [tex]=\dfrac{-4-5}{2-(-1)}[/tex]

[tex]=\dfrac{-9}{2+1}\\\\=\dfrac{-9}{3}\\\\=-3[/tex]

Hence, slope of line passing through (-1,5) and (2,-4) is -3.

a 12- inch ruler is duvided into 3 parts. the large part is 3 times longer than the small. the meddium part is times longer than then small, the medium part is 2 times long as the smallest .how long is the smallest part?

Answers

Answer:

2 inches

Step-by-step explanation:

x= smallest

3x=largest

2x=medium

x+3x+2x=12

6x=12

x=2

so smallest is 2

largest is 6 (3x)

medium is 4 (2x)

2+6+4=12

Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value

Answers

Answer:

z(c)  = - 1,64

We reject the null hypothesis

Step-by-step explanation:

We need to solve a proportion test ( one tail-test ) left test

Normal distribution

p₀ = 63 %

proportion size  p = 51 %

sample size  n = 114

At 5% level of significance   α = 0,05, and with this value we find in z- table z score of z(c) = 1,64  ( critical value )

Test of proportion:

H₀     Null Hypothesis                        p = p₀

Hₐ    Alternate Hypothesis                p < p₀

We now compute z(s) as:

z(s) =  ( p - p₀ ) / √ p₀q₀/n

z(s) =( 0,51 - 0,63) / √0,63*0,37/114

z(s) =  - 0,12 / 0,045

z(s) = - 2,66

We compare z(s) and z(c)

z(s) < z(c)      - 2,66 < -1,64

Therefore as z(s) < z(c)  z(s) is in the rejection zone we reject the null hypothesis

A regression model between sales (y in $1000), unit price (x1 in dollars), and television advertisement (x2 in dollars) resulted in the following function: Ŷ = 7 - 3x1 + 5x2 For this model, SSR = 3500, SSE = 1500, and the sample size is 18. If we want to test for the significance of the regression model, the critical value of F at the 5% level of significance is a. 3.29. b. 3.24. c. 3.68. d. 4.54.

Answers

Answer: C. 3.68

Step-by-step explanation:

Given that;

Sample size n = 18

degree of freedom for numerator k = 2

degree of freedom for denominator = n - k - 1 = (18-2-1) = 15

level of significance = 5% = 5/100 = 0.05

From the table values,

the critical value of F at 0.05 significance level with (2, 18) degrees of freedom is 3.68

Therefore option C. 3.68 is the correct answer

Explain how to find the range of a data set. What is an advantage of using the range as a measure of​ variation? What is a​ disadvantage?

Answers

Answer:

The range is found by subtracting the minimum data entry from the maximum data entry.

Step-by-step explanation:

The range is found by subtracting the minimum data entry from the maximum data entry.

It is easy to compute.

It uses only two entries from the data set.

Find the directional derivative of f at the given point in the direction indicated by the angle θ. f(x, y) = y cos(xy), (0, 1), θ = π/3

Answers

Answer:

√3/2

Explanation:

The directional derivative at the given point is gotten using the formula;

∇f(x,y)•u where u is the unit vector in that direction.

∇f(x,y) = f/x i + f/y j

Given the function f(x, y) = y cos(xy),

f/x = -y²sin(xy) and

f/y = -xysin(xy)+cos(xy)

∇f(x,y) = -y²sin(xy) i + (cos(xy)-xysin(xy)) j

∇f(x,y) at (0,1) will give;

∇f(0,1) = -0sin0 i + cos0j

∇f(0,1) = 0i+j

The unit vector in the direction of angle θ is given as u = cosθ i + sinθ j

u = cos(π/3)i+ sin(π/3)j

u = 1/2 i + √3/2 j

Taking the dot product of both vectors;

∇f(x,y)•u = (0i+j)•(1/2 i + √3/2 j)

Note that i.i = j.j = 1 and i.j = 0

∇f(x,y)•u = 0 + √3/2

∇f(x,y)•u = √3/2

The directional derivative of [tex]f[/tex] at the given point in the direction indicated is [tex]\frac{\sqrt{3}}{2}[/tex].

How to calculate the directional derivative of a multivariate function

The directional derivative is represented by the following formula:

[tex]\nabla_{\vec v} f = \nabla f(x_{o},y_{o}) \cdot \vec v[/tex]    (1)

Where:

[tex]\nabla f(x_{o}, y_{o})[/tex] - Gradient evaluated at point [tex](x_{o},y_{o})[/tex].[tex]\vec v[/tex] - Directional vector

The gradient of [tex]f[/tex] is calculated below:

[tex]\nabla f (x_{o},y_{o}) = \left[\begin{array}{cc}\frac{\partial f}{\partial x} (x_{o}, y_{o}) \\\frac{\partial f}{\partial y} (x_{o}, y_{o})\end{array}\right][/tex] (2)

Where [tex]\frac{\partial f}{\partial x}[/tex] and [tex]\frac{\partial f}{\partial y}[/tex] are the partial derivatives with respect to [tex]x[/tex] and [tex]y[/tex], respectively.

If we know that [tex](x_{o}, y_{o}) = (0, 1)[/tex], then the gradient is:

[tex]\nabla f(x_{o}, y_{o}) = \left[\begin{array}{cc}-y^{2}\cdot \sin xy\\\cos xy -x\cdot y\cdot \sin xy\end{array}\right][/tex]

[tex]\nabla f (x_{o}, y_{o}) = \left[\begin{array}{cc}-1^{2}\cdot \sin 0\\\cos 0-0\cdot 1\cdot \sin 0\end{array}\right][/tex]

[tex]\nabla f (x_{o}, y_{o}) = \left[\begin{array}{cc}0\\1\end{array}\right][/tex]

If we know that [tex]\vec v = \cos \frac{\pi}{3}\,\hat{i} + \sin \frac{\pi}{3} \,\hat{j}[/tex], then the directional derivative is:

[tex]\Delta_{\vec v} f = \left[\begin{array}{cc}0\\1\end{array}\right]\cdot \left[\begin{array}{cc}\cos \frac{\pi}{3} \\\sin \frac{\pi}{3} \end{array}\right][/tex]

[tex]\nabla_{\vec v} f = (0)\cdot \cos \frac{\pi}{3} + (1)\cdot \sin \frac{\pi}{3}[/tex]

[tex]\nabla_{\vec v} f = \frac{\sqrt{3}}{2}[/tex]

The directional derivative of [tex]f[/tex] at the given point in the direction indicated is [tex]\frac{\sqrt{3}}{2}[/tex]. [tex]\blacksquare[/tex]

To learn more on directional derivatives, we kindly invite to check this verified question: https://brainly.com/question/9964491

A car travels 133 mi averaging a certain speed. If the car had gone 30 mph​ faster, the trip would have taken 1 hr less. Find the​ car's average speed.

Answers

Answer:

49.923 mph

Step-by-step explanation:

we know that the car traveled 133 miles in h hours at an average speed of x mph.

That is, xh = 133.

We can also write this in terms of hours driven: h = 133/x.

 

If x was 30 mph faster, then h would be one hour less.

That is, (x + 30)(h - 1) = 133, or h - 1 = 133/(x + 30).

We can rewrite the latter equation as h = 133/(x + 30) + 1

We can then make a system of equations using the formulas in terms of h to find x:

h = 133/x = 133/(x + 30) + 1

133/x = 133/(x + 30) + (x + 30)/(x + 30)

133/x = (133 + x + 30)/(x + 30)

133 = x*(133 + x + 30)/(x + 30)

133*(x + 30) =  x*(133 + x + 30)

133x + 3990 = 133x + x^2 + 30x

3990 = x^2 + 30x

x^2 + 30x - 3990 = 0

Using the quadratic formula:

x = [-b ± √(b^2 - 4ac)]/2a  

= [-30 ± √(30^2 - 4*1*(-3990))]/2(1)  

= [-30 ± √(900 + 15,960)]/2

= [-30 ± √(16,860)]/2

= [-30 ± 129.846]/2

= 99.846/2  -----------  x is miles per hour, and a negative value of x is neglected, so we'll use the positive value only)

= 49.923

Check if the answer is correct:

h = 133/49.923 = 2.664, so the car took 2.664 hours to drive 133 miles at an average speed of 49.923 mph.

If the car went 30 mph faster on average, then h = 133/(49.923 + 30) = 133/79.923 = 1.664, and 2.664 - 1 = 1.664.

Thus, we have confirmed that a car driving 133 miles at about 49.923 mph would have arrive precisely one hour earlier by going 30 mph faster

Which statement about the following equation is true?
2x2-9x+2-1​

Answers

Complete Question:

Which statement about the following equation is true?

[tex]2x^2-9x+2 = -1[/tex]

A) The discriminant is less than 0, so there are two real roots

B) The discriminant is less than 0, so there are two complex roots

C) The discriminant is greater than 0, so there are two real roots

D) The discriminant is greater than 0, so there are two complex roots

Answer:

C) The discriminant is greater than 0, so there are two real roots

Step-by-step explanation:

The given equation is [tex]2x^2-9x+2 = -1[/tex] which by simplification becomes

[tex]2x^2 - 9x + 3 = 0[/tex]

For a quadratic equation of the form [tex]ax^2 + bx + c = 0[/tex], the discriminant is given by the equation, [tex]D = b^2 - 4ac[/tex]

If the discriminant D is greater than 0, the roots are real and different

If the discriminant D is equal to 0, the roots are real and equal

If the discriminant D is less than 0, the roots are imaginary

For the quadratic equation under consideration, a = 2, b = -9, c = 3

Let us calculate the discriminant D

D = (-9)² - 4(2)(3)

D = 81 - 24

D = 57

Since the Discriminant D is greater than 0, the roots are real and different.

Answer:

Step-by-step explanation:

C) The discriminant is greater than 0, so there are two real roots

let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has

Answers

Answer:

The answer is below

Step-by-step explanation:

A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?

Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:

[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]

a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]

b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.

That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757

c) Let b be the amount of raw sugar should be stocked for the plant each day.

P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]

But P(x > a) = 0.05

Therefore:

[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]

a  ≅ 12

Assume that there is a 6% rate of disk drive failure in a year. a. If all your computer data is stored on a hard disk drive with a copy stored on a second hard disk drive, what is the probability that during a year, you can avoid catastrophe with at least one working drive? b. If copies of all your computer data are stored on independent hard disk drives, what is the probability that during a year, you can avoid catastrophe with at least one working drive? four a. With two hard disk drives, the probability that catastrophe can be avoided is . (Round to four decimal places as needed.) b. With four hard disk drives, the probability that catastrophe can be avoided is . (Round to six decimal places as needed.)

Answers

Answer: 0.9964

Step-by-step explanation:

Consider,

P (disk failure) = 0.06

q = 0.06

p = 1- q

p = 1- 0.06,

p = 0.94

Step 2

Whereas p represents the probability that a disk does not fail. (i.e. working entire year).

a)

Step 3

a)

n = 2,

let x be a random variable for number...

Continuation in the attached document

In the search to determine if car 1 is slower to accelerate than car 2, the mean time it takes to accelerate to 30 miles per hour is recorded (Note: a car is slower to accelerate if it takes more time to accelerate). Twenty trials of the acceleration time for each car are recorded, and both populations have normal distributions with known standard deviations. What are the hypotheses used in this test

Answers

Answer:

Step-by-step explanation:

The happiest used in a test in statistics are the null and the alternative hypothesis. The null hypothesis is usually the default statement while the alternative hypothesis is thevopposite of the null hypothesis.

In this case study, the null hypothesis is u1 = u2: the average mean time it takes to accelerate to 30 miles per hour for car 1 is the same as that for car 2.

The alternative hypothesis is u1 > u2: the mean time it takes to accelerate to 30 miles per hour is greater than that for car 2 thus car 1 is slower to accelerate as it takes more time.

may someone assist me?

Answers

Answer:

28

Step-by-step explanation:

Let x be the missing segment

We will use the proportionality property to find x

24/16 = 42/x

Simplify 24/16

24/16= (4×6)/(4×4)= 4/6 = 3/2

So 3/2 = 42/x

3x = 42×2

3x = 84

x = 84/3

x= 28

Crime and Punishment: In a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.
(A) If one of the study subjects is randomly selected, find the probability of getting someone who was not sent to prison.
(B) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, find the probability that this person was not sent to prison.

Answers

Answer:

(a) The probability of getting someone who was not sent to prison is 0.55.

(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is 0.63.

Step-by-step explanation:

We are given that in a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.

Let the probability that subjects studied were sent to prison = P(A) = 0.45

Let G = event that subject chose to plead guilty

So, the probability that the subjects chose to plead guilty given that they were sent to prison = P(G/A) = 0.40

and the probability that the subjects chose to plead guilty given that they were not sent to prison = P(G/A') = 0.55

(a) The probability of getting someone who was not sent to prison = 1 - Probability of getting someone who was sent to prison

      P(A') = 1 - P(A)

               = 1 - 0.45 = 0.55

(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is given by = P(A'/G)

We will use Bayes' Theorem here to calculate the above probability;

    P(A'/G) =  [tex]\frac{P(A') \times P(G/A')}{P(A') \times P(G/A') +P(A) \times P(G/A)}[/tex]      

                 =  [tex]\frac{0.55 \times 0.55}{0.55\times 0.55 +0.45 \times 0.40}[/tex]

                 =  [tex]\frac{0.3025}{0.4825}[/tex]

                 =  0.63

A subcommittee is randomly selected from a committee of eight men and seven women. What is the probability that all three people on the subcommittee are men

Answers

Answer:

The probability that all three people on the subcommittee are men

= 20%

Step-by-step explanation:

Number of members in the committee = 15

= 8 men + 7 women

The probability of selecting a man in the committee

= 8/15

= 53%

The probability of selecting three men from eight men

= 3/8

= 37.5%

The probability that all three people on the subcommittee are men

= probability of selecting a man multiplied by the probability of selecting three men from eight men

= 53% x 37.5%

= 19.875%

= 20% approx.

This is the same as:

The probability of selecting 3 men from the 15 member-committee

= 3/15

= 20%

A newsletter publisher believes that 71q% of their readers own a personal computer. Is there sufficient evidence at the 0.010.01 level to refute the publisher's claim.

Required:
State the null and alternative hypotheses for the above scenario.

Answers

Answer:

Null - p= 71%

Alternative - p =/ 71%

Step-by-step explanation:

The null hypothesis is always the default statement in an experiment. While the alternative hypothesis is always tested against the null hypothesis.

Null hypothesis: 71% of their readers own a personal computer- p = 71%

Alternative hypothesis: Not 71% of their readers own a personal computer - p =/ 71%

What is the rate of change of the function

Answers

The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

In which table does y vary inversely with x? A. x y 1 3 2 9 3 27 B. x y 1 -5 2 5 3 15 C. x y 1 18 2 9 3 6 D. x y 1 4 2 8 3 12

Answers

Answer:

In Table C, y vary inversely with x.

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Step-by-step explanation:

We are given four tables and asked to find out in which table y vary inversely with x.

We know that an inverse relation has a form given by

y = k/x

xy = k

where k must be a constant

Table A:

x     |      y

1     |      3

2     |     9

3     |    27

1×3 = 3

2×9 = 18

3×27 = 81

3 ≠ 18 ≠ 81

Hence y does not vary inversely with x.

Table B:

x     |      y

1     |     -5

2     |     5

3     |    15

1×-5 = -5

2×5 = 10

3×15 = 45

-5 ≠ 10 ≠ 45

Hence y does not vary inversely with x.

Table C:

x     |      y

1     |      18

2     |     9

3     |     6

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Hence y vary inversely with x.

Table D:

x     |      y

1     |      4

2     |     8

3     |    12

1×4 = 4

2×8 = 16

3×12 = 36

4 ≠ 16 ≠ 36

Hence y does not vary inversely with x.

need answers (ASAP!!!) with equations, please!!

Answers

Answer:

a=6, b=5.5

Step-by-step explanation:

By looking at the sides of the triangles it can easily be seen that some of the sides match up. Side b is similar to the side of 11 and same with side a and the side of 3. Since one side is 16 and the other side on the smaller triangle is 8, the bigger triangle is twice as large than the smaller one. So 3 x 2 = 6 and 11 / 2 = 5.5

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

8lb of the cheaper Candy

17.5lb of the expensive candy

Step-by-step explanation:

Let the cheaper candy be x

let the costly candy be y

X+y = 25.5....equation one

2.2x +7.3y = 25.5(5.7)

2.2x +7.3y = 145.35.....equation two

X+y = 25.5

2.2x +7.3y = 145.35

Solving simultaneously

X= 25.5-y

Substituting value of X into equation two

2.2(25.5-y) + 7.3y = 145.35

56.1 -2.2y +7.3y = 145.35

5.1y = 145.35-56.1

5.1y = 89.25

Y= 89.25/5.1

Y= 17.5

X= 25.5-y

X= 25.5-17.5

X= 8

What is the slope of the line shown below (3,9) (1,1)

Answers

Answer:

slope m = 4

Step-by-step explanation:

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points

[tex](3;\ 9)\to x_1=3;\ y_1=9\\(1;\ 1)\to x_2=1;\ y_2=1[/tex]

Substitute:

[tex]m=\dfrac{1-9}{1-3}=\dfrac{-8}{-2}=4[/tex]

Answer:

m=4

Step-by-step explanation:

Slope can be found using the following formula:

[tex]m=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

where [tex](x_{1},y_{1})[/tex] and [tex](x_{2},y_{2})[/tex] are points on the line.

We are given the points (3,9) and (1,1). Therefore,

[tex]x_{1}=3\\y_{1}=9 \\x_{2}=1\\y_{2}=1[/tex]

Substitute each value into the formula.

[tex]m=\frac{1-9}{1-3}[/tex]

Subtract in the numerator first.

[tex]m=\frac{-8}{1-3}[/tex]

Subtract in the denominator.

[tex]m=\frac{-8}{-2}[/tex]

Divide.

[tex]m=4[/tex]

The slope of the line is 4.

17. An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. How large a sample is need it if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean

Answers

Answer:

A sample of at least 541 is needed if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean.

Step-by-step explanation:

We are given that an electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours.

We have to find a sample such that we are 98% confident that our sample mean will be within 4 hours of the true mean.

As we know that the Margin of error formula is given by;

The margin of error =  [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]

where, [tex]\sigma[/tex] = standard deviation = 40 hours

            n = sample size

            [tex]\alpha[/tex] = level of significance = 1 - 0.98 = 0.02 or 2%

Now, the critical value of z at ([tex]\frac{0.02}{2}[/tex] = 1%) level of significance n the z table is given as 2.3263.

So, the margin of error =  [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]

                 [tex]4=2.3263 \times \frac{40}{\sqrt{n} }[/tex]

                 [tex]\sqrt{n}= \frac{40 \times 2.3263}{ 4}[/tex]

                  [tex]\sqrt{n}=23.26[/tex]

                   n = [tex]23.26^{2}[/tex] = 541.03 ≈ 541

Hence, a sample of at least 541 is needed if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean.

Compute the following values when the log is defined by its principal value on the open set U equal to the plane with the positive real axis deleted.

a. log i
b. log(-1)
c. log(-1 + i)
d. i^i
e. (-i)^i

Answers

Answer:

Following are the answer to this question:

Step-by-step explanation:

The principle vale of Arg(3)

[tex]Arg(3)=-\pi+\tan^{-1} (\frac{|Y|}{|x|})[/tex]

The principle value of the [tex]\logi= \log(0+i)\ \ \ \ \ _{where} \ \ \ x=0 \ \ y=1> 0[/tex]

So, the principle value:

a)

[tex]\to \log(i)=\log |i|+i Arg(i)\\\\[/tex]

             [tex]=\log \sqrt{0+1}+i \tan^{-1}(\frac{1}{0})\\\=\log 1 +i \tan^{-1}(\infty)\\\=0+i\frac{\pi}{2}\\\=i\frac{\pi}{2}[/tex]

b)

[tex]\to \log(-i)= \log(0-i ) \ \ \ x=0 \ \ \ y= -1<0\\[/tex]

Principle value:

[tex]\to \log(-i)= \log|-i|+iArg(-i) \\\\[/tex]

                 [tex]=\log \sqrt{0+1}+i(-\pi+\tan^{-1}(\infty))\\\\=\log1 + i(-\pi+\frac{\pi}{2})\\\\=-i\frac{\pi}{2}[/tex]

c)

[tex]\to \log(-1+i) \ \ \ \ x=-1, _{and} y=1 \ \ \ x<0 and y>0[/tex]

The principle value:

[tex]\to \log(-1+i)=\log |-1+i| + i Arg(-1+i)[/tex]

                     [tex]=\log \sqrt{1+1}+i(\pi+\tan^{-1}(\frac{1}{1}))\\\\=\log \sqrt{2} + i(\pi-\tan^{-1}\frac{\pi}{4})\\\\=\log \sqrt{2} + i\tan^{-1}\frac{3\pi}{4}\\\\[/tex]

d)

[tex]\to i^i=w\\\\w=e^{i\log i}[/tex]

The principle value:

[tex]\to \log i=i\frac{\pi}{2}\\\\\to w=e^{i(i \frac{\pi}{2})}\\\\=e^{-\frac{\pi}{2}}[/tex]

e)

[tex]\to (-i)^i\\\to w=(-i)^i\\\\w=e^{i \log (-i)}[/tex]

In this we calculate the principle value from b:

so, the final value is [tex]e^{\frac{\pi}{2}}[/tex]

f)

[tex]\to -1^i\\\\\to w=e^{i log(-1)}\\\\\ principle \ value: \\\\\to \log(-1)= \log |-1|+iArg(-i)[/tex]

                [tex]=\log \sqrt{1} + i(\pi-\tan^{-1}\frac{0}{-1})\\\\=\log \sqrt{1} + i(\pi-0)\\\\=\log \sqrt{1} + i\pi\\\\=0+i\pi\\=i\pi[/tex]

and the principle value of w is = [tex]e^{\pi}[/tex]

g)

[tex]\to -1^{-i}\\\\\to w=e^(-i \log (-1))\\\\[/tex]

from the point f the principle value is:

[tex]\to \log(-1)= i\pi\\\to w= e^{-i(i\pi)}\\\\\to w=e^{\pi}[/tex]

h)

[tex]\to \log(-1-i)\\\\\ Here x=-1 ,<0 \ \ y=-1<0\\\\ \ principle \ value \ is:\\\\ \to \log(-1-i)=\log\sqrt{1+1}+i(-\pi+\tan^{-1}(1))[/tex]

                    [tex]=\log\sqrt{2}+i(-\pi+\frac{\pi}{4})\\\\=\log\sqrt{2}+i(-\frac{3\pi}{4})\\\\=\log\sqrt{2}-i\frac{3\pi}{4})\\[/tex]

A triangle has interior measures of 32° and 90°. What is the measure of the third angle?

Answers

Answer:

58°

Step-by-step explanation:

Let the measure of third angle be X

The sum of interior angle of triangle = X

Let's create an equation

[tex]x + 32 + 90 = 180[/tex]

Add the numbers

[tex]x + 122 = 180[/tex]

Move constant to R.H.S and change its sign

[tex]x = 180 - 122[/tex]

Subtract the numbers

[tex]x = 58[/tex] °

Hope this helps...

Best regards!!

An angle measures 125.6° less than the measure of its supplementary angle. What is the measure of each angle?

Answers

Answer:

The measure of each angle:

152.8°   and     27.2°

Step-by-step explanation:

Supplementary angles sum 180°

then:

a + b = 180°

a - b = 125.6°

then:

a = 180 - b

a = 125.6 + b

180 - b = 125.6 + b

180 - 125.6 = b + b

54.4 = 2b

b = 54.4/2

b = 27.2°

a = 180 - b

a = 180 - 27.2

a = 152.8°

Check:

152.8 + 27.2 = 180°

Answers:

152.8° & 27.2°

Step-by-step explanation:

Let x and y be the measures of each angle.

x + y = 180°

x - y = 125.6°

180 - 125.6 = 54.4

Now we divide 54.4 evenly to get y.

y = 27.2°

To get x, we substitute y into the equation.

x = 27.2 + 125.6

x = 152.8°

To check, we plug these in to see if they equal 180°.

27.2 + 152.8 = 180° ✅

I'm always happy to help :)

Sam weights 51kg. What is this weight to the nearest stone?. Use this conversion, 1kg= 2.2 pounds and 14 pounds= 1 stone

Answers

Sam's weight to the nearest stone is equal to 8.0 stone.

Given the following data:

Sam's weight = 51 kg.1 kg = 2.2 pounds.14 pounds = 1 stone.

To determine Sam's weight to the nearest stone:

How to convert the units of measurement.

In this exercise, you're required to determine Sam's weight to the nearest stone. Thus, we would convert his weight in kilograms to pounds and lastly to stone as follows:

Conversion:

1 kg = 2.2 pounds.

51 kg = [tex]51 \times 2.2[/tex] = 112.2 pounds.

Next, we would convert the value in pounds to stone:

14 pounds = 1 stone.

112.2 pounds = X stone.

Cross-multiplying, we have:

[tex]14X = 112.2\\\\X=\frac{112.2}{14}[/tex]

X = 8.01 8.0 stone.

Read more on weight here: brainly.com/question/13833323


An experiment involves 17 participants. From these, a group of 3 participants is to be tested under a special condition. How many groups of 3 participants can
be chosen, assuming that the order in which the participants are chosen is irrelevant?

Answers

Answer: 680

Step-by-step explanation:

When order doesn't matter,then the number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Given: Total participants = 17

From these, a group of 3 participants is to be tested under a special condition.

Number of groups of 3 participants chosen = [tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\[/tex]

[tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\\\\=\dfrac{17\times16\times15\times14!}{3\times2\times14!}\\\\=680[/tex]

Hence, there are 680 groups of 3 participants can  be chosen,.

Other Questions
Consider a service company that provides carpet cleaning and uses straight-line depreciation. Classify the cost of the depreciation on the carpet cleaning machines.a. Fixedb. Indirect Find the values of x and y for both questions. Which element of scientific knowledge do good science writers take care to emphasize x12=4y 2x+8y=14 Which of the following represents a solution (x,y) to the system of equations above? *Marie made a model (shown below) of the square pyramid she plans to build when she grows up. Find the surface area of the model. 8 12 12 The coordinates of point L on a coordinate grid are (2, 4). Point L is reflected across the y-axis to obtain point M and across the x-axis to obtain point N. What are the coordinates of points M and N? M(2, 4), N(2, 4) M(2, 4), N(2, 4) M(2, 4), N(2, 4) M(2, 4), N(2, 4) Tristan wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 3% and the other bank is offering a rate of 2.5% compounded annually. If Tristan decides to deposit $7,000 for 4 years, which bank would be the better deal? 1. a simple interest rate of 3% 2. a compound interest rate of 2.5% Classify each of the following based on the macroeconomic definitions of saving and investment. a. Saving Investment Kate purchases stock in Pherk, a pharmaceutical company. b. Hubert purchases a new condominium in Houston. c. Clancy purchases a certificate of deposit at his bank. d. Eileen borrows money to build a new lab for her engineering firm. Given: r || s, and t is a transversal that cuts both r and s. Prove: I don't understand the British system of colonization help plzz ... Trigonometry M(8,7) is the midpoint of rs. The coordinates of s are (9,5) what is the coordinates of r TIME REMAINING 51:02 Between 1940 and 1970 most scientists were already concerned about global warming. Please select the best answer from the choices provided T F Which is which: alusion or prosa: 1) I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character. 2) Their love was so real that even Romeo and Juliet would have been amazed. ________ determines the point at which the sum of carrying costs and ordering costs are minimized, or the point at which carrying costs equal ordering costs. Group of answer choices Reorder point Economic Order Quantity When to order Inventory turnover What can you do using the start menu in windows 10 -2x(x+3)-(x+1)(x-2) please help me solve this adequate food safety practices lead to less food waste insurance costs hospitalization training Which of the following sentences is written in active voice? A. I went to the mall. B. The computer was fixed by my friend. C. The suitcase was found. D. The trash was taken out yesterday. Identify each of the following items as either a capital expenditure (C), an immediate expense (E), or neither (N):1. Paid property taxes of $75,000 for the first year the new building is occupied. 2. Paid interest on construction note for new plant building, $550,000 3. Repaired plumbing in main plant, paying $270,000 cash. 4. Purchased equipment for new manufacturing plant, $6,000,000; financed with long-term nc 5. Paid dividends of $40,000. 6. Purchased a computer and peripheral equipment for $29,000 cash. 7. Paved a parking lot on leased property for $300,000. 8. Paid $90,000 in cash for installation of equipment in (4). 9. Paid $148,000 to tear down old building on new plant site. 10. Paid $31 ,000 maintenance on equipment in (4) during its first year of use.