Answer:
Hey there!
An equilateral triangle has all sides equal to each other, so the perimeter would be 3x, where x is the length of one side.
Thus, the perimeter for this equilateral triangle would be 3(12)=36
Hope this helps :)
Answer:
[tex]\boxed{Perimeter = 36 \ units}[/tex]
Step-by-step explanation:
Perimeter = sum of all sides
Perimeter = 12 +12 + 12
Perimeter = 36 units
Hypothesis Testing
Problem 1. Adults saving for retirement
In a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement. Does
the sample evidence suggest that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement? Use a 0.05 level of significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why.
8. What do you conclude?
Problem 2: Google Stock
Google became a publicly traded company in August 2004. Initially, the stock traded over 10 million shares each day! Since the initial offering, the volume of stock traded daily has
decreased substantially. In 2010, the mean daily volume in Google stock was 5.44 million shares, according to Yahoo!Enance. A random sample of 35 trading days in 2014 resulted in a
sample mean of 3.28 million shares with a standard deviation of 1.68 million shares. Does the evidence suggest that the volume of Google stock has changed since 2007? Use a 0.05 level of
significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why
8. What do you conclude?
Answer:
Problem 1: We conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.
Problem 2: We conclude that the volume of Google stock has changed.
Step-by-step explanation:
Problem 1:
We are given that in a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement.
Let p = proportion of adult Americans without a high school diploma who are worried about having enough saved for retirement
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 50% {means that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement}
Alternate Hypothesis, [tex]H_A[/tex] : p > 50% {means that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement}
This is a right-tailed test.
The test statistics that would be used here is One-sample z-test for proportions;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of adult Americans who were worried about having enough saved for retirement = [tex]\frac{156}{295}[/tex] = 0.53
n = sample of adult Americans = 295
So, the test statistics = [tex]\frac{0.53-0.50}{\sqrt{\frac{0.50(1-0.50)}{295} } }[/tex]
= 1.03
The value of z-test statistics is 1.03.
Also, the P-value of the test statistics is given by;
P-value = P(Z > 1.03) = 1 - P(Z [tex]\leq[/tex] 1.03)
= 1 - 0.8485 = 0.1515
Now, at a 0.05 level of significance, the z table gives a critical value of 1.645 for the right-tailed test.
Since the value of our test statistics is less than the critical value of z as 1.03 < 1.645, so we insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.
Therefore, we conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.
Problem 2:
We are given that a random sample of 35 trading days in 2014 resulted in a sample mean of 3.28 million shares with a standard deviation of 1.68 million shares.
Let [tex]\mu[/tex] = mean daily volume in Google stock
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 5.44 million shares {means that the volume of Google stock has not changed}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] [tex]\neq[/tex] 5.44 million shares {means that the volume of Google stock has changed}
This is a two-tailed test.
The test statistics that would be used here is One-sample t-test statistics because we don't know about the population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean volume in Google stock = 3.28 million shares
s = sample standard deviation = 1.68 million shares
n = sample of trading days = 35
So, the test statistics = [tex]\frac{3.28-5.44}{\frac{1.68}{\sqrt{35} } }[/tex] ~ [tex]t_3_4[/tex]
= -7.606
The value of t-test statistics is -7.606.
Also, the P-value of the test statistics is given by;
P-value = P([tex]t_3_4[/tex] < -7.606) = Less than 0.05%
Now, at a 0.05 level of significance, the t table gives a critical value of -2.032 and 2.032 at 34 degrees of freedom for the two-tailed test.
Since the value of our test statistics doesn't lie within the range of critical values of t, so we sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the volume of Google stock has changed.
Nearsightedness: It is believed that nearsightedness affects about 8% of all children. In a random sample of 194 children, 21 are nearsighted.
(a) What proportion of children in this sample are nearsighted?
(b) Construct hypotheses appropriate for the following question: do these data provide evidence that the 8% value is inaccurate?
(c) Given that the standard error of the sample proportion is 0.0195 and the point estimate follows a nearly normal distribution, calculate the test statistic (the Z statistic).
(d) What is the p-value for this hypothesis test?
(e) What is the conclusion of the hypothesis test?
Answer:
a)the proportion of student is 0.1082
b)
H1: p = .08
H2: p not equal to 0.08
H1: p =0 .08
H2: p < .08
H1: p =0 .08
H2: p >0 .08
c)z=1.45
d) the p value is 0.1470
e)null hypothesis cannot be accepted,There is no enough evidence to reject the null hypothesis.
Step-by-step explanation:
CHECK THE ATTACHMENT FOR DETAILED EXPLANATION
Find the largest integer which belongs to the following interval: [−∞, 31]
Answer:
Largest integer in the interval [−∞, 31] is 31.
Step-by-step explanation:
Given the interval: [−∞, 31]
To find: The largest integer in this interval.
Solution:
First of all, let us learn about the representation of intervals.
Two kind of brackets can be used to represent the intervals. i.e. () and [].
Round bracket means not included in the interval and square bracket means included in the interval.
Also, any combination can also be used.
Let us discuss one by one.
1. [p, q] It means the interval contains the values between p and q. Furthermore, p and q are also included in the interval.
Smallest p
Largest q
2. (p, q) It means the interval contains the values between p and q. Furthermore, p and q are not included in the interval.
Smallest value just greater than p.
Largest value just smaller than q.
3. [p, q) It means the interval contains the values between p and q. Furthermore, p is included in the interval but q is not included in the interval.
Smallest value p.
Largest value just smaller than q.
4. (p, q] It means the interval contains the values between p and q. Furthermore, p is not included in the interval but q is included in the interval.
Smallest value just greater than p.
Largest value q.
As per above explanation, we can clearly observe that:
The largest integer which belongs to the following interval: [−∞, 31] is 31.
The solutions to the inequality ys-x+1 are shaded on
the graph. Which point is a solution?
(2, 3)
(3,-2)
(2.1)
(-1,3)
Answer:
the solutions to the inequality ys-x+1 are shaded on the graph. which point is B. (3 ,-2)
Find the slope of the line passing through the points (-3, -8) and (4,6).
Answer:
slope = 2Step-by-step explanation:
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have
[tex](-3;\ -8)\to x_1=-3;\ y_1=-8\\(4;\ 6)\to x_2=4;\ y_2=6[/tex]
Substitute:
[tex]m=\dfrac{6-(-8)}{4-(-3)}=\dfrac{6+8}{4+3}=\dfrac{14}{7}=2[/tex]
The formula for the slope m of the line that passes through two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is the following:
[tex]m=\dfrac{y_1-y_2}{x_1-x_2}[/tex]
We have points (4,6) and (-3,-8). Let's plug these values into the formula for slope:
[tex]m=\dfrac{6-(-8)}{4-(-3)}[/tex]
[tex]=\dfrac{14}{7}=2[/tex]
The slope of the line passing through the two points is 2. Let me know if you need any clarifications, thanks!
Plz help answer a - d 1. Miguel is playing a game in which a box contains four chips with numbers written on them two of the chips have the number one one chip has the number three and the other chip has the number 5 Miguel must choose to chips if both chips have the same number he wants to dollars if the two chipsy chooses have different numbers he loses $1 (-$1) Look at pictures for the questions
Answer:
Step-by-step explanation:
Hello!
Miguel has four chips, two have the number "1", one has the number "3" and the other has the number "5"
If the experiment is "choosing two chips and looking at their numbers" there are the following possible outcomes:
S= {(1,1)(1,3)(1,5)(3,1)(5,1)(3,5)(5,3)}
The sample space for the experiment has 7 possible combinations.
a)
Be X: the amount of money Miguel will receive or owe.
If two chips with the same number are chosen he will receive $2
If the chips have different number he will owe $1
Looking at the possible outcomes listed above, out of the 7, in only one he will select the same number (1,1)
So the probability of him receiving $2 will be 1/7
Now out of the 7 possible outcomes, 6 will make Miguel owe $1, so you can calculate its probability as: 6/7
xi | $2 | -$1
P(xi) | 1/7 | 6/7
b)
To calculate the expected value or mean you have to use the following formula:
[tex]\frac{}{X}[/tex]= ∑[xi*P(xi)]= (2*1/7)(-1*6/7)= -4/7= $-0.57
c)
The expected value is $-0.57, meaning that Miguel can expect to owe $0.57 at the end of the game.
d)
To make the game fair you have to increase the probability of obtaining two chips with the same number. Any probability close to 50% will make the game easier. For example if you change the experiment so that for earning $2 the probability is 4/7 and for owing $1 the probability is 3/7, the expected earnings will be:
(2*4/7)+(-1*3/7)= $0.71
I hope this helps!
Is 3 a solution to the equation 6x – 7 = 12?
Answer:
3 is not a solution
Step-by-step explanation:
6x – 7 = 12?
Substitute 3 in for x and see if the equation is true
6*3 - 7 = 12
18-7 = 12
11 =12
This is false so 3 is not a solution
Copy the problem, mark the givens in the diagram. Given: CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC, Prove: CR ≅ HS
Help urgently needed
Explanation:
1. CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC — given
2. ∆CRH ~ ∆HSC — AA similarity theorem
3. ∠SCH ≅ ∠RHC — corresponding angles of similar triangles are congruent
4. CH ≅ HC — reflexive property of congruence
5. ∆CRH ≅ ∆HSC — SAS congruence theorem
6. CR ≅ HS — CPCTC
Please help
ASAP
ANSWERS
A-48.21
B-66.35
C-53.68
D-28.34
Answer:
B
Step-by-step explanation:
Using the cosine ratio in the right triangle
cos54° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{39}{AB}[/tex] ( multiply both sides by AB )
AB × cos54° = 39 ( divide both sides by cos54° )
AB = [tex]\frac{39}{cos54}[/tex] ≈ 66.35 → B
A lottery game has balls numbered 1 through 21. What is the probability of selecting an even numbered ball or an 8? Round to nearest thousandth
Answer: 0.476
Step-by-step explanation:
Let A = Event of choosing an even number ball.
B = Event of choosing an 8 .
Given, A lottery game has balls numbered 1 through 21.
Sample space: S= {1,2,3,4,5,6,7,8,...., 21}
n(S) = 21
Then, A= {2,4,6,8, 10,...(20)}
i.e. n(A)= 10
B= {8}
n(B) = 1
A∪B = {2,4,6,8, 10,...(20)} = A
n(A∪B)=10
Now, the probability of selecting an even numbered ball or an 8 is
[tex]P(A\cup B)=\dfrac{n(A\cup B)}{n(S)}[/tex]
[tex]=\dfrac{10}{21}\approx0.476[/tex]
Hence, the required probability =0.476
WILL MARK AS BRAINLIEST 4. Suppose there is a card game where you are dealt a hand of three cards. You have already learned that the total number of three-card hands that can be dealt from a deck of 52 cards is: 52C3=52!/49!3! 52C3=22100 Calculate the probability of getting a hand that has exactly two aces in it (A A X). Do this by finding out the number of possible hands that have exactly two aces, and then dividing by the total possible number of three-card hands that is stated above. Part A: Use the multiplication principle to tell the total number of three-card hands (permutations) that can be made with two aces. (2 points) Part B: In the answer from Part I, each two-ace hand got counted twice. For example, A A X got counted as a separate hand from A A X. Since order should not matter in a card hand, these are really the same hand. What is the actual number of two-ace hands (combinations) you can get from a deck of 52 cards?(2 points) Part C: Find the probability of drawing a three-card hand that includes two aces from a deck of 52 cards. Write your answer as a fraction. (2 points)
Answer:
Part A- 6
Part B- 3
Part C- 3/22100
Step-by-step explanation:
Part A-
Use the permutation formula and plug in 3 for n and 2 for k.
nPr=n!/(n-k)!
3P2=3!/(3-2)!
Simplify.
3P2=3!/1!
3P2=6
Part B-
Use the combination formula and plug in 3 for n and 2 for k.
nCk=n!/k!(n-k)!
3C2=3!/2!(3-2)!
Simplify.
3C2=3!/2!(1!)
3C2=3
Part C-
It is given that the total number of three-card hands that can be dealt from a deck of 52 cards is 22100. Use the fact that the probability of something equals the total successful outcomes over the sample space. In this case the total successful outcomes is 3 and the sample space is 22100.
I believe the answer is 3/22100
I honestly suck at probability but I tried my best.
2) A basketball player scores 70% of his shots on average. What is the probability that he scores at least 18 successful shots tonight if he gets 20 shots?
Answer:
3.54%
Step-by-step explanation:
This question represents a binomial distribution. A binomial distribution is given by:
[tex]P(x)=\frac{n!}{(n-x)!x!} p^xq^{n-x}[/tex]
Where n is the total number of trials, p is the probability of success, q is the probability of failure and x is the number of success.
Given that:
A basketball player scores 70% of his shots on average, therefore p = 70% = 0.7. Also q = 1 - p = 1 - 0.7 = 0.3.
The total number of trials (n) = 20 shots
The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20)
P(x = 18) = [tex]\frac{20!}{(20-18)!18!}*0.7^{18}*0.3^{20-18}=0.0278[/tex]
P(x = 19) = [tex]\frac{20!}{(20-19)!19!}*0.7^{19}*0.3^{20-19}=0.0068[/tex]
P(x = 20) = [tex]\frac{20!}{(20-20)!20!}*0.7^{20}*0.3^{20-20}=0.0008[/tex]
The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20) = 0.0278 + 0.0068 + 0.0008 = 0.0354 = 3.54%
The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2. What is the lateral area of the smaller cylinder? 17.1π mm2 33.6π mm2 60π mm2 84π mm2
Answer:
84π mm^2
Step-by-step explanation:
formula for circumference is 2πr where r is the radius of circle
Given,The circumference of the base of a cylinder is 24π mm
Thus,
2πr= 24π mm
=> r = 24π mm/2π = 12 mm
________________________________________
A similar cylinder has a base with circumference of 60π mm.
radius for this cylinder will be
2πr= 60π mm
r = 60π mm/2π = 30mm
______________________________________________
Given
The lateral area of the larger cylinder is 210π mm2
lateral area of cylinder is given by 2πrl
where l is the length of cylinder
thus,
r for larger cylinder = 30mm
2π*30*l = 210π mm^2
=> l = 210π mm^2/2π*30 = 3.5 mm
___________________________________________
the lateral area of the smaller cylinder
r = 12 mm
l = 3.5 mm as both larger and smaller cylinder are same
2πrl = 2π*12*3.5 mm^2 = 84π mm^2 answer
Answer:
33.6pi mm2 is the correct answer
edge 2021
Step-by-step explanation:
The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2.
What is the lateral area of the smaller cylinder?
17.1π mm2
33.6π mm2
60π mm2
84π mm2
How many real roots and how many complex roots exist for the polynomial
F(x) - X4+ x2 - 5x2 + x -- 6?
O A. 2 real roots and 2 complex roots
B. O real roots and 4 complex roots
O c. 3 real roots and 1 complex root
D. 4 real roots and 0 complex roots
Answer:
D. 4 real roots and 0 complex roots
Step-by-step explanation:
If I assume that the function you are saying is
[tex]F(x)=x^4+x^3-5x^2+x-6[/tex]
There should be up to "4 roots," there can't be more or less than 4 total solutions. First, we need to check how many sign changes are there in this function. There are 3 positive real roots. Now lets check for negative roots.
[tex]F(-x)=x^4-x^3-5x^2-x-6[/tex]
There are is only 1 negative real root. Since we basically have 4 real roots, and the max is 4. There should be 4 real roots and 0 complex roots.
Need Answers ASAP!!!!
Answer:
15.9degrees
Step-by-step explanation:
in photo above
Answer:
[tex]\boxed{15.95\°}[/tex]
Step-by-step explanation:
The angle can be found by using trigonometric functions.
tan (θ) = [tex]\frac{opposite}{adjacent}[/tex]
tan (θ) = [tex]\frac{4}{14}[/tex]
θ = [tex]tan^{-1} \frac{4}{14}[/tex]
θ = 15.9453959
θ ≈ 15.95
need help thanksssssssss
Answer:
Volume: 112 m³.
Surface area: 172 m².
Step-by-step explanation:
The volume is the base times height times length. So, the volume will be 2 * 8 * 7 = 16 * 7 = 112 m³.
The surface area is 2lw + 2lh + 2wh. l = 8; w = 7; h = 2.
2(8)(7) + 2(8)(2) + 2(7)(2) = 2 * 56 + 2 * 16 + 2 * 14 = 112 + 32 + 28 = 112 + 60 = 172 m².
Hope this helps!
2.CommerceThe weight distribution of parcels sent in a certain manner is normal with meanvalue 12 pounds and standard deviation 3.5 pounds. The parcel service wishes to establish aweight valuecbeyond which there will be a surcharge. What value ofcis such that 99% ofall parcels are under the surcharge weight
Answer:
the value of c is 20.155 such that 99% of all parcels are under the surcharge weight.
Step-by-step explanation:
Given that :
The mean value [tex]\mu[/tex] = 12
The standard deviation [tex]\sigma[/tex] = 3.5
Let Consider Q to be the weight of the parcel that is normally distributed .
Then;
Q [tex]\sim[/tex] Norm(12,3.5)
The objective is to determine thewight value of c under which there is a surcharge
Also, let's not that 99% of all the parcels are below the surcharge
However ;
From the Percentiles table of Standard Normal Distribution;
At 99th percentile; the value for Z = 2.33
The formula for the Z-score is:
[tex]Z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]2.33 = \dfrac{X - 12}{3.5}[/tex]
2.33 × 3.5 = X - 12
8.155 = X - 12
- X = - 12 - 8.155
- X = -20.155
X = 20.155
the weight value of c under which there is a surcharge = X + 1 (0) since all the pounds are below the surcharge
c = 20.155 + 1(0)
c = 20.155
Thus ; the value of c is 20.155 such that 99% of all parcels are under the surcharge weight.
Mai invests $20,000 at age 20. She hopes the investment will be worth $500,000 when she turns 40. If the interest compounds continuously, approximately what rate of growth will she need to achieve her goal? Round to the nearest tenth of a percent.
Answer:16.1%
Step-by-step explanation:
Answer:
The investment needs the rate of growth to be approximately 16.1%.
Step-by-step explanation:
Which sequence of transformations on preimage Triangle ABC will NOT produce the image A’B’C’
Answer:
b
Step-by-step explanation:
3 + 5x, for x = 10
A. 350
B. 120
C. 53
D. 75
Answer:C
Step-by-step explanation:
Pemdas
3+5(10)
5*10=50
3+50=53
Luke is organising a camping trip for the youth club. He is looking at the temperature and rainfall charts for Brighton and Newquay. What is the probability of it raining in July in Brighton? Give your answer as a fraction.
Answer:
The answer is 15.6/31 or 1/2
Step-by-step explanation:
The data in the question is sufficient to find an answer for it.
1. I look at the temperature and rainfall chart for Brighton, United Kingdom.
2. Check for rainy season and dry season.
3. The rainy season lasts approximately 5 months while the dry season (which still has some rainfall) lasts approximately 7 months. All together, 12 months of the calendar year.
4. July happens to fall within the dry season. The temperature and rainfall statistics are observed.
The number of rainfall days is 15.6 and we know there are 31 days in July.
If the approximate number of days it rains in Brighton, in July, is 15.6 then the probability of rainfall in the month is 15.6/31 which is = 0.503 or 0.5
Therefore, there's a 50% chance of having rainfall in Brighton, on any day in the month of July.
In fraction, 0.5 = 1/2
A sector with a central angle measure of 200 degrees has a radius of 9 cm. What is the area of the sector?
Answer:
[tex]\boxed{Area\ of\ sector = 141.4\ cm^2}[/tex]
Step-by-step explanation:
Radius = r = 9 cm
Angle = θ = 200° = 3.5 radians
Now,
[tex]Area \ of \ sector = \frac{1}{2} r^2 \theta[/tex]
Area = 1/2 (9)²(3.5)
Area = 1/2 (81)(3.5)
Area = 282.7 / 2
Area of sector = 141.4 cm²
Answer:
45 pi cm^2 or 141.3 cm^2
Step-by-step explanation:
First find the area of the circle
A = pi r^2
A = pi (9)^2
A = 81 pi
A circle has 360 degrees
The shaded part has 200
The fraction that is shaded is
200/360 =5/9
Multiply by the total area
5/9 * 81 pi
45 pi
Using 3.14 for pi
141.3
45 pi cm^2 or 141.3 cm^2
A circle is centered at CC-1, -3) and has a radius of 6.
Where does the point P(-6, -6) lie?
Choose 1 answer:
Inside the circle
On the circle
Outside the circle
Answer:
outside the circle i think
Step-by-step explanation:
Answer:
inside the circle
Step-by-step explanation:
The cost of plastering the 4 walls of a room which is 4m high and breadth one third of its length is Rs. 640 at the rate of Rs. 5/m². What will be the cost of carpeting its floor at the rate of Rs. 250/m².
Answer:
Rs. 32,000
Step-by-step explanation:
height = 4m
let length = x m
breadth = x/3 m
Area of the 4 walls = 2(length × height) + 2(breadth × height)
Area = 2(4×x) + 2(4 × x/3) = 8x + (8x)/3
Area = (32x)/3 m²
1 m² = Rs. 5
The cost for an area that is (32x)/3 m²= (32x)/3 × 5 Rs.
The cost of plastering 4 walls at Rs.5 per m² = 640
(32x)/3 × 5 = 640
(160x)/3 = 640
x = length = 12
Area = (32x)/3 m² = (32×12)/3 = 128m²
The cost of carpeting its floor at the rate of Rs. 250/m²:
= 128m² × Rs. 250/m² = 32,000
The cost of carpeting its floor at the rate of Rs. 250/m² = Rs. 32,000
Bart bought a digital camera with a list price of $219 from an online store offering a 6 percent discount. He needs to pay $7.50 for shipping. What was Bart's total cost? A. $205.86 B. $211.50 C. $213.36
Answer:
Barts total cost is (c)213.36
Step-by-step explanation:
First, you subtract 6% from $219
=204.92
add shipping,
+7.50
=213.36
Hope this helps <3
Answer:
C. $213.36
Step-by-step explanation:
The original price is $219 and the discount is 6% which is equal to $13.14
$219 - $13.14 + $7.50 (shipping cost) = $213.36
I need help with this !!
Answer:
A
Step-by-step explanation:
When subtracting 7 on the left of the equation, he also needs to subtract 7 from the right of the equation.
Step 2 should be:
⅓X +7 -7= 15 -7
What he is trying to do here by subtracting 7 is to move all the constants, that is numbers without any variables such as x, to one side of the equation.
⅓X= 8
X= 8 ×3
X= 24
aryn needs enough mulch to cover a rectangle flower bed measuring 2 1/4 yd by 3 1/2yd each bag cover 3 square yds and cost $4 how many bags does she need and how much money she need
Answer:
cars are dum
Step-by-step explanation:
All sides of the building shown above meet at right angles. If three of the sides measure 2 meters, 7 meters, and 11 meters as shown, then what is the perimeter of the building in meters?
Answer:
Perimeter= 40 units
Step-by-step explanation:
Ok
We are asked to look for the perimeter.
We have some clue given.
All at right angle and some sides are given it's full length.
We have the bae to be 11 unit
The height to be 7 unit.
What this mean is that taking either the base or the height should sum up to either 11 or 7 respectively.
Let's go for the other side of the height.
Let's take all the vertical height and sum it up to 7 because the right side is equal to 7.
So we have 7+7+11
But it's not complete yet.
We are given a dimension 2.
And the 2 is in two places so it's total 2*2= 4
The two is for a small base .
The base is actually an extra to the 11 of the other base.
So summing up
We have 2*11 + 2*7 + 2*2
Perimeter= 22+14+4
Perimeter= 40 units
How to calculate a circumference of a circle?
Answer: Pi multiplied by the diameter of the circle
Step-by-step explanation:
Answer:
The formula for finding the circumference of a circle is [tex]C = 2\pi r[/tex]. You substitute the radius of the circle for [tex]r[/tex] and multiply it by [tex]2\pi[/tex].
A manufacturing process that produces electron tubes is known to have a 10% defective rate. Suppose a random sample of 15 tubes is selected from the manufacturing process. a) Find the probability that no more than two defectives are found?
Answer:
Probability of obtaining no more than two defective tubes = 0.816
Step-by-step explanation:
The Probability of obtaining no more than two defective tubes in a randomly selected sample of 15 tubes is obtained using the binomial distribution formula: nCr × p^r × q^(n -r).
Where n is number of samples;
r is maximum number of defective tubes, r ≤ 2;
p is probability of defective tubes = 10% or 0.1
q is probability of non-defective tubes, q = 1 - p
Further explanations and calculations are given in the attachment below: