Answer:
5:1
Step-by-step explanation:
20/4= 5
1*5 = 5
5:1 ratio
Hope this helps!
Una masa de 16 libras viaja con una velocidad de 30 m/s . Cuál es su energía cinética?
Energía cinética = 1 / 2mv²
Donde m es la masa y v es la velocidad
De la pregunta
la masa es de 16 libras
la velocidad es de 30 m / s
16 libras es equivalente a 7.257 kg
Entonces la energía cinética es
1/2(7.257)(30)²
Que es 3265.65 juliosEspero que esto te ayude
WILL GIVE YOU BRAINLIEST
Answer:
AB = 20 tan55°
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan55° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AB}{BC}[/tex] = [tex]\frac{AB}{20}[/tex] ( multiply both sides by 20 )
20 tan55° = AB
The volume of a cylinder varies jointly with the base (area) and the height. The volume is 40 inches^3 when the base (area) is 6 inches^2 and the height is 20 inches. Find the volume of the cylinder (after finding the variation constant) when the base (area) is 8 inches^2 and the height is 12 inches.
Answer: K = ¹/₃, V = 32in³
Step-by-step explanation:
Volume of s cylinder (V) = πr²h where πr² is the base area.
Now from the question,
V ∞ πr²h
V = kπr²h where k is the constant of proportionality which is also the variation constant.
40 = 6 x 20 x k
40 = 120k and
k = ⁴⁰/₁₂₀
= ¹/₃.
Now to find the volume when base area is 8in² and h is 12,
V = 8 x 12 x ¹/₃
V = 32in³
The radius of a nitrogen atom is 5.6 × 10-11 meters, and the radius of a beryllium atom is 1.12 × 10-10 meters. Which atom has a larger radius, and by how many times is it larger than the other?
Answer:
The beryllium atom; 1.99 times larger.
Step-by-step explanation:
The beryllium atom is 0.000000000112 meters, while the nitrogen atom is 0.000000000056 meters. So, the beryllium atom is larger than the other.
(1.12 * 10^-10) / (5.6 * 10^-11)
= (1.112 / 5.6) * (10^-10 + 11)
= 0.1985714286 * 10
= 1.985714286 * 10^0
So, the beryllium atom is about 1.99 times larger than the other.
Hope this helps!
find the area of the triangle shown
Answer
B. 27
firist divide 9÷2=4.5
the formula
=1/2×4.5×6
=13.5
cause there are 2 triangles. let's multiply 13.5 with 2
13.5×2= 27²
Louden County Wildlife Conservancy counts butterflies each year. Data over the last three years regarding four types
of butterflies are shown below. What is the average number of Variegated Fritillaries for all three samples?
A. 55 B.83 C.106 D.165
Answer:
A). 55
Step-by-step explanation:
Number of Variegated Fritillaries for each year is
2009 = 7
2010= 95
2011= 63
The sum total of the samples= 7+95+63
The sum total of the samples= 165
Number of years= 3
The average= total/number of years
The average= 165/3
The average= 55
Answer: A
Step-by-step explanation: I have a massive brain (•-*•)
Use the given conditions to write an equation for the line in point-slope form
Passing through (7,3) and (4,4)
OA
1
1.
y-3 = - =(x-
5(x-4) or y-4 = - 3(x - 7)
B.
1
1
y-3= - 3(x-7) or y- 4= - 3(x - 4)
O C. y - 3 = 7(x + 7) or y-4= 4(x-3).
OD
1
1
y + 3 = - 3(x+7) or y+4= - 3(x+4)
Answer:
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
Steb by step explanation:
The condition for the line is (7,3) and (4,4).
Point slope form of equation is in this format below.
(Y-y1)= m(x-x1)
We have the given parameters in the above format except the m
M = gradient
Gradient= (y2-y1)/(x2-x1)
Gradient=(4-3)/(4-7)
Gradient= 1/-3
Gradient= -1/3
So
(Y-y1)= m(x-x1)
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
If the 2nd and 5th terms of a
G.P are 6 and 48 respectively,
find the sum of the first four
terms
Answer:
45
Step-by-step explanation:
The n th term of a GP is
[tex]a_{n}[/tex] = a[tex]r^{n-1}[/tex]
where a is the first term and r the common ratio
Given a₂ = 6 and a₅ = 48, then
ar = 6 → (1)
a[tex]r^{4}[/tex] = 48 → (2)
Divide (2) by (1)
[tex]\frac{ar^4}{ar}[/tex] = [tex]\frac{48}{6}[/tex] , that is
r³ = 8 ( take the cube root of both sides )
r = [tex]\sqrt[3]{8}[/tex] = 2
Substitute r = 2 into (1)
2a = 6 ( divide both sides by 2 )
a = 3
Thus
3, 6, 12, 24 ← are the first 4 terms
3 + 6 + 12 + 24 = 45 ← sum of first 4 terms
omplete)
HWS
X 3.3.13-BE
The manufacturer's suggested retail price (MSRP) for a particular car is $25,495, and it is expected to be worth $20,081 in 2 years.
(a) Find a linear depreciation function for this car.
(b) Estimate the value of the car 4 years from now.
(c) At what rate is the car depreciating?
(a) What is the linear depreciation function for this car?
f(x) =
(Simplify your answer. Do not include the $ symbol in your answer.)
Answer:
a) y = 25495 - 2707x
b) y = 25495 - 2707(4) = 14,667
c) $2,707 per year
Step-by-step explanation:
Value now: $25,495
Value in 2 years: $20,081
Loss of value in 2 years: $25,495 - $20,081 = $5,414
Loss of value per year: $5,414/2 = $2,707
a) y = 25495 - 2707x
b) y = 25495 - 2707(4) = 14,667
c) $2,707 per year
An exterior angle of a triangle is 120° and one of the interior opposite angle is 50°. Find the other two angles of the triangle.
Answer:
interior angle (2)= 70
interior angle (3)= 60
Step-by-step explanation:
Given:
exterior angle=120°
interior angle (1)=50°
Required:
interior angle (2)=?
interior angle (3)=?
Formula:
exterior angle=interior angle (1) + interior angle (2)
Solution:
exterior angle=interior angle (1)+ interior angle (2)
120°=50°+interior angle (2)
120°+50°=interior angle (2)
70°=interior angle (2)
interior angle (3)= 180°-interior angle (1)- interior angle (2)
interior angle (3)=180°-50°+70°
interior angle (3)=180°-120°
interior angle (3)= 60°
Theorem:
Theorem 1.16
The measure of an exterior angle of a triangle is greater than either of the measures of the remote interior angles.
Hope this helps ;) ❤❤❤
how many pairs of matching surfaces does a cereal box have
Answer:
3 pairs
Step-by-step explanation:
Top and Bottom
Front and Back
Side and Side.
Cereal Boxes have 6 sides
g Find the mean and the variance of the random variable X with probability function or density f(x) of a uniform distribution on [0, 8].
Answer: E(X) = 4
V(X) = [tex]\frac{16}{3}[/tex]
Step-by-step explanation: An uniform distribution is a random variable X restricted to a finite interval [a,b] and has a constant function f(x) over this interval, i.e., the function is of form:
f(x) = [tex]\left \{ {{\frac{1}{b-a} } \atop {0}} \right.[/tex]
The mean or expectation of an unifrom distribution is:
E(X) = [tex]\int\limits^b_a {x.f(x)} \, dx[/tex]
For the density function in interval [0,8], expectation value is:
E(X) = [tex]\int\limits^8_0 {x.(\frac{1}{8-0} )} \, dx[/tex]
E(X) = [tex]\int\limits^8_0 {\frac{x}{8} } \, dx[/tex]
E(X) = [tex]\frac{1}{8}. \int\limits^8_0 {x} \, dx[/tex]
E(X) = [tex]\frac{1}{8}.(\frac{x^{2}}{2} )[/tex]
E(X) = [tex]\frac{1}{8} (\frac{8^{2}}{2} )[/tex]
E(X) = 4
Variance of a probability distribution can be written as:
V(X) = [tex]E(X^{2}) - [E(X)]^{2}[/tex]
For uniform distribution in interval [0,8]:
V(X) = [tex]\int\limits^b_a {x^{2}.\frac{1}{8-0} } \, dx - (\frac{8+0}{2})^{2}[/tex]
V(X) = [tex]\frac{1}{8} \int\limits^8_0 {x^{2}} \, dx - 4^{2}[/tex]
V(X) = [tex]\frac{1}{8} (\frac{x^{3}}{3} ) - 16[/tex]
V(X) = [tex]\frac{1}{8} (\frac{8^{3}}{3} ) - 16[/tex]
V(X) = [tex]\frac{64}{3}[/tex] - 16
V(X) = [tex]\frac{16}{3}[/tex]
The mean and variance are 4 and 16/3, respectively
A survey of 700 non-fatal car accidents showed that 183 involved faulty equipment. Find a point estimate for the population proportion of non-fatal car accidents that involved faulty equipment.
Answer:
Point of faulty equipment car = 0.2614 (Approx)
Step-by-step explanation:
Given:
Total number of car = 700
Faulty equipment car = 183
Find:
Point of faulty equipment car
Computation:
Point of faulty equipment car = Faulty equipment car / Total number of car
Point of faulty equipment car = 183 / 700
Point of faulty equipment car = 0.261428571
Point of faulty equipment car = 0.2614 (Approx)
Which phrase best describes the graph of a proportional relationship?
A) a straight line passing
B) a straight line
C) a curve
D) not a straight line
Answer:
A. a straight line passing
Step-by-step explanation:
Answer:
a straight line passing
Step-by-step explanation:
the product of two consequtive integers is 72 the equation x(x+1)=72 represents the situation, where x represents the smaller integer, which equation can be factor and solve for the smaller integer?
Answer:
x² + x - 72 = 0 can be factored into (x - 8)(x + 9) = 0 to find your answer.
Step-by-step explanation:
Step 1: Distribute x
x² + x = 72
Step 2: Move 72 over
x² + x - 72 = 0
Step 3: Factor
(x - 8)(x + 9) = 0
Step 4: Find roots
x - 8 = 0
x = 8
x + 9 = 0
x = -9
Answer:
x² + x - 72 = 0 ⇒ (x - 8)(x + 9) = 0
Step-by-step explanation:
Let the first consecutive integer be x.
Let the second consecutive integer be x+1.
The product of the two consecutive integers is 72.
x(x + 1) = 72
x² + x = 72
Subtracting 72 from both sides.
x² + x - 72 = 0
Factor left side of the equation.
(x - 8)(x + 9) = 0
Set factors equal to 0.
x - 8 = 0
x = 8
x + 9 = 0
x = -9
8 and -9 are not consecutive integers.
Try 8 and 9 to check.
x = 8
x + 1 = 9
x(x+1) = 72
8(9) = 72
72 = 72
True!
The two consecutive integers are 8 and 9.
Find the general solution of the differential equation and check the result by differentiation. (Use C for the constant of integration.)
1. dy/dt = 35t^4
2. dy/dx = 5x^(5/7)
Answer:
1. Y= 7t^5 +C
2. Y= 35/12x^(12/7)+C
Step-by-step explanation:
The general solution will be determined by integrating the equations as the integration is a simple integration.
For dy/dt = 35t^4
The general solution y
= integral (35t^4)dt
The general solution y
=( 35/(4+1))*t^(4+1)
= 35/5t^5
= 7t^5 +C
To prove by differentiating the above.
Y= 7t^5 +C
Dy/Dt= (5*7)t^(5-1) +0
Dy/Dt= 35t^4
For dy/dx = 5x^(5/7)
Y=integral 5x^(5/7)Dx
Y= 5/(5/7 +1)*x^(5/7+1)
Y= 5/(12/7) *x^(12/7)
Y= 35/12x^(12/7)+C
To prove by differentiating
Y= 35/12x^(12/7)+C
Dy/Dx= (35/12)*(12/7) x^(12/7-1) +0
Dy/Dx=(35/7)x^(5/7)
Dy/Dx= 5x^(5/7)
Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
x2 + y2 = (4x2 + 2y2 − x)2
(0, 0.5)
(cardioid)
Answer:
y = x + 0.5
Step-by-step explanation:
This is a very trivial exercise, follow the steps below:
Step 1: Perform the implicit differentiation of the given equation
[tex]x^2 + y^2 = (4x^2 + 2y^2 - x)^2[/tex]
[tex]2x + 2y \frac{dy}{dx} = 2(4x^2 + 2y^2 - x) ( 8x + 4y\frac{dy}{dx} - 1)\\\\[/tex]
Step 2: Make dy/dx the subject of the formula, this will be the slope of the curve:
[tex]x + y \frac{dy}{dx} = (4x^2 + 2y^2 - x) ( 8x + 4y\frac{dy}{dx} - 1)\\\\x + y \frac{dy}{dx} = 32x^3 + 16x^2y \frac{dy}{dx} - 4x^2 + 16xy^2 + 8y^3\frac{dy}{dx} - 2y^2 - 8x^2 - 4xy\frac{dy}{dx} + x \\\\\frac{dy}{dx}(y + 4xy - 8y^3) = 32x^3 - 12x^2 + 16xy^2 - 2y^2\\\\\frac{dy}{dx} = \frac{32x^3 - 12x^2 + 16xy^2 - 2y^2}{y + 4xy - 8y^3}[/tex]
Step 3: Find dy/dx at the point (0, 0.5)
[tex]\frac{dy}{dx}|(0,0.5) = \frac{32(0)^3 - 12(0)^2 + 16(0)(0.5)^2 - 2(0.5)^2}{(0.5) + 4(0)(0.5) - 8(0.5)^3}\\\\\frac{dy}{dx}|(0,0.5) =\frac{-0.5}{-0.5} \\\\\frac{dy}{dx}|(0,0.5) =1\\\\m = \frac{dy}{dx}|(0,0.5) =1[/tex]
Step 4: The equation of the tangent line to a curve at a given point is given by the equation:
[tex]y - y_1 = m(x-x_1)\\\\y - 0.5 = 1(x - 0)\\\\y = x + 0.5[/tex]
Graph y less than or equal to 3x
Answer:
See Image Below.
Step-by-step explanation:
The Shaded region is the area of numbers that this equation satisfies.
Answer:
Please see attached image
Step-by-step explanation:
In order to graph the inequality, start from plotting the boundary line defined by the equality;
y = 3 x
You just need two points to accomplish such. so let's use two simple values for x and find what the y-values are:
for x = 0 then y = 3 (0) = 0
for x = 1 then y = 3 (1) = 3
Then use the points (0, 0) and (1, 3) to plot the boundary line.
After this, grab any point on the plane either clearly above the boundary line, or clearly below it and check if the inequality satisfies. For example, you can pick the point (3, 0) which is on the x line, 3 units to the right of the origin, and clearly below the boundary line we just plot.
When you use it in the inequality, you get:
(0) [tex]\leq[/tex] 3 (3)
0 [tex]\leq[/tex] 9
which is a true statement, therefore, the points below the boundary lie are also solutions of the inequality.
Then the solution consists of all the points in the boundary line we just plotted (and indicated by drawing a solid line), plus all the points below the line, as depicted in the attached image.
Please answer this correctly without making mistakes
Answer:
41.1 miles
Step-by-step explanation:
84 - 42.9 = 41.1
The length of a rectangle is four times its width. If the perimeter of the rectangle is 50 yd, find its area
Answer:
100yd²
Step-by-step explanation:
length=4x
width=x
perimeter=2(l+w)
50=2(4x+x)
50=2(5x)=10x
50=10x
x=5yd
width=5yd
length=20yd
area=length×width
=20×5
=100yd²
Answer:
[tex]\boxed{\red{100 \: \: {yd} ^{2}}} [/tex]
Step-by-step explanation:
width = x
length = 4x
so,
perimeter of a rectangle
[tex] p= 2(l + w) \\ 50yd = 2(4x + x) \\ 50yd= 2(5x) \\ 50yd= 10x \\ \frac{50yd}{10} = \frac{10x}{10} \\ x = 5 \: \: yd[/tex]
So, in this rectangle,
width = 5 yd
length = 4x
= 4*5
= 20yd
Now, let's find the area of this rectangle
[tex]area = l \times w \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 20 \times 5 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 100 {yd}^{2} [/tex]
An investigation of a number of automobile accidents revealed the following information:
18 accidents involved alcohol and excessive speed.
26 involved alcohol.
12 accidents involved excessive speed but not alcohol.
21 accidents involved neither alcohol nor excessive speed.
How many accidents were investigated?
Answer:
59 accidents were investigated.
Step-by-step explanation:
The question above is a probability question that involves 2 elements: causes of accidents.
Let
A = Alcohol
E = Excessive speed
In the question, we are given the following information:
18 accidents involved Alcohol and Excessive speed =P(A ∩ E)
26 involved Alcohol = P(A)
12 accidents involved excessive speed but not alcohol = P( E ) Only
21 accidents involved neither alcohol nor excessive speed = neither A U B
We were given P(A) in the question. P(A Only) = P(A) - P(A ∩ E)
P(A Only) = 26 - 18
= 8
So, only 8 accident involved Alcohol but not excessive speed.
The Total number of Accidents investigated = P(A Only) + P( E only) + P(A ∩ E) + P( neither A U B)
= 8 + 12 + 18 + 21
= 59
Therefore, 59 accidents were investigated.
Six human skulls from around 4000 b.c. were measured, and the lengths have a mean of 94.2 mm and a standard deviation of 4.9
mm. If you want to construct a 95% confidence interval estimate of the mean length of all such skulls, assume that the requirements
are satisfied. Find the critical values that would be used to construct a 95% confidence interval estimate of o
Answer:
Step-by-step explanation:
Hello!
You have to estimate the mean length of 4000 b.c. human skulls trough a 95% confidence interval.
You know that
n= 6 human skulls
[tex]\frac{}{X}[/tex]= 94.2mm
S= 4.9
Assuming that the variable X: length of a 4000b.c. human skull (mm) has a normal distribution, to construct the interval you have to use the t statistic:
[[tex]\frac{}{X}[/tex] ± [tex]t_{n_1;1-\alpha /2} * \frac{S}{\sqrt{n} }[/tex]]
[tex]t_{n-1;1-\alpha /2}= t_{5; 0.975}= 2.571[/tex]
[94.2 ± 2.571 * [tex]\frac{4.9}{\sqrt{6} }[/tex]]
[89.06; 99.34]mm
With a 95% confidence level you'd expect the interval [89.06; 99.34]mm to contain the value for the average skull length for humans 4000 b.c.
I hope this helps!
You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately 60%. You would like to be 98% confident that your estimate is within 2.5% of the true population proportion. How large of a sample size is required?
Answer:
A sample size of 2080 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
Based on previous evidence, you believe the population proportion is approximately 60%.
This means that [tex]\pi = 0.6[/tex]
How large of a sample size is required?
We need a sample of n.
n is found when [tex]M = 0.025[/tex]. So
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.025 = 2.327\sqrt{\frac{0.6*0.4}{n}}[/tex]
[tex]0.025\sqrt{n} = 2.327\sqrt{0.6*0.4}[/tex]
[tex]\sqrt{n} = \frac{2.327\sqrt{0.6*0.4}}{0.025}[/tex]
[tex](\sqrt{n})^{2} = (\frac{2.327\sqrt{0.6*0.4}}{0.025})^{2}[/tex]
[tex]n = 2079.3[/tex]
Rounding up
A sample size of 2080 is needed.
A cube 4 units on each side is composed of 64 unit cubes. Two faces of the larger cube that share an edge are painted blue, and the cube is disassembled into 64 unit cubes. Two of the unit cubes are selected uniformly at random. What is the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces?
Answer:
P = 0.0714
Step-by-step explanation:
If two faces of the larger cube that share and edge are painted blue, it means that 28 of the 64 unit cubes are painted in at least one side and 36 cubes have no painting faces.
Additionally, from the 28 cubes painted only 4 have exactly two painted faces.
Then, to calculate the number of ways in which we can select x elements from a group of n, we can use the following equation:
[tex]nCx=\frac{n!}{x!(n-x)!}[/tex]
So, the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces is:
[tex]P=\frac{4C1*36C1}{64C2}=0.0714[/tex]
Because there are 64C2 ways to select 2 cubes from the 64, and from that, there are 4C1*36C1 ways to select one cube with exactly two painted faces and one cube with no painted faces.
The board of directors of Midwest Foods has declared a dividend of $3,500,000. The company has 300,000 shares of preferred stock that pay $2.85 per share and 2,500,000 shares of common stock. After finding the amount of dividends due the preferred shareholders, calculate the dividend per share of common stock.
Answer:
$855,000Dividend per share of common stock = $1.06Step-by-step explanation:
1. Preferred Share dividends.
There are 300,000 preference shares and each of them got $2.85. Total dividends are;
= 300,000 * 2.85
= $855,000
2. Total dividends = $3,500,000
Dividends left for Common Shareholders (preference gets paid first)
= 3,500,000 - 855,000
= $2,645,000
Common shares number 2,500,000
Dividend per share of common stock = [tex]\frac{2,645,000}{2,500,000}[/tex]
= $1.06
Find the exact values of sin 2θ and cos 2θ for cos θ = 6/13
Answer:
Step-by-step explanation:
cos^-1(6/13)=62.5136°
sin(2*62.5136°)=0.8189
cos(2*62.5136°)=-0.5740
what is the answer 2×3+4×100-50+10
Answer:
366
Step-by-step explanation:
2×3+4×100-50+10
PEMDAS says multiply and divide from left to right
6 + 400 - 50 +10
Then add and subtract
406-50+10
356+10
366
Answer:
[tex]\boxed{366}[/tex]
Step-by-step explanation:
[tex]2 \times 3+4 \times 100-50+10[/tex]
Multiplication is first.
[tex]6+400-50+10[/tex]
Add or subtract the numbers.
[tex]350+10+6[/tex]
[tex]366[/tex]
helpppppppppppppppppppppppppppppp
Answer:
0
Step-by-step explanation:
Hope this helps
Which number line represents the solution set for the inequality 3(8 - 4x) < 6(x - 5)?
Answer:
x>3
Step-by-step explanation:
What is the missing side lenght in the triangle below?
Answer:
45
Step-by-step explanation:
Let's call the missing side x
This is a right triangle and in right triangles the square length of hypotenuse is equal to sum of square length of base and side lengths
53^2 = 28^2 + x^2
x = 45