Answer:
Line y = −x + 4 intersects the line y = 3x + 3.
Step-by-step explanation:
Please Help! Which description best describes the solution to the following system of equations?
y = −x + 4
y = 3x + 3
Line y = −x + 4 intersects the line y = 3x + 3.
This is the response because the solution to a system of two equations is represented by the intersection of the equations of the two lines/curves.
Lines y = −x + 4 and y = 3x + 3 intersect the x-axis.
Lines y = −x + 4 and y = 3x + 3 intersect the y-axis.
Line y = −x + 4 intersects the origin.
Emily put $3000.00 in a 2 year CD paying 4% interest compounded monthly. After 2 years she withdrew all her money. What is the amount of the withdrawl?
Answer:
A=3244.8 dollars
Step-by-step explanation:
A=p(1+r)^t
A=3000(1+0.04)^2
A=3244.8 dollars
Explain how you can determine the number of real number solutions of a system of equations in which one equation is linear and the other is quadratic–without graphing the system of equations.
Answer:
To determine the number of real number solutions of as system of equations in which one equation is linear and the other is quadratic
1) Given that there are two variables, x and y as an example, we make y the subject of the equation of the linear equation and substitute the the expression for y in x into the quadratic equation
We simplify and check the number of real roots with the quadratic formula, [tex]x = \dfrac{-b\pm \sqrt{b^{2}-4\cdot a\cdot c}}{2\cdot a}[/tex] for quadratic equations the form 0 = a·x² - b·x + c
Where b² > 4·a·c there are two possible solutions and when b² = 4·a·c equation there is only one solution.
Step-by-step explanation:
Answer:
Isolate one variable in the system of equations. Use substitution to create a one-variable equation. Then, set the quadratic equation equal to zero and find the discriminant. If the discriminant is negative, then there are no real number solutions. If the discriminant is zero, then there is one real number solution. If the discriminant is positive, then there are two real number solutions.
Step-by-step explanation:
I just took the test on Edge 2020
|3x+9|= 30
Answer: x=7, -13
Answer:
[tex]\boxed{x=7, \: x=-13}[/tex]
Step-by-step explanation:
[tex]|3x+9|= 30[/tex]
Solve for absolute value.
There are two possibilities.
One possibility:
[tex]3x+9=30\\3x=21\\x=7[/tex]
Second possibility:
[tex]3x+9=-30\\3x=-39\\x=-13[/tex]
Find the vertex of the graph
Answer:
(-3, -11)
i needed to put more characters so here
anyone plss heeelp me...i only need answer 6c..
Answer:
6c1; [tex]Area = 81.12m^2[/tex]
6cii: See Explanation
Step-by-step explanation:
Given
[tex]A = 3p^2[/tex]
[tex]0 \leq p \leq 6[/tex]
Where A represents Area and P represents Width
Required
Solve 6c
Please note that because you only need 6c, I'll solve using calculations;
Solving 6ci:
Area of the cage, when width is 5.2m
Substitute 5.2m for p in[tex]A = 3p^2[/tex]
[tex]A = 3 * 5.2m^2[/tex]
[tex]A = 3 * 27.04m^2[/tex]
[tex]A = 81.12m^2[/tex]
Hence, the area of the cage is 81.12m²
Solving 6cii:
Area of the cage, when width is 40m
From the range of value of p: [tex]0 \leq p \leq 6[/tex], 40m is out of range of the values of p
However, if the range is extended; the value of Area is as follows;
Substitute 40m for p
[tex]A = 3 * 40m^2[/tex]
[tex]A = 3 * 1600m^2[/tex]
[tex]A = 4,800m^2[/tex]
.
What is y + 3 = 7(2 – 2) written in standard form?
Answer:
y = -3
Step-by-step explanation:
y + 3 = 7(2 - 2)
y + 3 = 0
Subtract 3 from both sides
y + 3 - 3 = 0 - 3
y = -3
Answer:
7x - y = 17
Step-by-step explanation:
Maybe you want the standard form of the point-slope equation ...
y +3 = 7(x -2)
__
y + 3 = 7x -14 . . . . . eliminate parentheses
17 = 7x -y . . . . . . . . add 14-y
7x - y = 17
which of the following is equivalent to (x+4)(3x^2+2x)??
Answer:
c
Step-by-step explanation:
Find the fraction half way between 1/7 and 1/5
Answer:
6/35
Step-by-step explanation:
add ¹/7+¹/5 =12/35
divide 12/35 by 2
=6/35
-1+(4+7)=(-1+4)+7 what property is this
Answer:
Associative Property.
Step-by-step explanation:
The Associative Property is the property that says that (a + b) + c = a + (b + c).
Hope this helps!
Answer:
Associate Property
Step-by-step explanation:
I found my answer at baba com
plzzzz answer right away will mark BRAINLIST AND FIVE STARS PLUS The table below shows the possible outcomes of rolling a six-sided number cube and flipping a coin. A 7-column table with 2 rows. Column 1 has entries H, T. Column 2 is labeled 1 with entries H 1, T 1. Column 3 is labeled 2 with entries H 2, T 2. Column 4 is labeled 3 with entries H 3, T 3. Column 5 is labeled 4 with entries H 4, T 4. Column 6 is labeled 5 with entries H 5, T 5. Column 7 is labeled 6 with entries H 6, T 6. What is the probability of getting a number less than 3 and a tails? StartFraction 1 over 12 EndFraction StartFraction 1 over 6 EndFraction One-fourth One-third
Answer:
P((1 or 2) and Tail) = 1/6 = StartFraction 1 over 6
Step-by-step explanation:
A six-sided die and a coin.
Probability of getting <3 and tail.
P((1 or 2) and Tail)
= 2/6 * 1/2
= 1/6
Answer:
1/6
Step-by-step explanation:
A sphere and a cylinder have the same radius and height. The volume of the cylinder is 50 feet cubed. A cylinder with height h and radius r. A cylinder with height h and radius r. What is the volume of the sphere?
Answer:
Volume of the sphere is 66.67r/h
Step-by-step explanation:
Hello,
Volume of a sphere = ⁴/₃πr³
Volume of a cylinder = πr²h
The volume of the cylinder = 50ft³
But the cylinder and sphere both have the same radius and height
Volume of a cylinder = πr²h
50 = πr²h
Make r² the subject of formula
r² = 50/πh
Volume of a sphere = ⁴/₃πr³
Put r² into the volume of a sphere
Volume of a sphere = ⁴/₃π(50/πh)r
Volume of a sphere = ⁴/₃ × 50r/h
Volume of a sphere = ²⁰⁰/₃ r/h
Volume of a sphere = 66.67r/h
The volume of the sphere is 66.67r/h
This is used for the next few questions: The rating for the new scary movie has a scale of 0 to 10. The average response was that the regular movie attendant enjoyed the movie with 8.3 points and a standard deviation of 0.5 points. What is the percent of people who gave the movie a rating between 6.8 and 8.8? (Write the number as a percent only without a percent sign.)
Answer:
The percentage that of people who gave the movie a rating between 6.8 and 8.8
P(6.8≤X≤8.8) = 83.9≅ 84 percentage
Step-by-step explanation:
Step(i):-
Mean of the Population = 8.3 points
Standard deviation of the Population = 0.5 points
Let 'X' be the random variable in normal distribution
Let X = 6.8
[tex]Z = \frac{x-mean}{S.D} = \frac{6.8-8.3}{0.5} = -3[/tex]
Let X = 8.8
[tex]Z = \frac{x-mean}{S.D} = \frac{8.8-8.3}{0.5} = 1[/tex]
The probability that of people who gave the movie a rating between 6.8 and 8.8
P(6.8≤X≤8.8) = P(-3≤Z≤1)
= P(Z≤1)- P(Z≤-3)
= 0.5 + A(1) - ( 0.5 -A(-3))
= A(1) + A(3) (∵A(-3)=A(3)
= 0.3413 +0.4986 (∵ From Normal table)
= 0.8399
Conclusion:-
The percentage that of people who gave the movie a rating between 6.8 and 8.8
P(6.8≤X≤8.8) = 83.9≅ 84 percentage
Please help me.. I'm very confused about this
Answer:
C
Step-by-step explanation:
1:draw a very simple Cartesian plane for the graph
2:label the quadrants 1-4 from top right round to bottom right as 4
3:then apply x>0 (1,2) is top right and y<0 is bottom right (-1,-2)
The path followed by a roller coaster as it climbs up and descends down from a peak can be modeled by a quadratic function, where h(x) is the height, in feet, and x is the horizontal distance, also in feet. The path begins and ends at the same height, covers a total horizontal distance of 100 feet, and reaches a maximum height of 250 feet. Which of the functions could be used to model this situation? A. h(x)=-0.1x^2-50x+250 B. h(x)=-0.1(x-50)^2+250 C. h(x)=-0.1(x-100)^2+250 D. h(x)=-0.1x^2+100x+250
Answer:
C
Step-by-step explanation:
0.1(x - 100)² + 250
0.1[(x - 100)(x - 100)] + 250
0.1(x² -200x + 10000) + 250
0.1x² - 20x + 1000 + 250
0.1x² - 20x + 1250
0.1x² - 25x + 5x + 1250
0.1x(x - 250) + 5(x + 250)
∴ (0.1x + 5)(x - 250) or (0.1x + 5)(x + 250)
find three examples of corporate logos. do they incorporate symmetry? if so, and what kind? your response should be 3-5 sentences long
Answer:
Symmetry is the property of an object to retain its shape even if it is turned or turned.
The three corporate logos are McDonald, Shell, Snapcaht
McDonald company logo is symmetrical and it is a reflective symmetry.
Shell logo is symmetrical and it is also reflective symmetry.
Snaphcat logo is symmetrical and it is also reflective symmetry.
The roots of $7x^2 + x - 5 = 0$ are $a$ and $b.$ Compute $(a - 4)(b - 4).$[tex]The roots of $7x^2 + x - 5 = 0$ are $a$ and $b.$ Compute $(a - 4)(b - 4).$[/tex]
Using the factor theorem, we have
[tex]7x^2+x-5=7(x-a)(x-b)[/tex]
and expanding gives us
[tex]7x^2+x-5=7(x^2-(a+b)x+ab)\implies\begin{cases}ab=-5\\a+b=-1\end{cases}[/tex]
So we have
[tex](a-4)(b-4)=ab-4(a+b)+16=-5-4(-1)+16=\boxed{15}[/tex]
One liter of paint is needed to cover all 6 sides of a cubical block. How many liters will be needed to cover all 6 sides of a second cubical block whose edge is twice as long as an edge on the first block?
Will mark brainlist
Answer:
4 liters
Step-by-step explanation:
Let's assume that the side lengths of the cubical block are 2 inches.
This means that one of the sides area is 4 in².
Multiplying this by 6 (for there are 6 sides) gets us 24 in².
So one liter of paint covers 24 in².
Now if the side lengths (edge) of the second block is doubled, that means that the side lengths are [tex]2\cdot2 = 4[/tex] inches.
So the area of one side is 16 in².
Multiplying this by 6 (as there are 6 sides) gets us 96 in².
To find how many liters of paint this will take, we divide 96 by 24.
[tex]96\div24=4[/tex]
So 4 liters of paint will be needed for the second cubical block.
Hope this helped!
The cosine function reaches a value of 0 when x is equal to
Answer:
Step-by-step explanation:
The values of the cosine function are represented by the axis OX of the goniometric circumference (circumference centered at the origin and of radius 1). Therefore the cosine is zero for the 90º and 270º angles.
please help with this question, I am quite confused
Answer:
Step-by-step explanation:
A-domain (-∞,∞)
B- Range(0,∞) the range is the set of values tat correspond with the domain
C- the y intercept (0,1) , y intercept is when x =0 (2/3)^0=1
D-the horizontal asymptote is x-axis y=0
E- the graph is always decreasing
F-it depend on the base
find the value of x and y if the distance of the point (x,y) from (-2,0) and (2,0) are both 14 units.
Answer:
[tex] (0, 8\sqrt{3}) [/tex] and [tex] (0, -8\sqrt{3}) [/tex] are both 14 units from points (-2, 0) and (2, 0).
Step-by-step explanation:
distance formula
[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
We want the distance, d, from points (-2, 0) and (2, 0) to be 14.
Point (-2, 0):
[tex] 14 = \sqrt{(x - (-2))^2 + (y - 0)^2} [/tex]
[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]
Point (2, 0):
[tex] 14 = \sqrt{(x - 2)^2 + (y - 0)^2} [/tex]
[tex] \sqrt{(x - 2)^2 + y^2} = 14 [/tex]
We have a system of equations:
[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]
[tex] \sqrt{(x - 2)^2 + y^2} = 14 [/tex]
Since the right sides of both equations are equal, we set the left sides equal.
[tex] \sqrt{(x + 2)^2 + y^2} = \sqrt{(x - 2)^2 + y^2} [/tex]
Square both sides:
[tex] (x + 2)^2 + y^2 = (x - 2)^2 + y^2 [/tex]
Square the binomials and combine like terms.
[tex] x^2 + 4x + 4 + y^2 = x^2 - 4x + 4 + y^2 [/tex]
[tex] 4x = -4x [/tex]
[tex] 8x = 0 [/tex]
[tex] x = 0 [/tex]
Now we substitute x = 0 in the first equation of the system of equations:
[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]
[tex] \sqrt{(0 + 2)^2 + y^2} = 14 [/tex]
[tex] \sqrt{4 + y^2} = 14 [/tex]
Square both sides.
[tex] y^2 + 4 = 196 [/tex]
[tex] y^2 = 192 [/tex]
[tex] y = \pm \sqrt{192} [/tex]
[tex] y = \pm \sqrt{64 \times 3} [/tex]
[tex] y = \pm 8\sqrt{3} [/tex]
The points are:
[tex] (0, 8\sqrt{3}) [/tex] and [tex] (0, -8\sqrt{3}) [/tex]
For f(x) = 2x + 1 and g(x) = x2 – 7, find (f – g)(x).
Answer:
-x^2 +2x +8
Step-by-step explanation:
f(x) = 2x + 1
g(x) = x^2 – 7,
(f – g)(x) = 2x +1 - ( x^2 -7)
Distribute the minus sign
= 2x+1 - x^2 +7
Combine like terms
= -x^2 +2x +8
Answer:
its not true. Answer is (f + g)(x) = x2 + 2x - 6
Step-by-step explanation:
Trust me. Good luck.
What is the result of adding these two equations?
62 + 2y = -2
3x - 2y = -5
Answer:
x = -7/9; y = 4/3.
Step-by-step explanation:
I will assume that the top equation is 6x + 2y = -2, and the bottom one is 3x - 2y = -5.
If you add the two...
(6x + 3x) + (2y + (-2y)) = (-2 + (-5))
9x + 0 = -7
9x = -7
x = -7/9
6(-7/9) + 2y = -2
-42/9 + 2y = -18/9
2y = 24/9
y = 24/18
y = 12/9
y = 4/3
Hope this helps!
How does the graph of y = a(x – h)2 + k change if the value of h is doubled? The vertex of the graph moves to a point twice as far from the x-axis. The vertex of the graph moves to a point twice as far from the y-axis. The vertex of the graph moves to a point half as far from the x-axis. The vertex of the graph moves to a point half as far from the y-axis.
Answer:
The vertex of the graph moves to a point twice as far from the y-axis.
Step-by-step explanation:
How does the graph of y = a(x – h)2 + k change if the value of h is doubled?
The vertex of the graph moves to a point twice as far from the x-axis.
The vertex of the graph moves to a point twice as far from the y-axis.because the role of h is to indicate the distance of the vertex from the y-axis.
The vertex of the graph moves to a point half as far from the x-axis.
The vertex of the graph moves to a point half as far from the y-axis.
Transformation involves changing the position of a function.
When h is doubled in [tex]\mathbf{y = a(x - h)^2 + k}[/tex], the vertex of the graph moves to a point twice as far from the y-axis.
The function is given as:
[tex]\mathbf{y = a(x - h)^2 + k}[/tex]
When the value of h is doubled, the new function becomes:
[tex]\mathbf{y' = a(x - 2h)^2 + k}[/tex]
Rewrite as:
[tex]\mathbf{y' = a(x - h- h)^2 + k}[/tex]
The above equation means that:
Function y will be translated to the right by h units
Assume the vertex is:
[tex]\mathbf{Vertex = (2,5)}[/tex]
The new vertex will be:
[tex]\mathbf{Vertex = (4,5)}[/tex]
Comparing the vertices, it means that:
The new function will have its vertex twice as far from the y-axis
Hence, option (b) is correct.
Read more about transformation at:
https://brainly.com/question/13801312
Which equation correctly uses the trigonometric ratio for sine to solve for y?
Answer:
b y = 9sin(36)
Step-by-step explanation:
sin A = opp/hyp
for the 36-deg angle, opp = y, and hyp = 9.
sin 36 = opp/hyp
sin 36 = y/9
y = 9 * sin 36
Answer: b y = 9sin(36)
In a different plan for area codes the first digit could be any number from 3 through 6 the second digit was either 5,6,7 or 8 and the third digit could be any number except 5. With this plan how many different area codes are possible?
Answer:
144 codes are possible
Step-by-step explanation:
Okay for the first digit, we shall be selecting one out of 3,4,5,6.
Meaning we are selecting one out of four choices
The number of ways this can be done is 4C1 ways = 4 ways
For the second digit, we have 5,6,7 or 8, we are still selecting 1 out of 4 selections and the number of ways we can do this is also 4 ways
And lastly , we can choose any digit for the last number expect 5 , so from 0 to 9, we are removing 1 which means we are left with 9 choices
So the number of different area codes possible are ; 9 * 4 * 4 = 144 codes
which geometric solid is formed by rotating the rectangle about line m?
Answer:
rectangular prism
Step-by-step explanation:
check by rotating the shape in images
DatGuy! Sekkrit! Wishing! Anyone? Find the discriminant of 3x²+5x-2 = 0
Answer:
49
Step-by-step explanation:
[tex]3x^2+5x-2 = 0[/tex]
Apply discriminant formula : [tex]D = b^2- 4ac[/tex]
[tex]D=discriminant\\b=5\\a=3\\c=-2[/tex]
[tex]D = b^2- 4ac[/tex]
Plug in the values for a, b, and c.
[tex]D = 5^2- 4(3)(-2)[/tex]
Evaluate.
[tex]D = 25- 12(-2)[/tex]
[tex]D = 25- - 24[/tex]
[tex]D=25+24[/tex]
[tex]D=49[/tex]
Answer:
49
Step-by-step explanation:
3x²+5x-2 = 0
This is in the form
ax^2 + bx + c=0
a=3 b=5 c = -2
The discriminant is
b^2 -4ac
5^2 -4(3) (-2)
25 + 24
49
The discriminant is 49
Find the perimeter of a square with a diagonal of 15√2.
Answer:
15
Step-by-step explanation:
Answer:
21.213
Step-by-step explanation:
Rewrite the given function as an equivalent function containing only cosine terms raised to a power of 1.f(x)=7cos^2x
Answer:
Step-by-step explanation:
Using the double angle formulas,
cos(2x) = cos^2(x) - sin^2(x) ............(1)
1 = cos^2(x) + sin^2(x)............(2)
add (1) and (2)
1 + cos(2x) = 2 cos^2(x)
=> cos^2(x) = (1/2) (1+cos(2x)) ..............(3)
f(x) = 7 cos^2 (x)
substituting (3)
f(x) = (7/2) (1+cos(2x))
Eiko is wearing a magic ring that increases the power of her healing spell by 30\%30%30, percent. Without the ring, her healing spell restores HHH health points. Which of the following expressions could represent how many health points the spell restores when Eiko is wearing the magic ring?
Answer:
Options B: and C:
Step-by-step explanation:
Remember that 30% in fraction form is
The amount of health points (H) restored would depend on the amount of the current H so it means it would add 30% of the current which we can write as:
And since it would add that to the current total we can right the current total as:
So our equation would be:
For option B:
We can factor out the H and you will be left with:
Combine or add the fractions inside the parenthesis and you will have:
For option C:
We can simplify the fractions which will result in:
Then factor out the H and you will have:
Options B: and C:
Step-by-step explanation:
Remember that 30% in fraction form is
The amount of health points (H) restored would depend on the amount of the current H so it means it would add 30% of the current which we can write as:
And since it would add that to the current total we can right the current total as:
So our equation would be:
For option B:
We can factor out the H and you will be left with:
Combine or add the fractions inside the parenthesis and you will have:
For option C:
We can simplify the fractions which will result in:
Then factor out the H and you will have:
HOPE I HELPED
PLS MARK BRAINLIEST
DESPERATELY TRYING TO LEVEL UP
✌ -ZYLYNN JADE ARDENNE
JUST A RANDOM GIRL WANTING TO HELP PEOPLE!
PEACE!