Answer:
[tex]x=8[/tex]
Step-by-step explanation:
We can solve this equation by isolating the variable x.
First let’s apply the distributive property:
[tex]5(x+3)-12=43\\5\cdot x + 5\cdot3 - 12=43\\5x + 15 - 12 = 43[/tex]
Combine like terms:
[tex]5x + 3 = 43[/tex]
Now we can subtract 3 from both sides:
[tex]5x + 3 - 3 = 43-3\\5x = 40[/tex]
Divide both sides by 5:
[tex]5x\div5 = 40\div5\\x = 8[/tex]
So [tex]x=8[/tex].
Hope this helped!
Answer:
x = 8
Step-by-step explanation:
5(x + 3) – 12 = 43
Add 12 to each side
5(x + 3) – 12+12 = 43+12
5(x+3) =45
Divide each side by 5
5(x+3)/5 = 55/5
x+3 = 11
Subtract 3 from each side
x+3-3 = 11-3
x = 8
(SAT Prep) In the given figure, a║b. What is the value of x? A. 70° B. 45° C. 80° D. 65° I NEED THIS FAST PLZZZZZZ!!!!!!!!!!!!
Answer:
70
Step-by-step explanation:
You have to find the vertical of x. To the right of the vertical, we see that there is an angle of 25 (since the 25 up top corresponds to that blank angle). Once you add 25 + 85 + x = 180 (since this is a straight line), we see that x is 70, and its vertical is also 70.
Which graph shows all the values that satisfy Two-ninths x + 3 greater-than 4 and five-ninths
Answer:
It is the first graph
Step-by-step explanation:
Just got it right on the test review :)
Inequalities help us to compare two unequal expressions. The graph shows that all the values of x that satisfies the given inequality are x>7. Thus, the correct option is A.
What are inequalities?Inequalities help us to compare two unequal expressions. Also, it helps us to compare the non-equal expressions so that an equation can be formed. It is mostly denoted by the symbol <, >, ≤, and ≥.
The given inequality can be solved as,
[tex]\dfrac29(x+3) > 4(\dfrac59)\\\\\dfrac{2x+6}{9} > \dfrac{20}{9}\\\\2x + 6 > 20\\\\2x > 20 - 6\\\\x > \dfrac{14}{2}\\\\x > 7[/tex]
Hence, the graph shows that all the values of x that satisfies the given inequality are x>7. Thus, the correct option is A.
Learn more about Inequality:
https://brainly.com/question/19491153
#SPJ2
If C(x) is the cost of producing x units of a commodity, then the average cost per unit is c(x) = C(x)/x. Consider the cost function C(x) given below. C(x) = 54,000 + 130x + 4x3/2 (a) Find the total cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ (b) Find the average cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (c) Find the marginal cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (d) Find the production level that will minimize the average cost. (Round your answer to the nearest whole number.) units (e) What is the minimum average cost? (Round your answer to the nearest dollar.) $ per unit
Answer:
Step-by-step explanation:
Given that:
If C(x) = the cost of producing x units of a commodity
Then;
then the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
We are to consider a given function:
[tex]C(x) = 54,000 + 130x + 4x^{3/2}[/tex]
And the objectives are to determine the following:
a) the total cost at a production level of 1000 units.
So;
If C(1000) = the cost of producing 1000 units of a commodity
[tex]C(1000) = 54,000 + 130(1000) + 4(1000)^{3/2}[/tex]
[tex]C(1000) = 54,000 + 130000 + 4( \sqrt[2]{1000^3} )[/tex]
[tex]C(1000) = 54,000 + 130000 + 4(31622.7766)[/tex]
[tex]C(1000) = 54,000 + 130000 + 126491.1064[/tex]
[tex]C(1000) = $310491.1064[/tex]
[tex]\mathbf{C(1000) \approx $310491.11 }[/tex]
(b) Find the average cost at a production level of 1000 units.
Recall that :
the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
SO;
[tex]c(x) =\dfrac{(54,000 + 130x + 4x^{3/2})}{x}[/tex]
Using the law of indices
[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]
[tex]c(1000) = \dfrac{54000}{1000}+ 130 + {4(1000)^{1/2}}[/tex]
c(1000) =$ 310.49 per unit
(c) Find the marginal cost at a production level of 1000 units.
The marginal cost is C'(x)
Differentiating C(x) = 54,000 + 130x + 4x^{3/2} to get C'(x) ; we Have:
[tex]C'(x) = 0 + 130 + 4 \times \dfrac{3}{2} \ x^{\dfrac{3}{2}-1}[/tex]
[tex]C'(x) = 0 + 130 + 2 \times \ {3} \ x^{\frac{1}{2}}[/tex]
[tex]C'(x) = 0 + 130 + \ {6}\ x^{\frac{1}{2}}[/tex]
[tex]C'(1000) = 0 + 130 + \ {6} \ (1000)^{\frac{1}{2}}[/tex]
[tex]C'(1000) = 319.7366596[/tex]
[tex]\mathbf{C'(1000) = \$319.74 \ per \ unit}[/tex]
(d) Find the production level that will minimize the average cost.
the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]
the production level that will minimize the average cost is c'(x)
differentiating [tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex] to get c'(x); we have
[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{4}{2 \sqrt{x} }[/tex]
[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{2}{ \sqrt{x} }[/tex]
Also
[tex]c''(x)= \dfrac{108000}{x^3} -x^{-3/2}[/tex]
[tex]c'(x)= \dfrac{54000}{x^2} + \dfrac{4}{2 \sqrt{x} } = 0[/tex]
[tex]x^2 = 27000\sqrt{x}[/tex]
[tex]\sqrt{x} (x^{3/2} - 27000) =0[/tex]
x= 0; or [tex]x= (27000)^{2/3}[/tex] = [tex]\sqrt[3]{27000^2}[/tex] = 30² = 900
Since production cost can never be zero; then the production cost = 900 units
(e) What is the minimum average cost?
the minimum average cost of c(900) is
[tex]c(900) =\dfrac{54000}{900} + 130 + 4(900)^{1/2}[/tex]
c(900) = 60 + 130 + 4(30)
c(900) = 60 +130 + 120
c(900) = $310 per unit
It has been observed that some persons who suffer acute heartburn, again suffer acute heartburn within one year of the first episode. This is due, in part, to damage from the first episode. The performance of a new drug designed to prevent a second episode is to be tested for its effectiveness in preventing a second episode. In order to do this two groups of people suffering a first episode are selected. There are 55 people in the first group and this group will be administered the new drug. There are 45 people in the second group and this group will be administered a placebo. After one year, 11% of the first group has a second episode and 9% of the second group has a second episode. Conduct a hypothesis test to determine, at the significance level 0.1, whether there is reason to believe that the true percentage of those in the first group who suffer a second episode is different from the true percentage of those in the second group who suffer a second episode?
Answer:
Null hypothesis :
[tex]H_o:p_1-p_2 = 0[/tex]
Alternative hypothesis:
[tex]H_1:p_1-p_2 \neq 0[/tex]
Decision Rule:
To reject the null hypothesis if z < -1.65 and z > 1.65
Conclusion:
Failed to reject null hypothesis if z > -1.65 or z < 1.65
z -value = 0.33022
P-value = 0.7414
Decision Rule:
Since the P-value is higher than the level of significance , therefore do not reject the null hypothesis at the level of significance of 0.1
Conclusion: we failed to reject null hypothesis, Therefore, the data does not believe that the true percentage of those in the first group who suffer a second episode is different from the true percentage of those in the second group who suffer a second episode
Step-by-step explanation:
From the summary of the given statistical data sets.
Let consider to [tex]p_1[/tex] represent percentage of the first group ; &
[tex]p_2[/tex] represent percentage of the second group
The null and the alternative hypothesis can be stated s follows:
Null hypothesis :
[tex]H_o:p_1-p_2 = 0[/tex]
Alternative hypothesis:
[tex]H_1:p_1-p_2 \neq 0[/tex]
At the level of significance ∝ = 0.1; the two tailed critical value from the z-table
[tex]z_{\alpha/2} = 1.65[/tex]
Decision Rule:
To reject the null hypothesis if z < -1.65 and z > 1.65
Conclusion:
Failed to reject null hypothesis if z > -1.65 or z < 1.65
However; from the question:
There are 55 people in the first group and this group will be administered the new drug.
There are 45 people in the second group and this group will be administered a placebo.
After one year, 11% of the first group has a second episode and 9% of the second group has a second episode.
The test statistic for the for the first group who suffered from the second episode can be denoted as :
[tex]\hat p_1 = \dfrac{\overline x_1}{n_1}=0.11[/tex]
The test statistic for the for the second group who suffered from the second episode can be denoted as :
[tex]\hat p_2 = \dfrac{\overline x_2}{n_2}=0.09[/tex]
where;
[tex]n_1[/tex] = sample size of group 1 = 55
[tex]n_2[/tex] = sample size of group 2 = 45
The total probability of both group is :
[tex]\hat p = \dfrac{n_1 \hat p_1 + n_2 \hat p_2}{n_1 + n_2}[/tex]
[tex]\hat p = \dfrac{55*0.11+ 45 * 0.09}{55+45}[/tex]
[tex]\hat p = \dfrac{6.05+ 4.05}{100}[/tex]
[tex]\hat p = \dfrac{10.1}{100}[/tex]
[tex]\hat p = 0.101[/tex]
The standard error of the statistic [tex]\hat p_1 - \hat p_2[/tex] an be computed as follows:
[tex]S.E(\hat p_1 - \hat p_2)= \sqrt{ p_1 (1 - \hat p)( \dfrac{1}{n_1}+\dfrac{1}{n_2})}[/tex]
[tex]S.E(\hat p_1 - \hat p_2)= \sqrt{0.101 (1 - 0.101)( \dfrac{1}{55}+\dfrac{1}{45})}[/tex]
[tex]S.E(\hat p_1 - \hat p_2)= \sqrt{0.101(0.899)(0.0404)}[/tex]
[tex]S.E(\hat p_1 - \hat p_2)= \sqrt{0.0036682796}[/tex]
[tex]S.E(\hat p_1 - \hat p_2)=0.060566[/tex]
Now; The test statistics is determined to be :
[tex]z = \dfrac{(\hat p_1 - \hat p_2 ) - (p_1-p_2)}{SE(\hat p_1 - \hat p_2)}[/tex]
[tex]z = \dfrac{(0.11-0.09) - 0}{0.060566}[/tex]
z = 0.33022
Hence; the value for the test statistics = 0.33022
the value for the test statistics = 0.33
From the z value; The P-value for the test statistics can be computed as:
P-value = 2P(Z ≥ |z|)
P-value = 2P(Z ≥ 0.33022)
P-value = 2 × P (Z ≤ - 0.33022)
From the z table Z ≤ - 0.33022 = 0.3707
P-value = 2 × 0.3707
P-value = 0.7414
Decision Rule:
Since the P-value is higher than the level of significance , therefore do not reject the null hypothesis at the level of significance of 0.1
Conclusion: we failed to reject null hypothesis, Therefore, the data does not believe that the true percentage of those in the first group who suffer a second episode is different from the true percentage of those in the second group who suffer a second episode
−x<−29 solve for x answer must me simplified
Answer:
x > 29
Step-by-step explanation:
−x<−29
Divide each side by -1, remembering to flip the inequality
x > 29
Answer:
x > 29 → x ∈ (29; ∞)Step-by-step explanation:
-x < -29 change the signs
x > 29
h
e
l
p
?
p
l
e
a
s
e
To clear the fractions we multiply both sides by the least common multiple of all the denominators.
1/2 x + 2/3 = 4
Denominators 2 and 3, so multiply both sides by [Answer]: 6
3/4 x + 1 = 5/6
Denoms 4 and 6, LCM=12 Answer: 12
6/7 x - 2/3 = 5/21
LCM(7,3,21)=21 Answer: 21
3/5 + x/2 = 9
LCM(5,2) Answer: 10
25/4 = 6 + 1/2 x
LCM(4,2) Answer: 4
Determine the value of x using a trigonometric ratio.
A) 10.11 units
B) 4.98 units
C) 4.18 units
D) 8.49 units
We have a known hypotenuse, but unknown opposite side. Use the sine ratio to tie the two together to be able to solve for x.
sin(angle) = opposite/hypotenuse
sin(50) = x/6.5
6.5*sin(50) = x
x = 6.5*sin(50)
x = 4.97928888027336 make sure your calculator is in degree mode
x = 4.98
Answer is choice B
Answer:
b
Step-by-step explanation:
Applications of exponential functions need help ASAP PlZ
Answer:
Second choice is correct.
Step-by-step explanation:
Simple interest = $12600
Compounded interest = $14656
Best Regards!
Is the test below left-, right-, or two-tailed? H0:p=0.39, Ha:p≠0.39 Select the correct answer below: The hypothesis test is two-tailed. The hypothesis test is left-tailed. The hypothesis test is right-tailed.
Answer:
The hypothesis test is a two-tail test
Step-by-step explanation:
The test hypothesis:
Null hypothesis H₀ p = 0,39 or p = p₀
Where p₀ is a nominal proportion (established proportion) and
Alternate hypothesis Hₐ p ≠ 0,39 or p ≠ p₀
Is a two-tail test, (≠) means different, we have to understand that different implies bigger and smaller than something.
For a test to be one tail-test, it is necessary an evaluation only in one sense in relation to the pattern ( in this case the proportion )
Imagine a man in the Chicago suburbs went outside to shovel his driveway after the Feb 10, 2018 snowstorm and had a heart attack while shoveling. When the police discovered the body later that day at 4PM, his body temperature had dropped from 98.6°F to 42°F. The environmental air temperature was 10°F. What time did he die from the heart attack?
Answer:
I did my best with the information! The Man died at around 11:20 am.
Step-by-step explanation:
So due to the algus mortis process, after death, a body can stay at its regulated temperature for up to 2 to 3 hours postmortem. But after that, the body soon drops at about 1 degrees celsius each hour. 1 degrees celsius is about -33 . So he was found at 42 degrees fahrenheit, which means he died somewhere around 11 o-clock. We do not know how long the postmortem process had his temperature delayed, so it would be roughly I say around 11: 20 am.
Kirsten has 9 syrup containers from a local cafe. There are 6 milliliters of syrup per container.
Answer: 54 mL
Step-by-step explanation:
Simply do 9(number of containers)*6(Syrup per container) to get 54 mL of syrup.
Hope it helps <3
Gamal spent $12.50 at the book store. The difference between the amount he spent at the video game store and the amount he spent at the book store was $17. The equation d minus 12.50 = 17 can be used to represent this situation, where d is the amount Gamal spent at the video game store. Which equation is an equivalent equation that can be used to find the amount Gamal spent at the video game store?
Answer:
d - 12.50 = 17
add 12.50 to both sides to get d alone.
d = 12.50 + 17
Answer:
It's B d= 17 + 12.50
Step-by-step explanation:
Got it right on edg
17. What is the most likely outcome of decreasing the wavelength of incident light on a diffraction grating? A. lines become narrower B. distance between lines increases C. lines become thicker D. distance between lines decreases
When the wavelength of a diffraction grating is decreased, the distance between lines decreases.
What is a diffraction grating?The diffraction grating is used to carry out interference experiments. It consists of a number of small lines that are constructed to be close to each other and produce an interference pattern.
The outcome of decreasing the wavelength of incident light on a diffraction grating is that the distance between lines decreases.
Learn more about diffraction grating:https://brainly.com/question/13902808
#SPJ1
2x + 3 + 7x = – 24, what is the value of x?
14x + 3 = - 24
theeeeen I get stuck, HELP!
Answer:
-3
Step-by-step explanation:
2x + 3 +7x = -24
Add the X together
9x +3 = -24
Bring over the +3. [when you bring over change the sign]
9x = -24 -3
9x = -27
-27 divide by 9 to find X
therefore answer is
x= -3.
Hope this helps
Answer:
x = -3
Step-by-step explanation:
question is
2x + 3 + 7x = -24
First you combine the like terms
2x and 7x you can add them so it will be 9x
so it will then it will be like this:
9x + 3 = -24
now you take the 3 and send it to the other side, and right now the 3 is positive so when it goes to the other side it will turn into -3
so
9x = -24 -3
again now you combine the like terms
-24 -3 = - 27
now you have
9x = -27
now just divide each side by 9
x = -27/9
x = -3
Sorry if this doesnt help
Tanya's car will go 45 meters on 7 gallons. Tanya wants to know how fuel efficient the car is. Please help by computing the ratio. (round to 2 decimal places)
Answer:
5 meters : 1 gallon
fuel efficiency of Car is 7 meters per gallons
Step-by-step explanation:
Given Tanya car goes 45 meters on 7 gallons.
In terms of ratio of distance traveled and fuel consumed
45 meters : 7 gallons
since both 45 and 7 are multiple of 7 dividing both side by 7
45/7 meters : 7/7 gallons
5 meters : 1 gallon
Thus, fuel efficiency of Car is 7 meters per gallons.
Which point is a solution to the inequality shown in this graph?
Answer: A, (0, -3)
Step-by-step explanation:
Inequalities, once graphed, take the form of the image you attached:
Linear inequalities are straight lines, sometimes dotted and sometimes solid, with shading on one side of the line.
Any point in the shading is a correct solution to the inequality.
When the line is solid, any point on the line is a solution to the inequality.When the line is dotted, only the shaded area past the line includes solutions - points on the line are not solutions.In this case, the line is solid, so any point on the line is a solution to the inequality.
Looking at answer choice A: (0, -3), it lies on the line as the y-intercept.
The correct choice is A.
Consider two consecutive positive integers such that the square of the second integer added to 3 times the first is equal to 105
Answer:
8 and 9
Step-by-step explanation:
If x is the smaller integer, and x + 1 is the larger integer, then:
(x + 1)² + 3x = 105
x² + 2x + 1 + 3x = 105
x² + 5x − 104 = 0
(x + 13) (x − 8) = 0
x = -13 or 8
Since x is positive, x = 8. So the two integers are 8 and 9.
The length of time, in hours, it takes a group of people, 40 years and older, to play one soccer match is normally distributed with a mean of 2 hours and a standard deviation of 0.5 hours. A sample of size 50 is drawn randomly from the population. Find the probability that the sample mean is less than 2.3 hours. g
Answer:
[tex]P(\overline X < 2.3) = 0.9999[/tex]
Step-by-step explanation:
Given that:
mean = 2
standard deviation = 0.5
sample size = 50
The probability that the sample mean is less than 2.3 hours is :
[tex]P(\overline X < 2.3) = P(Z \leq \dfrac{\overline x - \mu}{\dfrac{\sigma}{\sqrt{n}}})[/tex]
[tex]P(\overline X < 2.3) = P(Z \leq \dfrac{2.3 - 2.0}{\dfrac{0.5}{\sqrt{50}}})[/tex]
[tex]P(\overline X < 2.3) = P(Z \leq \dfrac{0.3}{0.07071})[/tex]
[tex]P(\overline X < 2.3) = P(Z \leq 4.24268)[/tex]
[tex]P(\overline X < 2.3) = P(Z \leq 4.24)[/tex]
From z tables;
[tex]P(\overline X < 2.3) = 0.9999[/tex]
What are the vertical asymptote(s) of y= (x-6)/(x+8) (x-7)
Answer:
x = -8 and x= 7
Step-by-step explanation:
recall that for a rational expression, the vertical asymptotes occur at x-values that causes the expression to become undefined. These occur when the denominator becomes zero.
Hence the asymptototes will occur in x-locations where the denominator , i.e
(x+8)(x-7) = 0
solving this, we get
(x+8) = 0 ----> x = -8
or
(x-7) = 0 ------> x = 7
hence the asymptotes occur x = -8 and x= 7
Answer:
x = -8 and x = 7.
Step-by-step explanation:
The vertical asymptotes are lines that the function will never touch.
Since no number can be divided by 0, the function will not touch points where the denominator of the function is equal to 0.
[tex]\frac{x - 6}{(x + 8)(x - 7)}[/tex], so the vertical asymptotes will be where (x + 8) = 0 and (x - 7) = 0.
x + 8 = 0
x = -8
x - 7 = 0
x = 7
The vertical asymptotes are at x = -8 and x = 7.
Hope this helps!
PLS HELP ...... Urgently
Answer:
18+18 as point XYZ is in centroid of Q
Step-by-step explanation:
so it's equal.
36.which is option A.
What is the five number summary for this data set?
3, 8, 14, 19, 22, 29, 33, 37, 43, 49
Assume the numbers in each answer choice are listed in this order: min, Q1,
median, Q3, max
Answer:
see explanation
Step-by-step explanation:
The median is the middle value of the data set in ascending order. If there is no exact middle then the median is the average of the values either side of the middle.
Given
3 8 14 19 22 29 33 37 43 49
↑ middle is between 22 and 29
median = [tex]\frac{22+29}{2}[/tex] = [tex]\frac{51}{2}[/tex] = 25.5
The upper quartile [tex]Q_{3}[/tex] is the middle value of the data to the right of the median.
29 33 37 43 49
↑
[tex]Q_{3}[/tex] = 37
The lower quartile [tex]Q_{1}[/tex] is the middle value of the data to the left of the median.
3 8 14 19 22
↑
[tex]Q_{1}[/tex] = 14
The min is the smallest value in the data set, that is 3
The max is the largest value in the data set, that is 49
The 5 number summary is
3, 14, 25.5, 37, 49
Solve for x −ax + 2b > 8
Answer:
x < -( 8-2b) /a a > 0
Step-by-step explanation:
−ax + 2b > 8
Subtract 2b from each side
−ax + 2b-2b > 8-2b
-ax > 8 -2b
Divide each side by -a, remembering to flip the inequality ( assuming a>0)
-ax/-a < ( 8-2b) /-a
x < -( 8-2b) /a a > 0
Answer: [tex]x<\frac{-8+2b}{a}[/tex]
[tex]a>0[/tex]
Step-by-step explanation:
[tex]-ax+2b>8[/tex]
[tex]\mathrm{Subtract\:}2b\mathrm{\:from\:both\:sides}[/tex]
[tex]-ax>8-2b[/tex]
[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]
[tex]\left(-ax\right)\left(-1\right)<8\left(-1\right)-2b\left(-1\right)[/tex]
[tex]ax<-8+2b[/tex]
[tex]\mathrm{Divide\:both\:sides\:by\:}a[/tex]
[tex]\frac{ax}{a}<-\frac{8}{a}+\frac{2b}{a};\quad \:a>0[/tex]
[tex]x<\frac{-8+2b}{a};\quad \:a>0[/tex]
Please answer this correctly without making mistakes
Answer:
3/11
Step-by-step explanation:
There are eleven equal parts.
So the denominator is 11.
He copies 8 parts on Sunday.
11-8=3.
He copied 3 parts on Saturday.
Hope this helps ;) ❤❤❤
What are the expressions for length, width, and height?
Volume = length width height
V = _____ _____ _____
For odyyseyware
Answer:
[tex]\boxed{V=lwh}[/tex]
Step-by-step explanation:
The formula for volume of a cuboid is:
[tex]V=lwh[/tex]
[tex]volume = length \times width \times height[/tex]
Answer:
V = l w h
Step-by-step explanation:
Volume of a Cuboid = Length × Width × Height
Where l = length, w = width and h = height
I need answers for 1 , 2, 4
Answer:
(3) x ≥ -3
(4) 2.5 gallons
(4) -12x + 36
Step-by-step explanation:
Hey there!
1)
Well its a solid dot meaning it will be equal to.
So we can cross out 1 and 2.
And it's going to the right meaning x is greater than or equal to -3.
(3) x ≥ -3
2)
Well if each milk container has 1 quart then there is 10 quarts.
And there is 4 quarts in a gallon, meaning there is 2.5 gallons of milk.
(4) 2.5 gallons
4)
16 - 4(3x - 5)
16 - 12x + 20
-12x + 36
(4) -12x + 36
Hope this helps :)
2 x - 3 + 3x equals -28 what is the value of x
Answer:
[tex]x = -5[/tex]
Step-by-step explanation:
We can simplify this equation down until x is isolated.
[tex]2x - 3 + 3x = -28[/tex]
We can combine the like terms of x.
[tex]5x - 3 = -28[/tex]
Add 3 to both sides.
[tex]5x = -25[/tex]
Now we can divide both sides by 5.
[tex]x = -5[/tex].
So x = -5.
Hope this helped!
Answer:
x=-5
Step-by-step explanation:
first combine like terms
5x-3=-28
add on both sides
5x=-25
divide
x==-5
Calculate the side lengths a and b to two decimal places
A. a= 10.92 b=14.52 <--- My answer
B. a= 11 b= 15
C. a=4.18 b=3.15
D. a= 11.40 b=13.38
Answer:
Option (D)
Step-by-step explanation:
In the picture attached,
An obtuse angle triangle ABC has been given.
By applying Sine rule in the triangle,
[tex]\frac{\text{SinB}}{b}=\frac{\text{SinA}}{a}=\frac{\text{SinC}}{c}[/tex]
Since, m∠A + m∠B + m∠C = 180°
45° + 110° + m∠C = 180°
m∠C = 180°- 155° = 25°
[tex]\frac{\text{Sin110}}{b}=\frac{\text{Sin45}}{a}=\frac{\text{Sin25}}{7}[/tex]
[tex]\frac{\text{Sin110}}{b}=\frac{\text{Sin45}}{a}=0.060374[/tex]
[tex]\frac{\text{Sin110}}{b}=0.060374[/tex]
b = [tex]\frac{\text{Sin110}}{0.060374}[/tex]
b = 15.56
b ≈ 15.56
[tex]\frac{\text{Sin45}}{a}=0.060374[/tex]
a = [tex]\frac{\text{Sin45}}{0.060374}[/tex]
a = 11.712
a = 11.71
Therefore, Option (D) will be the answer.
The time to fly between New York City and Chicago is uniformly distributed with a minimum of 120 minutes and a maximum of 150 minutes. What is the probability that a flight is between 125 and 140 minutes
Answer: 0.5
Step-by-step explanation:
If the probability of the time to fly between New York City and Chicago is uniformly distributed with a minimum of 120 minutes and a maximum of 150 minutes. Therefore, the probability that a flight is between 125 and 140 minutes is 0.5
An architect needs to consider the pitch, or steepness, of a roof in order to ensure precipitation runoff. The graph below shows
the vertical height, y, versus the horizontal distance, x, as measured from the roof peak's support beam.
Roof Steepness
y
14
12
10
8
Vertical Height (feet)
4
2
+X
10 12 14
0
2
4
6
8
Horizontal Distance (feet)
Determine the equation that could be used to represent this situation.
Answer:
The third answer (C).
Step-by-step explanation:
This graph starts at 10. So it needs the +10 at the end.
Also the slope is -1/2 because the graph goes down one, right two. Rise/run.
Answer:
y= -1/2x+10
Step-by-step explanation:
The slope-intercept form of a linear equation is y = mx + b, where m represents the slope and b represents the y-intercept.
For the the given graph, the y-intercept is 10. The slope can be determined by finding the rate of change between any two points on the graph, such as (2,9) and (8,6).
Please explain what this means! (no math needs to be done as I got the answers but I don't understand the explanation...)
you can imagine this as a venn diagram. the "or" event would consist of everything in both sides and the middle of the venn diagram because you can choose form either event x or event y.
the "and" event would consist of everything in the middle of the venn diagram because you choice must be a part of both event x and event y.
the complement of an event is just everything that is not included in the event. for example, in a coin flip, the complement of heads is tails. in a dice roll, the complement of {1,2} is {3,4,5,6}
so if you come across these just think "either or" or "both and." and remember that the complement is everything excluding what is listed.
i apologize if this does not help, im not that great at explaining things