Answer: 0.045 is the growth rate.
Step-by-step explanation:
A generic exponential growth function can be written as:
f(t) = A*(1 + r)^t
where A is the initial amount.
t is the unit of time.
r is the rate of growth.
For example if we have an increase of 10% per year, with an initial population of 100 we have that:
A = 100, r = 10%/100% = 0.10, t = number of years.
the equation will be:
f(t) = 100*(1 + 0.10)^t
Now, in this case the equation is:
S(t) = 152*(1.045)^t
We can write this as:
S(t) = 152*(1 + 0.045)^t
Then 152 is the initial amount and 0.045 is the growth rate.
Just trying to finish this so I can get my stanceboy racecar back
Answer:
x ≥ 4 AND x + y ≤ 10
Step-by-step explanation:
If you need up to 10 volunteers, then you can take 10 or less. If we add y and x, we'll get the total amount of people, therefore making the inequality:
x + y ≤ 10.
Now, he needs no fewer than 4 females, so he can take 4 or greater. This means that x should be greater than or equal to 4.
x ≥ 4.
Nothing was mentioned about how many males he needed (y) so these two inequalities match the situation.
Hope this helped!
A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. A) Determine the cooling constant k.B) What is the differential equation satisfied by the temperature F(t) of the bar?C) What is the formula for F(t)?D) Determine the temperature of the bar at the moment it is submerged.
Answer:
A) cooling constant = 0.0101365
B) [tex]\frac{df}{dt} = k ( 60 - F )[/tex]
c) F(t) = 60 + 77.46[tex]e^{0.0101365t}[/tex]
D)137.46 ⁰
Step-by-step explanation:
water temperature = 60⁰F
temperature of Bar after 20 seconds = 120⁰F
temperature of Bar after 60 seconds = 100⁰F
A) Determine the cooling constant K
The newton's law of cooling is given as
= [tex]\frac{df}{dt} = k(60 - F)[/tex]
= ∫ [tex]\frac{df}{dt}[/tex] = ∫ k(60 - F)
= ∫ [tex]\frac{df}{60 - F}[/tex] = ∫ kdt
= In (60 -F) = -kt - c
60 - F = [tex]e^{-kt-c}[/tex]
60 - F = [tex]C_{1} e^{-kt}[/tex] ( note : [tex]e^{-c}[/tex] is a constant )
after 20 seconds
[tex]C_{1}e^{-k(20)}[/tex] = 60 - 120 = -60
therefore [tex]C_{1} = \frac{-60}{e^{-20k} }[/tex] ------- equation 1
after 60 seconds
[tex]C_{1} e^{-k(60)}[/tex] = 60 - 100 = - 40
therefore [tex]C_{1} = \frac{-40}{e^{-60k} }[/tex] -------- equation 2
solve equation 1 and equation 2 simultaneously
= [tex]\frac{-60}{e^{-20k} }[/tex] = [tex]\frac{-40}{e^{-60k} }[/tex]
= 6[tex]e^{20k}[/tex] = 4[tex]e^{60k}[/tex]
= [tex]\frac{6}{4} e^{40k}[/tex] = In(6/4) = 40k
cooling constant (k) = In(6/4) / 40 = 0.40546 / 40 = 0.0101365
B) what is the differential equation satisfied
substituting the value of k into the newtons law of cooling)
60 - F = [tex]C_{1} e^{0.0101365(t)}[/tex]
F(t) = 60 - [tex]C_{1} e^{0.0101365(t)}[/tex]
The differential equation that the temperature F(t) of the bar
[tex]\frac{df}{dt} = k ( 60 - F )[/tex]
C) The formula for F(t)
t = 20 , F = 120
F(t ) = 60 - [tex]C_{1} e^{0.0101365(t)}[/tex]
120 = 60 - [tex]C_{1} e^{0.0101365(t)}[/tex]
[tex]C_{1} e^{0.0101365(20)}[/tex] = 60
[tex]C_{1} = 60 * 1.291[/tex] = 77.46
C1 = - 77.46⁰ as the temperature is decreasing
The formula for f(t)
= F(t) = 60 + 77.46[tex]e^{0.0101365t}[/tex]
D) Temperature of the bar at the moment it is submerged
F(0) = 60 + 77.46[tex]e^{0.01013659(0)}[/tex]
F(0) = 60 + 77.46(1)
= 137.46⁰
A study is done to see if the average age a "child" moves permanently out of his parents' home in the United States is at most 23. 43 U.S. Adults were surveyed. The sample average age was 24.2 with a standard deviation of 3.7. The p-value is
Answer:
The p-value is 2.1%.
Step-by-step explanation:
We are given that a study is done to see if the average age a "child" moves permanently out of his parents' home in the United States is at most 23. 43 U.S. Adults were surveyed.
The sample average age was 24.2 with a standard deviation of 3.7.
Let [tex]\mu[/tex] = true average age a "child" moves permanently out of his parents' home in the United States.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] 23 {means that the average age a "child" moves permanently out of his parents' home in the United States is at most 23}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 23 {means that the average age a "child" moves permanently out of his parents' home in the United States is greater than 23}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample average age = 24.2
s = sample standard deviation =3.7
n = sample of U.S. Adults = 43
So, the test statistics = [tex]\frac{24.2-23}{\frac{3.7}{\sqrt{43} } }[/tex] ~ [tex]t_4_2[/tex]
= 2.127
The value of t-test statistics is 2.127.
Now, the p-value of the test statistics is given by;
P-value = P( [tex]t_4_2[/tex] > 2.127) = 0.021 or 2.1%
Jacob needs to know if the volume of a storage bin is under 3,000 cubic feet. The
dimensions of the bin are 17 ft. X 15 ft. x 10 ft.
a. Is the bin under 3,000 cubic ft.?
b. If yes, by how much?
Answer:
It is less than 3000 ft^3 by 450 ft^3
Step-by-step explanation:
The volume of the bin
V = l*w*h
V = 17*15*10
V =2550 ft^3
If it less than 3000 ft^3
V = 3000- 2550 =450 ft^3
If is less by 450 ft^3
Answer:
Let’s first multiply all the numbers given
Since it wants the volume we need to use the formula
LxWxH
17x15x10=2,550
Part A: yes the bin is under 3,000
Part B: by 450 more because if you subtract 3,000 and 2,550 you will get 450
Hope this helps! :)
A circle has a center at (4, -7) and a radius of 4 units. Write an equation of this circle.
Answer:
(x – 4)^2 + (y + 7)^2 = 16
Step-by-step explanation:
The formula of a circle is:
(x – h)^2 + (y – k)^2 = r^2
(h, k) represents the coordinates of the center of the circle
r represents the radius of the circle
If you plug in the given information, you get:
(x – 4)^2 + (y – (-7))^2 = 4^2
which simplifies into:
(x – 4)^2 + (y + 7)^2 = 16
Use Demoivres Theorem to find (-square root 3 +i)^6
Answer:
[tex]z=(-\sqrt{3}+i)^6[/tex] = -64
Step-by-step explanation:
You have the following complex number:
[tex]z=(-\sqrt{3}+i)^6[/tex] (1)
The Demoivres theorem stables the following:
[tex]z^n=r^n(cos(n\theta)+i sin(n\theta))[/tex] (2)
In this case you have n=6
In order to use the theorem you first find r and θ, as follow:
[tex]r=\sqrt{3+1}=2\\\\\theta=tan^{-1}(\frac{1}{\sqrt{3}})=30\°[/tex]
Next, you replace these values into the equation (2) with n=6:
[tex]z^6=(2)^6[cos(6*30\°)+isin(6*30\°)]\\\\z^6=64[-1+i0]=-64[/tex]
Then, the solution is -64
Answer:
A) -64
Step-by-step explanation:
Edge 2021
verify sin4x - sin2x = cos4x-cos2x
Answer:
sin⁴x - sin²x = cos⁴x - cos²x
Solve the right hand side of the equation
That's
sin⁴x - sin²x
From trigonometric identities
sin²x = 1 - cos²xSo we have
sin⁴x - ( 1 - cos²x)
sin⁴x - 1 + cos²x
sin⁴x = ( sin²x)(sin²x)
That is
( sin²x)(sin²x)
So we have
( 1 - cos²x)(1 - cos²x) - 1 + cos²x
Expand
1 - cos²x - cos²x + cos⁴x - 1 + cos²x
1 - 2cos²x + cos⁴x - 1 + cos²x
Group like terms
That's
cos⁴x - 2cos²x + cos²x + 1 - 1
Simplify
We have the final answer as
cos⁴x - cos²xSo we have
cos⁴x - cos²x = cos⁴x - cos²xSince the right hand side is equal to the left hand side the identity is true
Hope this helps you
Find the missing side of a triangle when one side is 3.16 and the other is 3
Answer:
0.992774 ≅ .993
Step-by-step explanation:
a²+b²=c²
a=x
b=3
c=3.16
x²+3²=3.16²
x²+9=9.9856
x²=.9856
x=0.992774
x≅0.993
The population, p, in thousands of a resort community is given by P(t)=700t/4t[tex]x^{2}[/tex]+9
Answer:
Step-by-step explanation:
pt=700 is basically evaluate it form the bottom to the top and u must mark me as brainly
Select the correct answer. Consider the function f(x) = 3x and the function g, which is shown below. How will the graph of g differ from the graph of f? The graph of g is the graph of f shifted to the right by 3 units. The graph of g is the graph of f shifted down by 3 units. The graph of g is the graph of f shifted to the left by 3 units. The graph of g is the graph of f shifted up by 3 units.
Answer:
The graph of g is the graph of f shifted up by 3 units.
Step-by-step explanation:
Consider the graph of a function r with real numbers k and h.
Transformation Effect
r(x) + k shifts the graph up k units
r(x) - k shifts the graph down k units
r(x + h) shifts the graph to the left h units
r(x - h) shifts the graph to the right h units
It is given that g(x) = f(x) + 3. Therefore, the graph of g is the graph of f shifted up by 3 units.
Find the total area of the prism.
Answer:
A=1,728
Step-by-step explanation:
To find the area of a prism, you must find the area of one side, then multiply it by so it would be Width*Hight*Depth, W*H*D.
The width is 12, the hight is 12, and the depth is 12 so you can write
A=12*12*12
Multiply 12 by 12
A=144*12
Multiply 12 by 144 to get your final total area
A=1,728
Hope this helps, feel free to ask follow-up questions if confused.
Have a good day! :)
Jamie's dog eats 3/4 pound of dog food each day. How many pounds of dog
food does Jamie's dog eat in 4 days?
Answer:
The dog will eat 3 lbs
Step-by-step explanation:
Take the amount eaten per day and multiply by the number of days
3/4 * 4 = 3
The dog will eat 3 lbs
Answer:
3 pounds
Step-by-step explanation:
Multiply the amount of dog food per day with the number of days.
[tex]\frac{3}{4} \times 4[/tex]
[tex]\frac{12}{4} =3[/tex]
In 4 days, Jamie's dog will eat 3 pounds of dog food.
-6+4q+(-6q)−6+4q+(−6q)minus, 6, plus, 4, q, plus, left parenthesis, minus, 6, q, right parenthesis ?
Answer:
-16-5q
Step-by-step explanation:
-6+4q-6q-6+4q-6q-6+4q-6q= -18-6q
Answer:C
Step-by-step explanation: 100% correct I did it on Khan Academy
please help me out with these questions. Its trigonometry.
Find the value of the lettered angles
In case the pic's not clear;
[tex] \cos \alpha = \sin(50 + \alpha ) [/tex]
Answer: i) θ = 30°, 60°, 210°, & 240°
ii) θ = 20° & 200°
Step-by-step explanation:
i) sin (2θ) = cos 30°
[tex]\sin(2\theta)=\dfrac{\sqrt3}{2}\\\\.\quad 2\theta=\sin^{-1}\bigg(\dfrac{\sqrt3}{2}\bigg)\\\\.\quad 2\theta=60^o\qquad 2\theta=120^o\\\\.\quad \theta=30^o\qquad \theta=60^o[/tex]
To include all of the solutions for one rotation, add 360/2 = 180 to the solutions above. θ = 30°, 60°, 210°, 240°
If you need ALL of the solutions (more than one rotation), add 180n to the solutions. θ = 30° + 180n & 60° + 180n
*********************************************************************************************
ii) cos α = sin (50 + α)
Use the Identity: cos α = sin (90 - α)
Use Transitive Property to get: sin (50° + α) = sin (90° - α)
50° + α = 90° - α
50° + 2α = 90°
2α = 40°
α = 20°
To find all solutions for one rotation, add 360/2 = 180 to the solution above.
α = 20°, 200°
If you need ALL of the solutions (more than one rotation), add 180n to the solution. α = 20° + 180n
A photoconductor film is manufactured at a nominal thickness of 25 mils. The product engineer wishes to increase the mean speed of the film and believes that this can be achieved by reducing the thickness of the film to 20 mils. Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured. For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09 *Note: An increase in film speed would lower the value of the observation in microjoules per square inch. We may also assume the speeds of the film follow a normal distribution. Use this information to construct a 98% interval estimate for the difference in mean speed of the films. Does decreasing the thickness of the film increase the speed of the film?
Answer:
A 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].
Step-by-step explanation:
We are given that Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured.
For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 and For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09.
Firstly, the pivotal quantity for finding the confidence interval for the difference in population mean is given by;
P.Q. = [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ~ [tex]t__n_1_+_n_2_-_2[/tex]
where, [tex]\bar X_1[/tex] = sample mean speed for the 25-mil film = 1.15
[tex]\bar X_1[/tex] = sample mean speed for the 20-mil film = 1.06
[tex]s_1[/tex] = sample standard deviation for the 25-mil film = 0.11
[tex]s_2[/tex] = sample standard deviation for the 20-mil film = 0.09
[tex]n_1[/tex] = sample of 25-mil film = 8
[tex]n_2[/tex] = sample of 20-mil film = 8
[tex]\mu_1[/tex] = population mean speed for the 25-mil film
[tex]\mu_2[/tex] = population mean speed for the 20-mil film
Also, [tex]s_p =\sqrt{\frac{(n_1-1)s_1^{2}+ (n_2-1)s_2^{2}}{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(8-1)\times 0.11^{2}+ (8-1)\times 0.09^{2}}{8+8-2} }[/tex] = 0.1005
Here for constructing a 98% confidence interval we have used a Two-sample t-test statistics because we don't know about population standard deviations.
So, 98% confidence interval for the difference in population means, ([tex]\mu_1-\mu_2[/tex]) is;
P(-2.624 < [tex]t_1_4[/tex] < 2.624) = 0.98 {As the critical value of t at 14 degrees of
freedom are -2.624 & 2.624 with P = 1%}
P(-2.624 < [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < 2.624) = 0.98
P( [tex]-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < [tex]2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ) = 0.98
P( [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ([tex]\mu_1-\mu_2[/tex]) < [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ) = 0.98
98% confidence interval for ([tex]\mu_1-\mu_2[/tex]) = [ [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] , [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ]
= [ [tex](1.15-1.06)-2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] , [tex](1.15-1.06)+2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] ]
= [-0.042, 0.222]
Therefore, a 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].
Since the above interval contains 0; this means that decreasing the thickness of the film doesn't increase the speed of the film.
43.
Some of the ingredients used by a baker for making 1 dozen
normal sponge cakes are listed below:
225g unsalted butter; 4 eggs; 125ml milk;
2 tsp vanilla extract; 264g plain flour
To make fully vegetarian cakes, the baker replaces each egg
with an additional 30g of plain flour.
The baker got an order for 100 normal cakes and 60 vegetarian
cakes. How much kilograms of flour would the baker need to
complete the order?
Answer:
4.12 kg
Step-by-step explanation:
Regular cakes:
1 dozen normal sponge cakes: 264 g plain flour
Vegetarian cakes:
1 dozen cakes: 264 g plain flour
4 eggs are replaced by 4 * 30 g of flour = 120 g flour
total flour for 1 dozen vegetarian cakes = 264 g + 120 g = 384 g
Proportion for regular cakes:
12 cakes to 264 g flour = 100 cakes to x grams flour
12/264 = 100/x
12x = 26400
x = 2200
2200 g flour for 100 regular cakes
Proportion for vegetarian cakes:
12 cakes to 384 g flour = 60 cakes to y grams flour
12/384 = 60/y
12y = 384 * 60
12y = 23040
y = 1920
1920 g flour for 60 vegetarian cakes
Total flour needed:
2200 g + 1920 g = 4120 g
4120 g * 1 kg/(1000 g) = 4.12 kg
Answer: 4.12 kg
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.03 years, with sample standard deviation s = 0.82 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01.
Answer:
Yes the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 51[/tex]
The sample mean is [tex]\= x = 2.03[/tex]
The sample standard deviation is [tex]\sigma = 0.82[/tex]
The population mean is [tex]\mu = 1.75[/tex]
The level of significance is [tex]\alpha = 0.01[/tex]
The null hypothesis is
[tex]H_o : \mu = 0.82[/tex]
The alternative hypothesis is
[tex]H_a : \mu >1.75[/tex]
The critical value of the the level significance [tex]\alpha[/tex] obtained from the critical value table for z-value is [tex]z_\alpha = 2.33[/tex]
Now the test statistic is mathematically evaluated as
[tex]t = \frac{\= x - \mu }{\frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 2.03 - 1.75 }{\frac{0.82}{\sqrt{51} } }[/tex]
[tex]t = 2.44[/tex]
From that calculated and obtained value we see that the critical value of the level of significance is less than the test statistics so we reject the null hypothesis
Hence there sufficient evidence to proof that the sample data indicates that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years
express 3.222......in p/q form
Answer:
3.22222...... = [tex]\frac{29}{9}[/tex]
Step-by-step explanation:
In this question we have to convert the number given in recurrent decimals into fraction.
Recurrent decimal number is 3.22222.......
Let x = 3.2222......... -------(1)
Multiply this expression by 10.
10x = 32.2222........... -------(2)
Now subtract the expression (1) from (2),
10x = 32.22222.....
x = 3.22222.......
9x = 29
x = [tex]\frac{29}{9}[/tex]
Therefore, recurrent decimal number can be written as [tex]\frac{29}{9}[/tex] which is in the form of [tex]\frac{p}{q}[/tex].
find the slope for (-4,-2)(-3,-6)
Answer:
The slope is -4.
Step-by-step explanation:
The values -2 and -6 are 4 values apart.
The values -4 and -3 are 1 value apart.
Since the second coordinate is lower than the first one, the slope of this is negative.
4 / 1 = 1
Negating 1 gets us -1.
Hope this helped!
Answer:
[tex] \frac{y}{x} = \frac{ - 4}{1} = - 4[/tex]
Step-by-step explanation:
[tex]x = ( - 3) - ( - 4) = 1[/tex]
[tex]y = ( - 6) - ( - 2) = - 4[/tex]
Write the equation of a line through the given point with the given slope (0,6);m undefined
Answer:
x=0
Step-by-step explanation:
If the slope is undefined, the line is vertical
vertical lines are of the form
x =
Since the point is (0,6)
x=0
How many even 3 digit positive integers can be written using the numbers 3,4,5,6,and 7?
Answer:
I got 45, but I may be wrong.
Step-by-step explanation:
When a number is even, the number must end in an even number. Here, the even numbers are 4 and 6, so the numbers we are going to create are all going to end in 4 and 6.
To answer this question, we just have to find as many possible combinations following the guidelines provided.
334
344
354
364
374
434
444
454
464
474
534
544
554
564
574
634
644
654
664
674
336
346
356
366
376
436
446
456
466
476
536
546
556
566
576
636
646
656
666
676
736
746
756
766
776
x =x=x, equals ^\circ ∘
Answer:
x = 64
Step-by-step explanation:
A circle equal 360 degrees
180 + 90 + x + 26 = 360
Combine like terms
296+x = 360
Subtract 296 from each side
296+x-296 = 360-296
x = 64
Which point is a solution to the system of inequalities graphed here? y -5 x + 4 A. (1,6) B. (-6,0) C. (0,5) D. (5,0)
Answer:
D
Step-by-step explanation:
this is the only one inside the overlapping inequalitlies
1 - Fill the space blanks
If we make a sequence selecting three elements from three different elements
{1, 2, 3} and we permit overlapped elements for the sequence, then the total
number of sequences is [ ] . If we do not take into account the order, the total
number of the selections is [ ] .
I'm totally lost in this, what is overlapped elements? This is about what math content? And what is the answer? Please i need help.
Answer:
The first part is of permutations.
We are selecting 3 elements from three different elements {1,2,3}
Points given:
We permit overlapped elements for the sequence. Here "overlapped elements" indicates that repetition is allowed.
So when repetition is allowed and order matters, we use permutations.
Formula to compute permutation is:
Lets say n is the three elements {1,2,3}
We have to select 3 elements so r = 3
Total number of selections using permutations = [tex]n^{r}[/tex] = n × n × n
= 3³ = 3 * 3 * 3
= 27
This means if we have 3 different elements then we have have 3 choices each time for making a sequence.
Hence If we make a sequence selecting three elements from three different elements {1, 2, 3} and we permit overlapped elements for the sequence, then the total number of sequences is 27.
Step-by-step explanation:
The second part indicates combinations.
This is because the statement of the question: If we do not take into account the order.
When the order does not matter, we use combinations.
So when the order does not matter and repetition is allowed we use the following formula:
Total number of selections using combinations = (r + n - 1)! / r! (n - 1)!
= (3 + 3 - 1) ! / 3! (3 - 1)!
= (3 + 2) ! / 3! (2!)
= 5! / 3! 2!
= 5*4*3*2*1 / (3*2*1 ) (2*1)
= 120 / 6 * 2
= 120 / 12
= 10
So these are the number of combinations of 3 elements taken 3 at a time with repetition.
The total number that will be selected in the permutations is 27.
How to calculate the permutations?Based on the information given, the total number of permutations will be:
= n³
= 3 × 3 × 3
= 27
Also, the total number of selection using combination will be:
= (3 + 3 - 1)! / 3!(3 - 1)!
= 120 / (6 × 2)
= 120/12
= 10
Learn more about permutations on:
https://brainly.com/question/1216161
surface area of a equilateral by hand
surface area of a equilateral by hand a 140.4 cm and 9cm
1. for what constant k must f(k) always equal the constant term of f(x) for any polynomial f(x) 2. If we multiply a polynomial by a constant, is the result a polynomial? 3. if deg(f+g) is less than both deg f and deg g, then must f and g have the same degree?
Answer:
1. k=0
2. yes, result is still a polynomial.
3. yes, f and g must have the same degree to have deg(f+g) < deg(f) or deg(g)
Step-by-step explanation:
1. for what constant k must f(k) always equal the constant term of f(x) for any polynomial f(x)
for k=0 any polynomial f(x) will reduce f(k) to the constant term.
2. If we multiply a polynomial by a constant, is the result a polynomial?
Yes, If we multiply a polynomial by a constant, the result is always a polynomial.
3. if deg(f+g) is less than both deg f and deg g, then must f and g have the same degree?
Yes.
If
deg(f+g) < deg(f) and
deg(f+g) < deg(g)
then it means that the two leading terms cancel out, which can happen only if f and g have the same degree.
h
e
l
p
m
e
o
u
t
:)
Answer:
First answer.
Step-by-step explanation:
Multiply everything by 10, to get rid of the decimals.
A landscaping company charges $50 per cubic yard of mulch plus a delivery charge of $24. Find a
linear function which computes the total cost C(in dollars) to deliver a cubic yards of mulch.
C(x) =
Answer: c(x) = $50*x + $24
Step-by-step explanation:
First, this situation can be modeled with a linear equation like:
c(x) = s*x + b
where c is the cost, s is the slope, x is the number of cubic yards of mulch bought, and b is the y-intercept ( a constant that no depends on the number x)
Then we know that:
The company charges $50 per cubic yard, so the slope is $50
A delivery charge of $24, this delivery charge does not depend on x, so this is the y-intercept.
Then our equation is:
c(x) = $50*x + $24
This is:
"The cost of buying x cubic yards of mulch"
A publisher requires 2∕3 of a page of advertisements for every 5 pages in a magazine. If a magazine has 98 pages, to the nearest whole page, how many pages of the magazine are advertisements?
Answer:
[tex]\boxed{13}[/tex] pages
Step-by-step explanation:
Divide the total number of pages by 5 to get how many sets of every 5 pages will contain 2/3 of a page of advertisements.
[tex]\frac{98}{5} = 19.6[/tex]
Multiply this value by [tex]\frac{2}{3}[/tex] to get the total number of pages.
[tex]19.6 * \frac{2}{3} \approxeq 13[/tex] pages
Please answer in the form of an angle or degree
Step-by-step explanation:
angle A = angle B( Corresponding angles)
so,
5x - 5 = 3x + 13
=> 5x - 3x = 13 + 5
=> 2x = 18
=> x = 9
angle B = 3x + 13 = (3×9) + 13 = 27 + 13 = 40
Answer:
x=9, ∠B=40
Step-by-step explanation:
In this case, ∠A≅∠B, as they are corresponding angles. Therefore, if you set up the equation to be 5x-5=3x+13,
2x=18, x=9
∠B=3(9)+13=27+13=40