Answer:
Explanation:
y-component = - mgcos(8.7)
= - (1150)(9.81)cos(8.7)
= - 11151.69378
= - 11151.69 N
The weight of the y-component is 11140.33N.
How to find the weight of the y-component?
To find the weight of the y-component:
Given,
Car weight = 1150 kg
Anfle = 8.70 degree
weight = mg = 1150 * 9.8
= 11270 N
Y-component = mg cos∅
= 11270 * cos(8.70)
= 11140.33N
The aspect that pushes proper or left is referred to as the x-factor, and the element that pushes up or down is known as the y-component.
Learn more about y-component here: brainly.com/question/26700114
#SPJ2
At an accident scene on a level road, investigators measure a car's skid mark to be 98 m long. It was a rainy day and the coefficient of friction was estimated to be 0.38. a) Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes.b) Why does the car's mass not matter?
Answer:
a. V = 19.1m/s
b. The mass of the car does not matter
Explanation:
A.
KE = 1/2mv² = fd --------(1)
Fd = umgd ---------(2)
Therefore,
1/2mv² = umgd ---------(3)
M will cancel itself out from both sides of equation 3.
Then we will have:
1/2v² = ugd
Then we cross multiply to make v² the subject of the formula
V² = 2ugd
V = √2ugd -------(4)
U = 0.38
g = 9.81
d = 98
When we input these values into equation 4, we will have:
V = √2x0.38x9.81x98
V = √730.6488
V = 27.03m/s
B.
The mass of the car does not actually matter as the mass was cancelled out on the both sides of equation 3
Your teacher placed a 3.5 kg block at the position marked with a “ + ” (horizontally, 0.5 m from the origin) on a large incline outlined on the graph below and let it slide, starting from rest. ***There are two images included!***
Answer:
x = 10.75 m
Explanation:
For this problem we will solve it in two parts, the first using energy and the second with kinematics
Let's use the energy work relationship to find the velocity of the block as it exits the ramp
W = [tex]Em_{f}[/tex] - Em₀
Starting point. Higher
Em₀ = U = m g h
the height from the edge of the ramp of the graph has a value
h = 9-3 = 6 m
Final point. At the bottom of the ramp
Em_{f} = K = ½ m v²
Friction force work
W = - fr d
The friction force has the formula
fr = μ N
On the ramp, we can use Newton's second law
N - W cos θ = 0
N = W cos θ
where the angle is obtained from the graph
tan θ = (9-3) / (0.5-4) = -6 / 3.5
θ = tan⁻¹ (-1,714)
θ = -59.7º
the distance d is
d = √ (Δx² + Δy²)
d = √ [(0.5-4)² + (9-3)²]
d = 6.95 m
for which the work is
W = - μ mg cos 59.7 d
we substitute
W = Em_{f} -Em₀
- μ mg cos 59.7 d = ½ m v² - m g h
In the graph o text the value of the friction coefficient is not observed, suppose that it is μvery = 0.2
- μ g cos 59.7 d = ½ v² - g h
v² = 2g (h - very d coss 59.7)
let's calculate
v² = 2 9.8 (6 - 0.2 6.95 cos 59.7)
v = √ 103.8546
v = 10.19 m / s
in the same direction as the ramp
in the second part we use projectile launch kinematics
let's look for the components of velocity
v₀ₓ = vo cos -59.7
[tex]v_{oy}[/tex] = vo sin (-59,7)
v₀ₓ = 10.19 cos (-59.7) = 5.14 m / s
v_{oy} = 10.19 if (-59.7) = -8.798 m / s
Let's find the time to get to the floor (y = o)
y = y₀ + v_{oy} t - ½ g t²
to de groph y₀=3 m
0 = 3 - 8.798 t - ½ 9.8 t²
t² - 1.796 t - 0.612 = 0
we solve the quadratic equation
t = [1.796 ±√(1.796² + 4 0.612)] / 2
t = [1,795 ± 2,382] / 2
t₁ = 2.09 s
t₂ = -0.29 s
since time must be a positive quantity the correct value is t = 2.09 s
we calculate the horizontal displacement
x = v₀ₓ t
x = 5.14 2.09
x = 10.75 m
The motion of the box, after it exits the incline is the motion and trajectory
of a projectile.
Horizontal distance from the right-hand edge of the incline to the point of
contact with the floor is approximately 1.24613 m.
Reasons:
Mass of the block, m = 3.5 kg
Coefficient of kinetic friction, μ = 1.2
Location of the = 0.5 m from the origin
Required:
Horizontal distance between the block's point of contact with the floor and
the bottom right-hand edge of the incline.
Solution:
Let θ represent the angle the incline make with the horizontal.
The normal reaction of the incline on the block, [tex]F_N[/tex] = m·g·cos(θ)
Work done on friction = [tex]F_N[/tex]×μ×Length of the incline, L
Rise of the incline = 10 - 3 = 7
Run of the incline = 4
L = √(6.125² + 3.5²) = [tex]\dfrac{7 \times \sqrt{65} }{8}[/tex]
Let ΔP.E.₁ represent the potential energy transferred to kinetic energy
and work along the incline, we have;
Energy of the block at the bottom of the incline, M.E.₂, is found as follows;
K.E.₂ = mgh - m·g·μ·cos(θ)·L
[tex]K.E. =\frac{1}{2} \times 3.5 \times v^2 = 3.5 \times 9.81 \times 6.125 - 3.5 \times 9.81 \times 1.2 \times \dfrac{4}{\sqrt{65} } \times \dfrac{7 \times \sqrt{65} }{8}[/tex]
v ≈ 6.1456 m/s
The vertical component of the velocity is therefore;
[tex]v_y = v \cdot sin(\theta)[/tex]
[tex]v_y = 6.1456 \times \dfrac{7}{\sqrt{65} } \approx 5.33588[/tex]
From the equation, h = u·t + 0.5·g·t² derived from Newton's Laws of motion, we have;
ΔP.E.₁ = 3.5×9.81×7
3 = 5.33588·t + 0.5×9.81·t²
Factorizing, the above quadratic equation, we get;
The time it takes the block to reach the floor, t ≈ 0.40869 seconds
Horizontal component of the velocity is [tex]v_x \approx 6.1456 \times \dfrac{4}{\sqrt{65} } \approx 3.04908[/tex]
The horizontal distance, x = vₓ × t
∴ x = 3.04908 × 0.40869 ≈ 1.08194
Horizontal distance from the right-hand edge of the incline to the point of
contact with the floor, x ≈ 1.24613 m.
Learn more here:
https://brainly.com/question/24888457
What specific changes in two climate variables are expected to lead to major decreases in soil moisture southern Africa and the Mediterranean region?
Answer:
Less precipitation, droughts9: How might agriculture in southern Europe change by the end of the century if conditions follow the RCP8.
Explanation:
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture.
What is drought?
Drought is defined as a period of protracted water scarcity, whether it is due to atmospheric surface water, or groundwater constraints.
Droughts can last months or years, although they can be proclaimed in as little as 15 days.
It has the potential to have a significant influence on the afflicted region's ecology and agriculture as well as harm the local economy.
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture in southern Africa and the Mediterranean region.
Hence Precipitation and droughts are the specific changes in two climate variables.
To learn more about the drought refer to the link;
https://brainly.com/question/26693108
2
10 points
Find the total displacement of each of the motions.
a) You walk 45 m W, then 34 mW
b) You drive 5 km N, then 7 km S
c) You cycle 350 m E, then 800 m W, then 200 m E
d) You fly 850 km N then 850 km S
Answer:
a) s = 79 m W
b) s = 2 km S
c) s = 250 m W
d) s = 0 km
Explanation:
We take the following sign convention for the directions:
North (N) ---> positive
South (S) ---> negative
East (E) ---> negative
West (W) ---> positive
a)
45 m W, 34 m W
s = 45 m + 34 m
s = 79 m W
b)
5 km N, 7 km S
s = 5 km - 7 km
s = - 2 km
s = 2 km S
c)
350 m E , 800 m W, 200 m E
s = -350 m + 800 m - 200 m
s = 250 m
s = 250 m W
d)
850 km N, 850 km S
s = 850 km - 850 km
s = 0 km
match the variables to its definition
Answer:
See connections below
Explanation:
1 [tex]\Rightarrow[/tex] b
2 [tex]\Rightarrow[/tex] a
3 [tex]\Rightarrow[/tex] d
4 [tex]\Rightarrow[/tex] i
5 [tex]\Rightarrow[/tex] g
6 [tex]\Rightarrow[/tex] h
7 [tex]\Rightarrow[/tex] c
8 [tex]\Rightarrow[/tex] e
9 [tex]\Rightarrow[/tex] f
A typical elevator car with people has a mass of 1500.0 kg. Elevators are currently approaching speeds of 20.0 m/s - faster than the speed.
Required:
What is the upward force required if the elevator moves upward 200.0 meters before reaching 20.0 m/s?
Answer:
1500NExplanation:
Force = mass * acceleration
Given
Mass = 1500kg
Get the acceleration using the equation of motion;
v² = u²+2aS
20² = 0+2s(200)
400 = 400a
a = 400/400
a = 1m/s²
Get the upward force required
F = 1500 * 1
F = 1500N
Hence the upward force required if the elevator moves upward 200.0 meters before reaching 20.0 m/s is 1500N
Having established that a sound wave corresponds to pressure fluctuations in the medium, what can you conclude about the direction in which such pressure fluctuations travel?A) The direction of motion of pressure fluctuations is independent of the direction of motion of the sound wave.B) Pressure fluctuations travel perpendicularly to the direction of propagation of the sound wave.C) Pressure fluctuations travel along the direction of propagation of the sound wave.D) Propagation of energy that passes through empty spaces between the particles that comprise the mediumDoes air play a role in the propagation of the human voice from one end of a lecture hall to the other?a) yesb) no
Answer:
None of them: the direction of the pressure fluctuations is parallel to the direction of motion of the wave
Explanation:
when is thermal equilibrium achived between two identical objects
need help ASAP
Answer: When two objects in contact with each other are at different temperatures, they are said to be in thermal equilibrium.
Explanation: . When two objects not in contact with each other are at the same pressure, they are said to be in thermal equilibrium.
A wire of radius 0.8 cm carries a current of 106 A that is uniformly distributed over its cross-sectional area. Find the magnetic field B at a distance of 0.07 cm from the center of the wire.
Answer:
The magnetic field is [tex]B = 2.319 *10^{-3} \ T[/tex]
Explanation:
From the question we are told that
The radius of the wire is [tex]r = 0.8 \ cm = 0.008 \ m[/tex]
The current is [tex]I = 106 \ A[/tex]
The position considered is d = 0.07 cm = 0.0007 m
Generally the magnetic field is mathematically represented as
[tex]B = \frac{\mu_o * I}{2\pi * \frac{r^2}{d} }[/tex]
Here [tex]\mu_o[/tex] is the permeability of free space with value [tex] 4\pi * 10^{-7} N/A^2[/tex]
So
[tex]B = \frac{ 4\pi * 10^{-7} * 106 }{2 * 3.142 * \frac{0.008^2}{0.0007} }[/tex]
=> [tex]B = 2.319 *10^{-3} \ T[/tex]
Mr Johnson launches an arrow horizontally at a rate of 40m/s off of a 78.4 m cliff towards the south, how much time does it take before the arrow hits the ground below (step 1 of a quesiton will need this answer for a future question)
a 2 seconds
b. 1 second
c.4 seconds
d 19.6
Answer:c
Explanation:
What two methods are the best choices to factor this expression 18x2-8
Answer:
Please check the explanation
Explanation:
The best two methods will be:
Factor by groupingFactor out the GCFFactor by grouping
Factor by grouping deals with establishing a smaller groups from each term.
[tex]18x^2=\:\left(2\cdot 3\cdot 3\cdot x^2\right)[/tex]
[tex]8\:=\:\:2\cdot 2\cdot 2[/tex]
Therefore, the expression becomes
[tex]18x^2=\:\left(2\cdot 3\cdot 3\cdot x^2\right)-\left(2\cdot \:2\cdot \:2\right)[/tex]
Now factor out the greatest common factor (GCF) which is 2
[tex]=\:2\left(3\cdot \:\:3x^2-\left(2\right)\left(2\right)\right)[/tex]
[tex]=2\left(9x^2-2\cdot \:2\right)[/tex]
[tex]=2\left(9x^2-4\right)[/tex]
Factor out the GCF
Given the expression
[tex]18x^2-8\:\:\:[/tex]
factor out common term 2
[tex]=2\left(9x^2-4\right)[/tex]
[tex]=2\left(3x+2\right)\left(3x-2\right)[/tex] ∵ [tex]Factors\:\:\left(9x^2-4\right)=\left(3x+2\right)\left(3x-2\right)[/tex]
Please help, I'm really struggling here, I can't do science :(
The mass of Jupiter is about 320 times the mass of Earth. However, Jupiter’s gravity affects Earth very little because_____________. a Earth is so far from Jupiter. b Earth is so small. c Jupiter is made of gas. d Jupiter is nearer to the sun than Earth is.
Answer:no sure sorry
Explanation:
Which possible component of initial energy is caused by molecular motion within a material?
Answer: thermal energy
Answer:
Thermal energy
Explanation:
The internal energy of a system is widely known as thermal energy. Now, thermal energy is also called heat energy and it is an internal energy of a component which is produced when an increase in temperature causes atoms and molecules within the component to move faster and start colliding with one other.
Therefore, the more heat the is applied to the component, the hotter the substance and the more its particles move which in turn leads to a higher thermal energy.
Find the change in thermal energy of a 25kg severed clown doll head that heats up from 25°C to 35°C, and has the specific heat of 1,700 J/(kg°C).
Answer:
Q = 425 kJ
Explanation:
Given that,
Mass, m = 25 kg
The clown doll head that heats up from 25°C to 35°C
The specific heat is 1700 J/kg°C
We need to find the internal energy of it. The heat required to raise the temperature is given by the formula as follows :
[tex]Q=mc\Delta T\\\\Q=25\times 1700\times (35-25)\\\\Q=425000\ J\\\\Q=425\ kJ[/tex]
So, 425 kJ of thermal energy is severed.
Select all correct answers....Covalent compounds
An engineer is designing the runway for an airport. Of the planes that will use the airport, the lowest acceleration rate is likely to be 3 m/s2. The takeoff speed for this plane will be 65 m/s. All airplanes will start from rest(0m/s). Assuming this minimum acceleration, what is the minimum allowed length for the runway for take off?
Answer:
x = 704 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.
[tex]v_{f} ^{2} =v_{o} ^{2} +2*a*x[/tex]
where:
Vf = final velocity = 65 [m/s]
Vo = initial velocity = 0 (starts from rest)
a = acceleration = 3 [m/s²]
x = distance [m]
Now replacing we have:
65² = 0 + 2*3*x
4225 = 6*x
x = 704 [m]
an object falls from a hovering helicopter and hits the ground at a speed of 30m per seconds. how long does it take the object to reach the ground and how far does it fall? sketch a velocity-time graph for the object ( ignore air resistance
Answer:
45.9m
Explanation:
Given parameters:
Final velocity = 30m/s
Initial velocity = 0m/s
Unknown:
Time it takes for the object of fall = ?
Height of fall = ?
Solution:
For the first problem, we use the equation below to solve for t;
V = U + gt
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
30 = 0 + 9.8 x t
30 = 9.8t
t = [tex]\frac{30}{9.8}[/tex] = 3.1s
Now, height of fall;
V² = U² + 2gH
30² = 0² + 2 x 9.8 x H
900 = 19.6H
H = 45.9m
WHAT IS TRANS ATLANTIC SLAVE TRADE
A football player runs down the field at a speed of 8 m/s how long will it take him to run 20 m?
In the Bohr model of the hydrogen atom, an electron in the 1st excited state moves at a speed of 2.19 106 m/s in a circular path having a radius of 5.29 10-11 m. What is the effective current associated with this orbiting electron?
Answer:
I = 1.05x10⁻³ A
Explanation:
By definition, an electric current is the rate of charge flow at a given time:
[tex] I = \frac{q}{t} [/tex]
Where:
q: is the electrons charge = 1.602x10⁻¹⁹ C
t: is the time
In a circular motion, the time is given by:
[tex] t = T = \frac{2\pi}{\omega} = \frac{2\pi}{v/r} = \frac{2\pi r}{v} [/tex]
Where:
ω: is the angular speed = v/r
v: is the speed = 2.19x10⁶ m/s
r: is the radius = 5.29x10⁻¹¹ m
[tex] t = \frac{2\pi r}{v} = \frac{2\pi 5.29 \cdot 10^{-11} m}{2.19 \cdot 10^{6} m/s} = 1.52 \cdot 10^{-16} s [/tex]
Now, the effective current is:
[tex] I = \frac{q}{t} = \frac{1.602 \cdot 10^{-19} C}{ 1.52 \cdot 10^{-16} s} = 1.05 \cdot 10^{-3} A [/tex]
Therefore, the effective current associated with this orbiting electron is 1.05x10⁻³ A.
I hope it helps you!
car driving on a circular test track shows a constant speedometer reading of 100 kph for one lap. a. Describe the car's speed during this time. b.
Answer:
Speed = 100 km/h
Explanation:
Given:
Speedometer reading = 100 kph for one lap
Assume;
Time taken to complete one lap = 1 hour
Computation:
Speed = Distance / Time
Speed = 100 / 1
Speed = 100 km/h
Why do stretching exercises increase flexibility more than cardio exercises?
what does the modal "must"indicate?
Answer:
The modal verb must is used to express obligation and necessity. The phrase have to doesn't look like a modal verb, but it performs the same function.
A television of mass 15 kg sits on a table. The coefficient of static friction
between the table and the television is 0.35. What is the minimum applied
force that will cause the television to slide?
A) 38 N
B) 147 N
C) 51 N
D) 79 N
Answer:
more than 51.45 N
__________________________________________________________
We are given:
Mass of the television = 15 kg
Coefficient of Static friction = 0.35
Minimum force required to move the television:
Normal Force:
We know that the normal force is equal and opposite to the Weight of the television
Weight of the television = Mg
[where m is the mass and g is the acceleration due to gravity]
Weight = 15 * 9.8
Weight = 147 N
Force of Friction:
We are given the coefficient of Friction = 0.35
We know that coefficient of Friction = Force of friction / Normal Force
replacing the variables
0.35 = Force of Friction / 147
Force of Friction = 147 * 0.35 [multiplying both sides by 147]
Force of Friction = 51.45 N
Since a force of 51.45 N is will be applied opposite to the direction of application of Force, the television will only move when we apply more force than 51.45 N
Answer:
it is C
Explanation:
Can someone help me with this question
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2
Which of the following requires the expenditure of more work?
a. Lifting a 110 newton [N] weight a height of 3 meters [m].
b. Exerting a force of 60 pounds-force [lbf] on a sofa to slide it 30 feet [ft] across a room.
Answer:
The correct answer is option B
Explanation:
Step one:
given data
a. force F= 110N
distance s= 3meters
we know that work= Force* distance
work= 110*3
Work= 330Joules
Step two:
data
Force= 60 pounds
distance= 30 ft
convert pounds to Newton
1 pound= 4.44822N
60 pounds= 60*4.44822
=266.9N
convert ft to meteres
1 ft = 0.3048meter
30ft= 0.3048*30
=9.144N
we know that work= Force* distance
work= 266.9N*9.144N
Work= 2440.53Joules
pls help quick. the number line shows the starting and ending velocities for ball 1 what's the change in velocity of ball 1 calculate the value mathematically and check using the number line
Answer:
The starting velocity for ball 1 is 1.00 meter/second. Its ending velocity is 0.25 meter/second.
The change in velocity for ball 1 is 0.25 – 1.00 = -0.75 meter/seconds
Answered: A 4 kg mass is attached to a horizontal spring with the spring constant of 600 N/m and rests on a frictionless surface on the ground. The spring is compressed 0.5 m past its equilibrium. What is the initial energy of the system.
Answer: 75 joules
1. What does the pH scale measure?
Answer:
The pH scale measures of how acidic or basic water is.
The pH scale also measures whether there is more hydronium or hydroxide in a solution.
Explanation:
The range goes from 0-14, with 7 being neutral. Less than 7 indicates acidity and more than seven indicates the substance is a base.
g A ping pong ball (thin shell sphere) rolls down an incline at 30° from rest. What is its acceleration
Answer:
Explanation:
According to newtons second law of motion;
F = ma .... 1
Also the force acting aong the inclines is expressed as;
F = mgsintheta
m is the mass of the object
a is the acceleration
theta is angle of inclination
Equate 1 and 2
ma = mg sin theta
a = gsin(theta)
a = 9.8sin30
a = 9.8(0.5)
a = 4.9m/s²
Hence the acceleration of the ping pong is 4.9m/s²